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INTRODUCTION 
 

Traumatic brain injury (TBI), which contributes to 

subsequent damage of associated neurons, has imposed a 

significant burden on family and society in the world  

[1, 2]. Although great improvements have been made in 

medical intervention, many approaches or neuroprotective 

agents for TBI failed during clinical trials [3–5]. 

 

Glutamate has been reported to play an important role in 

the excitement of nerve activity during TBI [6, 7]. Garzón 

et al showed that NeuroEPO protected cortical neurons 

from glutamate-induced apoptosis via the upregulation  

of Bcl-2 and inhibit glutamate-induced activation of 

caspase-3 [8]. Glutathione depletion, perhaps triggered by 

early glutamate-mediated excitotoxicity, led to late  

post-repetitive mild TBI loss of parvalbumin-positive 

interneuron-dependent cortical inhibitory tone [9]. Also, 

zolpidem prevented glutamate-induced toxicity in 

differentiated P19 neurons via the PI3K/Akt pathway 

[10]. Therefore, searching for neuroprotective agents, 

which can inhibit glutamate-induced toxicity, may be a 

promising therapeutic strategy for TBI treatment. 

 

As an important gasotransmitter and endogenous 

neuromodulator, hydrogen sulfide (H2S) has been 

reported to exert multiple biological and physiological 

effects on the pathogenesis of numerous diseases,  

such as stroke, Alzheimer’s disease, and TBI [11–13]. 

Sodium hydrosulfide (NaHS), an H2S donor, improved 

spatial memory impairment of rats with TBI [14]. H2S 

could prevent scratch-induced cellular injury, alteration 

of mitochondrial membrane potential, intracellular 

accumulation of reactive oxygen species, and cell death 
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ABSTRACT 
 

Several reports suggest that hydrogen sulfide (H2S) exerts multiple biological and physiological effects on the 
pathogenesis of traumatic brain injury (TBI). However, the exact molecular mechanism involved in this effect is 
not yet fully known. In this study, we found that H2S alleviated TBI-induced motor and spatial memory deficits, 
brain pathology, and brain edema. Moreover, sodium hydrosulfide (NaHS), an H2S donor, treatment markedly 
increased the expression of Bcl-2, while inhibited the expression of Bax and Cleaved caspase-3 in TBI-challenged 
rats. Tunnel staining also demonstrated these results. Treatment with NaHS significantly reduced the glutamate 
and glutaminase 2 (GLS-2) protein levels, and glutamate-mediated oxidative stress in TBI-challenged rats. 
Furthermore, we demonstrated that H2S treatment inhibited glutamate-mediated oxidative stress through the 
p53/GLS-2 pathway. Therefore, our results suggested that H2S protects brain injury induced by TBI through 
modulation of the glutamate-mediated oxidative stress in the p53/GLS-2 pathway-dependent manner. 
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in PC12 cells through modulation of the PI3K/Akt/Nrf2 

pathway [15]. Besides, NaHS treatment increased 

endogenous antioxidant enzymatic activities and 

decreased oxidative product levels in the brain tissue of 

TBI-challenged rats [16]. However, the biological role of 

H2S in regulating glutamate-induced apoptosis and 

oxidative stress during TBI remains unclear. In the 

present study, we used the TBI rat model to determine 

the protective effects of H2S on the motor and spatial 

memory deficits and brain edema. Furthermore, we 

explored its potential neuroprotective mechanism through 

glutamate-induced apoptosis and oxidative stress. 

 

RESULTS 
 

H2S alleviated TBI-induced motor and spatial memory 

deficits and brain edema 

 

To determine the effect of H2S on TBI-induced motor 

deficits, a wire-grip test and a rota-rod test were 

performed. Compared with the sham group, TBI lead  

to a significant decline in motor performance at 0 to  

7 days post-injury. NaHS, an H2S donor, treatment 

significantly improve the motor function on days 0 to 7 

after TBI compared to TBI and TBI+ vehicle groups 

(Figure 1A, 1B). 

 

We then performed a Morris water maze test to analyze 

spatial memory ability on days 8 to 15. Compared with 

the sham group, rats from TBI and TBI+ vehicle groups 

showed increased latencies to find the hidden platform. 

We observed a significant decrease in the latencies in 

the TBI+ NaHS group (Figure 1C). The data of a spatial 

probe test also showed that H2S improved the spatial 

memory ability of TBI rats (Figure 1D). 

 

To determine the effect of H2S on TBI-induced cerebral 

injury, we analyzed brain pathology and brain edema. 

As shown in Figure 1E, compared with the sham group 

on day 7, rats from TBI and TBI+ vehicle groups 

showed serious pathological changes. Treatment with 

NaHS significantly improved the pathological changes. 

In addition, TBI led to a significant increase in the 

percentage of brain water content compared to the sham 

group (Figure 1F). Treatment with NaHS markedly 

reduced the percentage of brain water content. 

 

 
 

Figure 1. H2S alleviated TBI-induced motor and spatial memory deficits and brain edema. (A) A wire-grip test was performed to 
analyze the motor function at 0 to 7d after TBI (n = 5). (B) A Rota-rod test was performed to analyze the motor function at 0 to 7d and 14d 
after TBI (n = 5). (C) A Morris water maze test was performed to test spatial memory ability on days 8 to 15 (n = 5). (D) A spatial probe test 
was performed to test spatial memory ability on days 16 (n = 5). (E) The pathological changes was analyzed by H&E staining. (F) The brain 
water content was measured at 24 h after TBI (n = 5). #P<0.05 vs. sham group.* P<0.05, vs. TBI and TBI+ vehicle groups. #P<0.05 vs. sham 
group. 
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H2S inhibited apoptosis after TBI 

 

To investigate the effect of H2S on apoptosis after TBI, 

western blot was performed to detect the expression of 

the apoptosis-associated protein, such as Bcl-2, Bax, 

and Cleaved caspase-3. As shown in Figure 2A, 2B, the 

Bcl-2 expression was significantly down-regulated after 

TBI compared to the sham group. Treatment with NaHS 

markedly increased the expression of Bcl-2 after  

TBI. By contrast, treatment with NaHS inhibited the 

expression of Bax and Cleaved caspase-3, which was 

increased in TBI-challenged rats (Figure 2A, 2C, 2D). 

Moreover, Tunnel staining also showed that treatment 

with NaHS reduced the apoptosis rate of cerebral cortex 

in TBI rats (Figure 2E). 

 

H2S inhibited the levels of glutamate after TBI 

 

We then investigated the effect of H2S on glutamate 

levels after TBI. As shown in Figure 3A, the glutamate 

 

 
 

Figure 2. Treatment with H2S inhibited TBI-induced apoptosis. (A) Western blot was performed to analyze the protein level of Bcl-2, 

Bax, and Cleaved caspase-3 in TBI-challenged rats after treatment with NaHS. (B–D) The band density of Bcl-2 (B), Bax (C), and Cleaved 
caspase-3 (D) was analyzed using Image J. (E) The apoptosis rate of cerebral cortex in TBI rats was analyzed by Tunnel staining. * P<0.05, vs. 
TBI and TBI+ vehicle groups. #P<0.05 vs. sham group. 
 

 
 

Figure 3. Treatment with H2S inhibited TBI-induced glutamate. (A) The level of glutamate in TBI-challenged rats after treatment with 
NaHS. (B) Western blot was performed to analyze the protein level of GLS-2 in TBI-challenged rats after treatment with NaHS. (C) The band 
density of GLS-2 was analyzed using Image J. * P<0.05, vs. TBI and TBI+ vehicle groups. #P<0.05, ###P<0.001 vs. sham group. 
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level was significantly increased after TBI. Treatment 

with NaHS markedly reduced the glutamate level in 

TBI-challenged rats. Given that the GLS2 level was 

regulated by glutaminase, we also determined the effect 

of H2S on GLS2 expression after TBI. The protein 

expression of GLS2 in TBI-challenged rats was higher 

than that in the sham group rats. Moreover, the GLS2 

protein level was significantly decreased in the TBI+ 

NaHS group compared to TBI and TBI+ vehicle groups 

(Figure 3B, 3C). 

 

H2S inhibited brain oxidative stress after TBI 

 

To explore the effect of H2S on brain oxidative stress 

after TBI, malondialdehyde (MDA) content, superoxide 

dismutases (SOD) activities, and glutathione peroxidase 

(GPx) activities were assessed, respectively. Compared 

to the sham group, TBI lead to an increase in the level 

of MDA and a decrease in the activities of SOD and 

GPx (Figure 4A–4C). Treatment with NaHS reversed 

the effect of TBI on MDA content, SOD activities, and 

GPx activities. Besides, we further analyzed the 

expression of HO-1, an oxidative stress gene, using RT-

qPCR and western blot analysis. The mRNA and 

protein expression of HO-1 in TBI-challenged rats was 

higher than that in sham group rats (Figure 4D–4F). 

Treatment with NaHS increased the mRNA and protein 

expression of HO-1 in TBI-challenged rats. 

 

H2S inhibited glutamate-mediated oxidative stress 

via the p53/GLS-2 pathway 

 

Since H2S can inhibit glutamate and oxidative stress, 

we hypothesized that the inhibited glutamate and 

oxidative stress effect was induced by the p53/GLS-2 

signaling pathways. As shown in Figure 5A, 5B, 

treatment with NaHS inhibited the protein expression 

of p53 in TBI-challenged rats, while pifithrin-α 

treatment abolished the inhibitory effect of H2S on p53 

expression in TBI-challenged rats. Furthermore, 

pifithrin-α treatment reversed the effect of H2S on 

GLS2 and glutamate expression in rats after TBI 

(Figure 5A, 5C, 5D). More importantly, pifithrin-α 

treatment abolished the effect of H2S on MDA content, 

SOD activities, and GPx activities in TBI-challenged 

rats (Figure 5E–5G). 

 

 
 

Figure 4. Treatment with H2S inhibited TBI-induced oxidative stress and HO-1 expression. (A) The level of MDA in TBI-challenged 

rats after treatment with NaHS. (B, C) The activities of SOD (B) and GPx (C) in TBI-challenged rats after treatment with NaHS. (D) The mRNA 
level of HO-1 in TBI-challenged rats after treatment with NaHS. (E) The protein level of HO-1 in TBI-challenged rats after treatment with 
NaHS. (F) The band density of HO-1 was analyzed using Image J. * P<0.05, vs. TBI and TBI+ vehicle groups. #P<0.05, ##P<0.01 vs. sham group. 
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DISCUSSION 
 

Previous studies have shown the neuroprotective roles 

of H2S on TBI [13, 15]. Mingyang et al. reported that 

H2S pretreatment had reduced brain edema, improved 

motor performance, and ameliorated performance in the 

Morris water maze test after TBI [17]. Karimi et al. 

showed that NaHS has a neuroprotective effect on TBI-

induced memory impairment in rats [14]. Also, NaHS 

treatment ameliorated brain injuries, characterized by an 

increase of blood-brain barrier permeability, brain 

edema, and lesion volume, as well as neurologic 

dysfunction in TBI-challenged rats [16]. In this study, 

our data also demonstrated that H2S alleviated TBI-

induced motor and spatial memory deficits, brain 

pathology, and brain edema. Moreover, we also found 

that NaHS treatment markedly increased the expression 

of Bcl-2, while inhibited the expression of Bax and 

Cleaved caspase-3 in TBI-challenged rats. Tunnel 

staining also demonstrated this result. These results 

were similar to the results of previous studies [17, 18], 

and suggested that H2S played the protective effect 

against TBI by regulating apoptosis. 

It has been well known that glutamate-induced 

excitotoxicity, which leads to neuronal damage and 

functional impairments, is implicated in TBI [19]. The 

metal chaperone, PBT2, currently in clinical trials for 

Huntington’s disease, could protect against glutamate-

induced excitotoxicity thought to underlie both acute 

and chronic neurodegenerative diseases [20]. Moreover, 

zolpidem exerted the neuroprotective effect in 

differentiated P19 neurons by inhibiting the glutamate-

induced toxicity [10]. Herein, we hypothesized that 

H2S-mediated neuroprotective effects on TBI may be 

associated with glutamate-induced toxicity. We found 

that treatment with NaHS markedly reduced the 

glutamate and glutaminase protein levels in TBI-

challenged rats. These results showed that H2S played 

neuroprotective effects on TBI through inhibiting 

glutamate-induced toxicity. Jiang et al. found that 

exogenous H2S administered could exert a protective 

effect against TBI via activation of mitoK(ATP) channels 

and reduction of oxidative stress [16]. In addition, the 

protective effect of H2S against TBI was associated  

with regulating apoptosis and autophagy [17]. Therefore, 

we inferred that H2S played neuroprotective effects

 

 
 

Figure 5. p53 inhibition reversed the effect of H2S on glutamate and glutamate-mediated oxidative stress after TBI. (A) The 
protein level of GLS-2 and p53 in TBI-challenged rats after co-treatment with NaHS and pifithrin-α. (B, C) The band density of GLS-2 (B) and 
p53 (C) was analyzed using Image J. (D) The level of glutamate in TBI-challenged rats after co-treatment with NaHS and pifithrin-α.  
(E) The level of MDA in TBI-challenged rats after co-treatment with NaHS and pifithrin-α. (F, G) The activities of SOD (F) and GPx (G) in TBI-
challenged rats after co-treatment with NaHS and pifithrin-α. * P<0.05, vs. TBI+NaHS+ pifithrin-α group. #P<0.05, vs. TBI+ vehicle group. 
@P<0.05, @@<0.01, vs. sham group. 
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on TBI via multiple mechanisms such as inhibiting 

glutamate-induced toxicity, activating of mitoK(ATP) 

channels, and regulating apoptosis and autophagy. 

 

Oxidative stress and their byproducts could cause brain 

damage and overall clinical outcome [21]. Nrf2 is an 

important protective factor against TBI-induced injuries 

by inhibiting oxidative stress after TBI [22]. PDIA3 

provided significant improvements in cognitive 

impairments and contusion volume induced by TBI 

through attenuating oxidative stress [23]. Given that 

glutamate-mediated oxidative stress was associated with 

multiplication, differentiation, inflammation, survival, 

and apoptosis of cells [24], we also explored the effect 

of H2S on brain oxidative stress after TBI. We found 

that treatment with NaHS reversed the effect of TBI on 

MDA content, SOD activities, and GPx activities, three 

biomarkers of oxidative stress. Moreover, NaHS 

treatment inhibited the mRNA and protein expression of 

HO-1 in TBI-challenged rats. These results suggested 

that the neuroprotective effects of H2S on TBI may be 

associated with glutamate-mediated oxidative stress. 

 

In addition, we investigated the molecular mechanisms 

that H2S regulated the glutamate-mediated oxidative 

stress. A previous study showed that the p53 pathway 

was involved in the progression of TBI. Hong et al. 

reported that JNK-mediated p53 expression could 

regulate neuron autophagy following TBI in rats [25]. 

The p53 inactivator pifithrin-α oxygen analogue could 

inhibit glutamate-induced excitotoxicity and improve 

histological and functional outcomes after experimental 

TBI [26]. Since GLS-2 was a p53 target gene [27], we 

hypothesized that the inhibited glutamate and oxidative 

stress effect was induced by the p53/GLS-2 signaling 

pathways. Our results showed that pifithrin-α treatment 

reversed the inhibitory effect of H2S on p53, GLS-2, and 

glutamate expression in TBI-challenged rats. Moreover, 

pifithrin-α treatment abolished the effect of H2S on MDA 

content, SOD activities, and GPx activities in TBI-

challenged rats. These results suggested that H2S 

inhibited glutamate-mediated oxidative stress via the 

p53/GLS-2 pathway. 

 

In conclusion, the present study showed that H2S 

treatment alleviated TBI-induced motor and spatial 

memory deficits and brain edema, as well as inhibited 

apoptosis, glutamate-mediated oxidative stress through 

the p53/GLS-2 pathway. 

 

MATERIALS AND METHODS 
 

Mouse TBI model 

 

Sprague-Dawley (SD) rats, weighing 250-300 g, were 

obtained from the Animal Center of the Hebei Medical 

University (Shijiazhuang, China). All mouse experiments 

were approved by the Ethics Committee of The Second 

Hospital of Hebei Medical University. The mouse TBI 

model was established as previously described [28]. 

Briefly, the rats were anesthetized with 4% chloral 

hydrate. The following surgery was performed under 

aseptic conditions and mounted in a stereotaxic system 

(David Kopf Instruments, Tujunga, California). A 

midline incision was made to expose the skull, and the 

bone flap was carefully removed by a manual trephine 

(Roboz Surgical Instrument Co., Gaithersburg, MD). We 

then used a weight-drop device to perform the TBI in the 

left part of the brain as described previously [29, 30]. For 

the sham operation group, rats underwent the same 

procedure as TBI rats except for the impact. 

 

To examine the effect of H2S on TBI, all rats were 

randomly allocated into sham, TBI, TBI+vehicle, and 

TBI+NaHS groups. The rats in the TBI+NaHS group 

were i.p. injected with NaHS (1mmol/kg, Sigma-Aldrich, 

St. Louis, MO), and the rats in the TBI+ vehicle group 

were i.p. injected with saline 30 min before TBI. 

 

Wire-grip test 

 

We used a wire-grip test to evaluate the motor function 

as described previously [28, 29]. Briefly, we placed rats 

on the metal wire, which was suspended 45 cm above a 

foam pad. We then measured and recorded the latency 

that a mouse remained on the wire within a 60 s’ 

interval. The scores of wire-grip were calculated as 

described previously [31]. 

 

Rota-rod test 

 

We also used a rota-rod test to evaluate the motor 

function as described previously [32]. Before surgery, 

all rats were pre-trained for balancing on an automated 

rota-rod (Ugo Basile, Comerio, Italy) at a constant 

speed of 40 rpm. The average latency to fall from the 

rod was recorded, and the maximum cutoff time was 

180 s. 

 

Morris water maze test 

 

We performed a Morris water maze test to evaluate 

spatial learning and memory performance as described 

previously [28, 33]. Briefly, the water was added into an 

experimental apparatus, and colored by white non-toxic 

food pigment. A clear plexiglass goal platform was 

placed 0.5 cm under the water surface. We allowed rats 

to find the submerged platform at a maximum of 90 s 

on days 8 to 15, and remain on the platform for an 
additional 10 s if the mouse reached the submerged 

platform. Then, we used a video/compute system to 

recorded and analyzed the escape latency that a mouse 
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reached the visible platform. For the spatial probe test, 

we removed the submerged platform and allowed rats to 

explore the pool within 90 s on day 16. A video tracking 

system was used to monitor the frequency of passing 

through the target quadrant. 

 

Pathological analysis of the brain tissues 

 

For H&E staining, the 5 μm slides from brains of rats in 

sham, TBI, TBI+vehicle, or TBI+NaHS group were 

stained by H&E staining kit (Solarbio, China) according 

to the manufacturer’s instructions. Briefly, the slides 

were deparaffinized using xylene and ethanol. After 

permeabilized, the slides were stained with hematoxylin 

and eosin. Finally, imajes were obtained from an optical 

microscope. 

 

Brain water content 

 

A wet-dry weight method was used to measure the brain 

water content as described previously [28, 33]. Briefly, 

the whole brains were removed from anesthetized rats 

and immediately weighed to determine wet weight.  

The brain tissues were completely dried in an oven at 

100° C. After 24h, the dry weight was measured. Brain 

water content was calculated as (wet weight−dry 

weight)/wet weight×100%. 

 

Malondialdehyde (MDA), superoxide dismutases 

(SOD), and glutathione peroxidase (GPx) assay 

 

The activities of MDA, SOD, and GPx in brain tissue 

were analyzed using using commercial kits (Jiangcheng, 

Nangjing, China, #A003-1-2 for MDA, #A001-4-1 for 

SOD; #A005-1-2 for GPx) according to the 

manufacturer’s instructions. 

 

Western blot 

 

The total protein from cortical was lysed in RIPA lysis 

with PMSF and protease inhibitor (Thermo Fisher 

Scientific, USA). The protein concentration was 

detected using a BCA assay kit (Beyotime, Shanghai 

China). Equal proteins (30 μg) were resolved by SDS-

PAGE and transferred to a polyvinylidene difluoride 

membrane (Millipore, MA, USA). The membranes 

were with 5% BSA and were incubated  

with primary antibodies to anti-Bcl-2 (Abcam), anti-

Bax (Abcam), anti-Cleaved caspase-3 (CST), anti-

GLS2 (Abcam), anti-HO-1 (CST), anti-p-AKT (CST), 

anti-t-AKT (CST) and anti-GAPDH (Abcam) overnight 

at 4° C. Then the membranes were incubated with 

secondary antibody and visualized using an enhanced 
chemiluminescence system (Pierce Biotech, IL, USA). 

The densitometry of each band was quantified by 

ImageJ software. 

Tunnel apoptosis staining 

 

For Tunnel apoptosis staining, the 5 μm slides from 

brains of rats in sham, TBI, TBI+vehicle, or TBI+NaHS 

group were stained by the Tunnel staining kit (Roche, 

USA) according to the manufacturer’s instructions. 

Briefly, the slides from brains of rats were dewaxed and 

rehydrated. Then, the slides were incubated with TUNEL 

reaction mixture at 37° C for 1 h. The nuclei were stained 

with DAPI. 

 

RNA isolation and quantitative real-time PCR (RT-

qPCR) assays 

 

Total RNA was extracted from cortical using TRIzol 

reagent (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. The method used to detect 

HO-1 mRNA expression was based on a previous report 

[22]. Briefly, cDNA was constructed using a commercial 

kit (GeneCopoeia, Rockville, USA). Then, RT-PCR was 

performed on an Applied Biosystems 7500 Sequence 

Detection system using a SYBR PrimeScript RT-qPCR 

Kit (Takara). The primers used in this study were as 

follows: HO-1 Forward Primer 5’- CTGTGCCACCTGG 

AACTGAC -3’, Reverse Primer 5’- TCTTGTGGGTCT 

TGAGCTGTT -3’; β-Actin Forward Primer 5’-GTTGA 

GAACCGTGTACCATGT-3’, Reverse Primer 5’-TTCC 

CACAATTTGGCAAGAGC-3’. β-Actin was used as an 

internal control. 

 

Statistical analysis 

 

All data were present as mean±SD. Student t-test was 

used to determine statistically significant differences 

between two groups, and one-way ANOVA was used 

for > 2 groups. P<0.05 was considered to be statistically 

significant. 
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