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INTRODUCTION 
 

Rapamycin and its analogs (rapalogs) inhibit cell growth, 

which is a key mechanism underlying its effectiveness in 

cancer treatment [1, 2]. Recently, rapamycin has also 

been shown to improve radiotherapy and chemotherapy 

in some cancers, including lung cancer [3–5]. 

Biochemically, rapamycin, along with FKBP12, binds 

and inhibits a protein kinase called mTOR in a highly 

specific manner [1]. There are two mTOR complexes in 

human cells, mTORC1 and mTORC2, defined by 
different associated proteins. Only mTORC1 is sensitive 

to rapamycin [6]. Different from many other kinase 

inhibitors, rapamycin does not directly inhibit the  

ATP catalytic activity of mTORC1 [1]. Therefore, 

mTORC1 activity is commonly evaluated through the 

phosphorylation status of mTOR kinase substrates S6K1, 

4E-BP1 and Maf1 [7, 8]. These effectors mediate diverse 

biological processes including ribosome biogenesis, 

autophagy, immunity and aging [9–12]. 

 

Akt is a protein kinase lies upstream of mTORC1  

to mediate nutrient and insulin regulation of cell growth 

[1, 2]. Akt is mutated in many types of cancer cells and 

has been linked to radiotherapy and chemotherapy 

failure [13, 14]. In response to ionizing radiation  

(IR), Akt is activated through phosphorylation at Serine-

437 by PI3K (Phosphoinositide 3-kinase), therefore 
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ABSTRACT 
 

mTOR is well known to promote tumor growth but its roles in enhancing chemotherapy and radiotherapy have 
not been well studied. mTOR inhibition by rapamycin can sensitize cancer cells to radiotherapy. Here we show 
that Maf1 is required for rapamycin to increase radio-sensitivity in A549 lung cancer cells. In response to ionizing 
radiation (IR), Maf1 is inhibited by Akt-dependent re-phosphorylation, which activates mitochondrial unfolded 
protein response (UPRmt) through ATF5. Rapamycin suppresses IR-induced Maf1 re-phosphorylation and UPRmt 
activation in A549 cells, resulting in increased sensitivity to IR-mediated cytotoxicity. Consistently, Maf1 
knockdown activates ATF5-transcription of mtHSP70 and HSP60, enhances mitochondrial membrane potential, 
reduces intracellular ROS levels and dampens rapamycin’s effect on increasing IR-mediated cytotoxicity. In 
addition, Maf1 overexpression suppresses ethidium bromide-induced UPRmt and enhances IR-mediated 
cytotoxicity. Supporting our cell-based studies, elevated expression of UPRmt makers (mtHSP70 and HSP60) are 
associated with poor prognosis in patients with lung adenocarcinoma (LAUD). Together, our study reveals a novel 
role of Maf1-UPRmt axis in mediating rapamycin’s enhancing effect on IR sensitivity in A549 lung cancer cells. 
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contributing to radio-resistance [15–17]. Deregulation of 

the mTOR effectors S6K1/2 and 4E-BP1 has also been 

linked to IR resistance [15, 18, 19]. 

 

Maf1 is an mTORC1 effector that has significant roles 

in cancer biology [20–24]. Maf1 is phosphorylated by 

mTORC1 at certain Serine and Threonine to regulate 

RNA Polymerase III-dependent transcription of tRNAs, 

microRNAs and other small nuclear RNAs [7, 25, 26]. 

Inhibiting Maf1 expression can induce cancerous 

transformation in hepatocellular cells and Maf1 

overexpression can suppress tumor growth in vivo [21, 

23]. Although unclear on the mechanisms, Maf1 has 

been shown to regulate mitochondrial morphology and 

functions and loss of Maf1 in C. elegans activates 

UPRmt [27]. 

 

UPRmt is a signaling pathway communicating between 

the nuclear transcription and mitochondrial proteostasis 

[28, 29]. Loss of mitochondrial protein homeostasis 

induces nuclear transcription of mitochondrial 

chaperones such as HSP60 mtHSP70, which helps 

restore the normal mitochondrial functions. Recently, the 

transcription factor ATF5 was identified to mediate 

transcription of UPRmt target genes [30]. Treating cells 

with DNA intercalator ethidium bromide (EtBr) depletes 

mitochondrial DNA and activates UPRmt in a ATF5-

dependent manner [30]. ATF5 overexpression promotes 

radio-resistance in lung cancer cells [31]. Aberrant 

UPRmt signaling is implicated in multiple diseases, such 

as cancers and neurodegenerative diseases [29, 32]. 

 

As a well-known mTOR effector, Maf1’s role in cancer 

radiosensitivity has not been investigated. In this study, 

we find that Maf1 is required for rapamycin to sensitize 

A549 lung adenocarcinoma cells to X-ray. Maf1 is 

inhibited through AKT-dependent re-phosphorylation in 

response to X-ray. Adding rapamycin under this 

condition activates Maf1 and enhances IR-mediated 

cytotoxicity. In addition, we find that Maf1 functions to 

suppress UPRmt, a pro-survival mechanism in response 

to IR. Maf1 knockdown dampens rapamycin’s 

enhancing effect on IR toxicity and Maf1 overexpression 

is sufficient to increase IR toxicity to A549 cells. Our 

study implicates Maf1 regulation of UPRmt as a novel 

mechanism mediating rapamycin’s enhancing effect on 

radiosensitivity of lung cancer cells. 

 

RESULTS 
 

Maf1 is required for rapamycin to increase radio-

sensitivity in A549 cells 

 

Rapamycin inhibition of mTOR kinase sensitizes cancer 

cells to radiotherapy [3, 17]. The mTOR effector protein 

S6K1 plays a key role in chemo-resistance [17]. We 

wondered if Maf1, a poorly studied mTOR effector 

could also have roles in radio-resistance in cancer cells. 

To this end, we knocked down Maf1 expression in 

A549 cells by siRNA. Both siRNAs and shRNA used in 

this study effectively reduced Maf1 expression as 

determined by qPCR and western blot (Figure 1A–1C). 

To determine the effect of Maf1-knockdown on radio-

sensitivity, we first examined cell death and apoptosis 

through propidium iodide (PI) and Annexin V 

respectively, followed by flow cytometry. A549 cells 

were first transfected with Maf1 siRNA or vehicle 

controls for 48 hours then exposed to 6 Gy of X-ray. 

Cells were then treated with 100 nM rapamycin for 48 

hours. Our results showed that rapamycin significantly 

increased the percentage of apoptotic cells treated with 

IR. Interestingly, Maf1 knockdown almost blocked 

rapamycin’s effect (Figure 1D, 1E). Maf1 knockdown 

alone did not significantly alter the percentage of 

apoptotic cells, suggesting that Maf1’s effect was 

specific to rapamycin. Without IR, rapamycin did not 

significantly increase apoptotic population in our hands. 

Neither Maf1 knockdown nor 24-hour rapamycin 

treatment significantly increased PI-stained populations 

(Figure 1D). We also examined the effect of Maf1 

knockdown on rapamycin-mediated cell proliferation. 

Rapamycin robustly reduced cell proliferation in a dose-

dependent manner (Supplementary Figure 1). However, 

rapamycin similarly decreased cell proliferation in 

A549 cells regardless of Maf1 knockdown. In the 

presence of IR, rapamycin at 100 nM also decreased 

proliferation (Supplementary Figure 2). Therefore, 

Maf1 was not involved in rapamycin regulation of A549 

cell proliferation. 

 

We next examined the role of Maf1 on IR-induced 

cytotoxicity by clonogenic assay. A549 cells with or 

without Maf1 knockdown were irradiated, then treated 

with 100 nM rapamycin. Cells were allowed to grow for 

2 weeks to form colonies. Consistent with a previous 

study [3], rapamycin enhanced the IR-induced 

cytotoxicity. Interestingly, such enhancing effect was 

mostly blocked by Maf1 knockdown (Figure 1F, 1G). 

Maf1 knockdown alone did not appear to affect the 

clonogenicity, indicating that Maf1 was specifically 

required for rapamycin to sensitize A549 cells to X-ray. 

 

Rapamycin suppresses Akt-mediated Maf1 re-

phosphorylation in response to IR in A549 cells 

 

Maf1 is a well-known transcription factor responsive to 

diverse signals including DNA damage [25, 33, 34]. 

Since IR can cause DNA damage, we asked if Maf1 

phosphorylation was changed in response to IR. Maf1 
was phosphorylated at multiple sites by mTOR, causing 

slower migration on acrylamide gel, which can be 

detected by western blot [7]. We found that IR rapidly 
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decreased Maf1 phosphorylation, but Maf1 

phosphorylation was rapidly recovered 8 hours post-IR 

(Figure 2A). Such re-phosphorylation was dependent on 

mTOR, as rapamycin treatment blocked Maf1 re-

phosphorylation (Figure 2A–2C). 

Akt can be activated by phosphorylation in response to 

IR, which contributes to radio-resistance [15]. We found 

that AKT phosphorylation was increased 4 hours after 6 

Gy IR (Figure 2C, 2D). Since Akt is the upstream kinase 

activating mTOR, we tested if Akt could contribute to 

 

 
 

Figure 1. Maf1 is required for rapamycin to increase radio-sensitivity in A549 cells. (A–C) Maf1 mRNA (A) and protein levels (C) 

were knocked down by siRNA and shRNA. Representative western blot results are shown in (B). Experiments were performed for ≥3 times 
with replicates. Data were normalized to non-transfected control (Ctrl) and expressed as fold change. (D, E) Maf1 is required for rapamycin to 
increase apoptosis in A549 cells in response to radiation. Maf1 was knocked down by siRNA (si) in A549 cells. Cells were then irradiated (IR) 
with 6 Gy x-ray and treated with 100 nM rapamycin (Rap) as indicated. Apoptosis (Annexin V) and cell death (PI) were analyzed by flow 
cytometry after 48 hours. Experiments were performed for 2 times and representative results (D) and the quantifications of apoptotic cells 
(E) are shown. (F, G) Maf1 is required for rapamycin to enhance radiosensitivity in A549 cells. Cells treated with radiation and rapamycin 
were plated at 500 cells/plate and irradiated (+IR). Non-irradiated cells were plated at 50 cells/plate as controls (-IR). Colonies were counted 
after 2 weeks of incubation. Experiments were performed for 3 times and representative results are shown in (F) and the quantifications in 
(G). In all panels, the error bars stand for Standard Deviation (SD) of the mean. Statistical significance was evaluated by 2-tailed, paired 
student’s t-test (ns, not significant, *, P<0.05, **, P<0.01, ***, P<0.001, ****, P<0.0001). 
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Maf1 re-phosphorylation in response to IR. Indeed, 

knocking down Akt1/2 via shRNA blocked Maf1 re-

phosphorylation (Figure 2E, 2F). These experiments 

suggest that AKT-dependent re-phosphorylation of Maf1 

could be a potential mechanism for radio-resistance in 

A549 cells and that rapamycin could sensitize A549 

cells to IR by inhibiting Akt-mediated Maf1 re-

phosphorylation. 

 

Rapamycin suppresses IR-induced mitochondrial 

UPR through Maf1 in A549 cells 

 

Maf1 was recently reported to inhibit mitochondrial 

UPR (UPRmt) in the round worm C. elegans [27]. We 

tested if IR inhibition of Maf1 in A549 cells could 

activate UPRmt. By examining UPRmt markers before 

and 8 hours after IR, we found that IR robustly induced 

mtHSP70 and HSP60 mRNA expression (Figure 3A, 

3B). The up-regulation of these UPRmt markers was 

repressed by rapamycin in a Maf1-dependent manner 

(Figure 3A, 3B). The role of Maf1 in UPRmt were further 

confirmed by Western blot analysis of mtHSP70 and 

HSP60 protein levels (Figure 3C, 3D). Maf1 knockdown 

did not appear to significantly increase UPRmt without IR 

or rapamycin treatment, as judged by both mRNA and 

protein levels of mtHSP70 and HSP60 (Figure 3A–3D). 

These results suggest that Maf1 was activated by 

rapamycin to inhibit UPRmt in response to X-ray. 

 

Second, we tested if Maf1 regulated UPRmt through 

ATF5, a transcription factor that was recently implicated 

in UPRmt [30]. Although the role of UPRmt in radio-

resistance in cancer cells remains unclear, ATF5 has 

been known to increase radio-resistance in some cancer 

 

 
 

Figure 2. Rapamycin suppresses Akt-mediated Maf1 re-phosphorylation in response to IR in A549 cells. (A, B) Maf1 
phosphorylation (P) was decreased by IR but was re-phosphorylated after 8 hours (Post IR). Rapamycin inhibited Maf1 re-phosphorylation. 
A549 cells were irradiated (IR) at 6 Gy then treated with 100 nM rapamycin (Rap) for 48 hours. Maf1 phosphorylation was detected by slow 
migration by Western blot. (C, D) Akt phosphorylation at Ser473 was increased by IR. Akt phosphorylation was detected with phospho-
specific antibody. (E, F) Akt was required for Maf1 re-phosphorylation in response to IR. A549 cells with stable Akt knockdown were analyzed 
by Western blot at indicated time points. In all panels, representative data and the quantifications of at least 2 biological repeats are shown. 
Data were normalized to time 0. The error bars stand for Standard Deviation (SD) of the mean. Statistical significance was evaluated by 2-
tailed, paired student’s t-test (ns, not significant, *, P<0.05, **, P<0.01). 
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cells [31, 35, 36]. By siRNA knocking down ATF5 and 

Maf1, and treating cells with IR or rapamycin, we found 

that ATF5 knockdown significantly reduced HSP60 and 

mtHSP70 expression due to Maf1 loss (Figure 3E, 3F), 

suggesting that ATF5 was required for Maf1 to suppress 

UPRmt. 

 

Maf1 mediates rapamycin inhibition of mitochondrial 

function in response to IR in A549 cells 

 
UPRmt can promote cell survival through improving 

mitochondrial function. Since Maf1 suppressed UPRmt 

in rapamycin-treated A549 cells, we asked if Maf1 was 

involved in regulating mitochondrial functions. We 

first examined mitochondrial membrane potential 

(Δψm) by JC-1 staining and flow cytometry. Maf1 was 

knocked down by siRNA then A549 cells were  

treated with and without IR or rapamycin as indicted  

in Figure 4A. The result showed that rapamycin 

treatment of non-irradiated cells slightly increased 

Δψm, however, rapamycin treatment of irradiated cells 

exacerbated Δψm depolarization by IR, which was 

largely rescued by Maf1 knockdown. Maf1 knockdown 

did not appear to affect cells without rapamycin 

treatment or without IR, suggesting that Maf1 

regulation of membrane potential was specific to IR 

and activated by rapamycin. 

 

We next examined the generation of reactive oxygen 

species (ROS). The increase in ROS levels is a hallmark 

of impaired mitochondrial function, which could trigger 

apoptosis and cell death. We stained cells with a widely 

used ROS dye H2DCFDA and analyzed ROS levels 

through flow cytometry. Consistent with JC-1 data 

(Figure 4A, 4B), rapamycin enhanced IR to generate 

toxic ROS levels, which could be reversed by Maf1 

knockdown (Figure 4C, 4D). Rapamycin slightly 

increased ROS levels in non-irradiated cells but such 

increase did not appear to be affected by Maf1 

knockdown. In addition, Maf1 knockdown did not affect 

ROS levels in cells treated with rapamycin or IR alone, 

suggesting a specific role of Maf1 in the interface. 

 

 
 

Figure 3. Rapamycin suppresses IR-induced UPRmt through Maf1 in A549 cells. (A, B) A549 cells treated with IR and rapamycin were 

examined for UPRmt marker genes (mHSP70 and HSP60) expression by RT-qPCR. Experiments were performed for 3 biological repeats and 
data were normalized to non-treated control. (C, D) HSP70 and HSP60 protein levels were analyzed by Western blot. Representative results 
are shown in (C) and quantification of 3 biological repeats in (D). Data were normalized to non-treated control. (E, F) Maf1 knockdown 
activated UPRmt in an ATF5-dependent manner. A549 cells were knocked down for Maf1, ATF5 or both, then treated with rapamycin and IR. 
mHSP70 and HSP60 protein levels were analyzed by Western blot. Representative results are shown in (E). Experiment were performed for 3 
times. Data were normalized to non-transfected control. For all bar graph, the error bars stand for Standard Deviation (SD) of the mean. 
Statistical significance was evaluated by 2-tailed, paired student’s t-test (ns, not significant, *, P<0.05, **, P<0.01, ***, P<0.001). 
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Maf1 overexpression suppresses UPRmt and sensitizes 

A549 cells to IR 

 

To test the effect of Maf1 overexpression on UPRmt, 

both Maf1 and UPRmt need to be activated. EtBr is a 

DNA intercalating agent known to induce UPRmt [30], 

and rapamycin can activate Maf1. Pretreating A549  

cells with EtBr and rapamycin robustly increased 

mtHSP70 and HSP60 mRNA levels (Figure 5A, 5B). 

Importantly, Maf1 overexpression under such conditions 

indeed suppressed mtHSP70 and HSP60 expression 

(Figure 5C, 5D), confirming the negative role of Maf1 in 

UPRmt regulation. 

 

Next, we evaluated the effect of Maf1 overexpression on 

IR resistance by clonogenic assay. Consistently, Maf1 

overexpression sensitized A549 cells to IR (Figure 5E, 

5F). Maf1 overexpression did not further enhance 

rapamycin’s effect on IR toxicity, suggesting the specific 

effect of Maf1 in mediating rapamycin regulation of IR 

sensitivity. Interestingly, Maf1 overexpression did not 

appear to affect clonogenicity of A549 cells without IR, 

suggesting that Maf1 was largely inactivated in A549 

cells under normal growing conditions. 

 

UPRmt markers mtHsp70 and HSP60 are associated 

with poor prognosis in lung adenocarcinoma 

(LAUD) patients 
 

We wondered if UPRmt markers involved in rapamycin 

regulation of IR sensitivity could be important in LAUD 

patients. Although there have been several studies 

showing the prognostic values of mtHSP70 and HSP60 

in lung adenocarcinoma patients [37, 38], they usually 

analyzed in-house data. We analyzed a huge RNAseq 

dataset originally from NIH TGCA database by using  

a recently developed algorithm at http://gepia.cancer-

pku.cn/ website [39]. Based on the RNAseq data, 

 

 
 

Figure 4. Maf1 knockdown mitigates rapamycin inhibition of mitochondrial function in response to IR in A549 cells. (A, B) 
Mitochondrial membrane potential was evaluated by JC-1 staining followed by flow cytometry. Representative results are shown in (A) and 
the quantifications of 2 biological replicates are shown in (B). (C, D) Intracellular ROS levels were detected by H2DCFCA probes, followed by 
flow cytometry. Representative results are shown in (C) and the quantifications of 2 biological replicates are shown in (D). For all bar graph, 
the error bars stand for Standard Deviation (SD) of the mean. Statistical significance was evaluated by 2-tailed, paired student’s t-test (ns, not 
significant, *, P<0.05). 

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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240 patients were grouped to 120 mtHSP70-high group 

and 120 mtHSP70-low group. By plotting the Kaplan 

Meier curve, we showed that mtHSP70-high patients 

had significantly worse survival (Figure 5G). The hazard 

rate was 1.8, indicating that LAUD patients with higher 

mtHSP70 expression were 1.8 times more likely to die 

from cancer than patients expressing lower mtHSP70. 

Similar results were obtained for patients with high 

HSP60 expression (Figure 5G). These results suggest 

that elevated UPRmt is a poor prognosis factor for LAUD 

patients, consistent with the roles of UPRmt in mediating 

Maf1 regulation of IR toxicity in A549 lung cancer cells. 

 

DISCUSSION 
 

In this study, we for the first time implicate Maf1, an 

effector of mTOR in regulating IR sensitivity. The 

results suggest that genetically or pharmacologically 

activating Maf1 could improve radiotherapy for lung 

cancers or even other cancers, especially those that are 

 

 
 

Figure 5. Maf1 overexpression suppresses UPRmt-induced IR resistance in A549 cells. (A, B) EtBr activates UPRmt in the presence of 

rapamycin. A549 cells were treated with indicated drugs or/and IR. UPRmt marker genes (HSP60 and mtHSP70) were examined by RT-qPCR. 
(C, D) Maf1 overexpression (oe) prevents EtBr from increasing HSP60 and mtHSP70 expression in the present of rapamycin and IR. (E, F) 
Maf1(oe) sensitizes A549 cells to IR and is not additive to rapamycin. A549 cells (500 cells/plate) stably expressed Maf1 were treated with 
rapamycin and IR, then allowed to form colonies for 2 weeks. A549 cells were plated at 50 cells/plate as non-irradiated controls. 
Representative data are shown in (E) and the quantifications of 3 biological replicates in (F). (G) High expression of UPRmt marker genes 
(HSP60 and mtHSP70) are significantly associated with poor prognosis in lung adenocarcinoma (LAUD) patients. (H) A working model showing 
the role of Maf1-UPRmt in mediating rapamycin’s enhancing effect on IR sensitivity. For all bar graph, the error bars stand for Standard 
Deviation (SD) of the mean. Statistical significance was evaluated by 2-tailed, paired student’s t-test (ns, not significant, *, P<0.05, **, P<0.01). 
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resistant to rapamycin or deregulated in mTOR activity. 

We propose that Maf1 increases IR sensitivity through 

repressing ATF5-dependent UPRmt. In the absence of 

rapamycin, UPRmt is activated by IR, which could serve 

as a feedback mechanism to promote survival, and Maf1 

is phosphorylated and inhibited by AKT- and/or mTOR. 

Upon rapamycin treatment, Maf1 is activated through 

dephosphorylation and represses ATF5-dependent 

transcription of UPRmt genes, leading to increased IR 

sensitivity (Figure 5H). Note that our study has been 

conducted in only one single cell line (A549). It will be 

important to test whether such mode of regulation 

remains true in other cancer cells. 

 

The kinase regulating Maf1 in response to IR remains  

to be clarified. Maf1 has been known to be 

dephosphorylated and activated by DNA damage agent 

[7]. Consistently, our results show that Maf1 is rapidly 

dephosphorylated by IR. Interestingly, we found that 

Maf1 phosphorylation was recovered 8 hours after IR 

treatment. IR has been known to increase Akt 

phosphorylation and the Akt homolog Sch9 in yeast cells 

can directly phosphorylate Maf1 [15, 40]. In A549 cells 

however, Akt is not likely a direct kinase to Maf1 as we 

did not observe interaction or phosphorylation in vitro 

(data not shown). In addition, no conserved Akt 

phosphorylation motifs were found on Maf1 protein. 

Alternatively, mTOR could be the direct kinase as 

mTOR has been shown to phosphorylate Maf1 directly 

and in current study, the re-phosphorylation of Maf1 is 

rapamycin-dependent. In addition, Maf1 knockdown did 

not affect apoptosis or clonogenicity in the absence of 

rapamycin, supporting a direct role of mTOR in the 

regulation of Maf1 for radiosensitivity. 

 

How Maf1 represses UPRmt remains unclear. Maf1 was 

initially identified in a screen to regulate mitochondrial 

localization of a tRNA modifying enzyme Mod5  

[41]. Loss of yeast Maf1 inhibits cell growth in 

nonfermentable carbon source [42], suggesting a role of 

Maf1 in regulating mitochondrial function. In a recent 

study in C. elegans, UPRmt was found to be activated in 

Maf1 mutant [27]. Our results in A549 cells suggest 

similar mode of regulation: Maf1 knockdown activates 

the transcription of UPRmt marker genes HSP60 and 

mtHSP70. In addition, we further implicate the 

transcription factor ATF5 in mediating Maf1 regulation 

of UPRmt. Maf1 inhibits Polymerase III (Pol III)-

dependent transcription of tRNA and microRNA. One 

scenario is that certain Maf1-regulated microRNAs binds 

and repress the transcription of UPRmt regulators to 

regulate IR sensitivity, as there are already many studies 

implicating tRNA and microRNA in the regulation of IR 
sensitivity. Alternatively, Maf1 could regulate UPRmt 

through modulating mitochondrial functions to indirectly 

antagonize UPRmt. Note that pathways other than UPRmt 

could also participate and play more important roles in 

the regulation of IR sensitivity by Maf1. It will be 

interesting to conduct a systematic analysis of many IR 

resistance-related pathways by using RNAseq or 

genome-wide siRNA screen. 

 

Our analysis of publicly available database lends further 

support to the role of UPRmt in the regulation of IR 

sensitivity. By examining the RNAseq and survival data 

from 240 patients with LAUD deposited in NIH TGCA 

database, we show that high expression of both HSP60 

and mtHSP70 are correlated with poor prognosis in 

LAUD patients, suggesting an important role of UPRmt 

in cancer progression. Several previous papers also 

report similar results in other types of cancer regarding 

mtHSP70 and HSP60 [37, 43–45]. However, our study 

here indicates that UPRmt rather than some individual 

chaperones is involved in IR resistance in cancer cells. 

Further characterization of UPRmt in cancer therapy 

resistance could open new window for better treatment 

strategies. Maf1 and ATF5 have no prognostic values for 

LAUD, likely due to the fact that they are usually 

regulated through posttranslational modifications instead 

of protein abundance. 

 

Rapamycin-induced autophagy has been shown to 

sensitize A549 cells to IR [3]. As an effector downstream 

of mTOR, Maf1 is activated by rapamycin to inhibit Pol 

III-dependent transcription. In this sense, Maf1 loss 

should prevent rapamycin from inducing autophagy, 

therefore increasing IR resistance. This idea is consistent 

with our results. However, contrast to the positive role of 

Maf1 in autophagy, Maf1 knockout in mice and C. 

elegans induces autophagy [27, 46]. In this scenario, 

Maf1 knockdown should sensitize A549 cells to IR, 

which is contradictory to our data. In addition, literature 

regarding the role of autophagy in IR sensitivity remains 

inconsistent [47]. Therefore, whether autophagy is 

involved and how it modulates IR sensitivity in the 

context of Maf1-UPRmt remains to be investigated. 

 

MATERIALS AND METHODS 
 

Irradiation and drug treatment 

 

HEK293 and A549 cells were originally obtained from 

The Cell Bank of Type Culture Collection of Chinese 

Academy of Sciences. A549 cells were maintained in 

DMEM supplemented with 2 % (vol/vol) FBS. Cells 

were first transfected with siRNA to knockdown gene 

expression for 48 hours where necessary, then exposed 

to 6 Gy of X-ray radiation. Cells were then immediately 

treated with or without 100 nM rapamycin and maintain 

for 48 hours. For EtBr treatment, cells were treated with 

500 ng/mL EtBr for 4 days to deplete mitochondrial 

DNA before irradiation. 
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siRNA and shRNA knockdown and overexpression 
 

Maf1 siRNA (5’-GGCUCAAGCGAAUCGUCUUTT-

3’) and ATF5 siRNA (5’-GTCCAAATCATGAAATG 

TTTG-3’) published before [20, 48]. For transient 

knockdown, cells were transfected with siRNA using 

siRNA-Mate transfection reagent (Genepharma) 

according to manufacturer’s instruction. Validated Maf1 

shRNA, Akt1 shRNA and Akt2 shRNA in pLKO.1 

plasmid were purchased from Millipore. Lentiviral 

particles were prepared by transfecting HEK-293T cells 

with shRNA plasmid and packing plasmids psPAX2 and 

pMD2.G. Lentiviral particles were used to infect A549 

cells and select for stable cell line with puromycin. For 

Maf1 overexpression, Maf1 gene coding region was 

cloned under the CMV promoter in pcDNA3 vector. 

A549 cells were transfected with pcDNA3-Maf1 plasmid 

by using Lipofectamine 2000 and selected for stable cell 

line with G418. 
 

Real-time quantitative PCR 
 

A549 cells were washed with PBS for 3 times and directly 

lysed in TRIzol Reagent (Invitrogen). Samples were 

mixed with chloroform to separate protein from RNA. 

Aqueous phase was transferred to new tubes and 

containing RNA were precipitated with isopropanol. RNA 

was washed with 70% ethanol and suspended in RNase-

free H2O. RNA was reverse transcribed by using HiScript 

II Q RT SuperMix for qPCR (Vazyme) according to 

provider’s manual. RT-qPCR was performed in T100 

Thermal Cycler (Bio-Rad) using AceQ Universal SYBR 

qPCR Master Mix (Vazyme). Primers sets are published 

before [20, 30] and as follows: MAF1, 5'-ctcacagctgactg 

tggagact-3', 5'-aacatgtgtttgtcgtctcctg-3'; GAPDH (internal 

control), 5'-agccacatcgctcagacac-3', 5'-gcccaatacgaccaaat 

cc-3'; HSP60, 5’-GATGCTGTGGCCGTTACAATG-3’, 

5’-GTCAATTGACTTTGCAACAGTCACAC-3’; mtHS 

P70, 5’-CAAGCGACAGGCTGTCACCAAC-3’, 5’-CA 

ACCCAGGCATCACCATTGG-3’. 
 

Western blotting 
 

Cells attached to the culture dish were washed with room 

temperature PBS for 3 times, then lysed with equal 

volume of 2X SDS-PAGE sample loading buffer (diluted 

from 4X loading buffer (250 mM Tris-HCl pH 6.8; 8 % 

SDS; 0.2 % Bromophenol Blue; 20% β-mercaptoethanol; 

40 % glycerol)) by repeated pipetting. Whole cell lysates 

were heated at 95° C for 5 min and separated with SDS-

PAGE and transferred to PVDF membrane. Membranes 

were blocked in 5% non-fat milk then probed with 

primary antibodies in 5% non-fat milk. Membranes were 
washed with PBST (PBS+0.5% Tween-20) then 

incubated with HRP-conjugated secondary antibodies. 

After extensive wash with PBST, bound HRP-conjugated 

secondary antibody was detected by ECL. Primary 

antibodies: MAF1 Polyclonal Antibody (Invitrogen), Akt 

and Phospho-Akt (Ser473) Antibody (Cell Signaling), 

ATF5 Polyclonal Antibody (Invitrogen), β-Tubulin (Cell 

Signaling). 

 

Flow cytometry 
 

Apoptosis was measured by staining cells with Annexin 

V. Cells were washed with ice cold PBS and stained with 

biotinylated Annexin V (Biolegend) at suggested 

concentration for 15 min, washed, then incubated with 

FITC-conjugated streptavidin (Biolegend). Cells were 

washed with PBS extensively to remove non-specific 

binding. Membrane potential was measured by using JC-

1 dye (ThermoFisher) as described in the product 

manual. Briefly, cells in DMEM medium were incubated 

with an equal volume of staining solution containing 

5μg/ml JC-1 at 37° C for 20 min. Cells were washed for 

3 times with PBS and resuspended in DMEM. ROS was 

measured by staining PBS-washed cells with 10 µM 

DCHF-DA at 37° C for 30 min in the dark. Cells were 

then washed with PBS and resuspended in DMEM. Flow 

cytometry analysis was performed on cytoFLEX S 

(BECKMAN). Data were analyzed with FlowJo V10.7. 
 

Clonogenic assay 
 

A549 cells were plated on 35mm poly-D-lysine-treated 

cell culture dish in triplicates to obtain 50 cells/well 

(control) or 500 cell/well (irradiated). Overnight 

cultured were then exposed to 6 Gy of radiation in 

Siemens MD2 Linear Accelerator. Cells were then 

treated with or without rapamycin for 48 hours. Fresh 

DMEM medium without rapamycin were used to grow 

colonies for 14 days. After 2 weeks of culture, cells 

were washed with PBS and stained with a mixture of 

0.5% crystal violet in 50/50 methanol/water for 30 min. 

Plates were gently rinsed with water and dried at room 

temperature. Plate were imaged and colonies were 

counted by eyes. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Methods 
 

MTT viability assay 

 

MTT Cell Growth Assay Kit (CT02) was purchased from 

Millipore and experiment was conducted according to 

manufacturer’s protocol. Briefly, A549 cells were 

cultured at 96-well plate as indicated by different 

experiments. MTT reagent was equilibrated in PBS 

buffer at room temperature to 5 mg/ml before use. Cells 

were removed of medium and 20 µl MTT working 

solution was added to each well, then incubated at  

37° C for 4 hours. The MTT solution was carefully 

removed by aspiration. 0.1 mL isopropanol with 0.04 N 

HCl was added to each well to dissolve the purple 

formazan crystals. The optical density (OD) was 

measured on an ELISA plate reader with a test 

wavelength of 570 nm and a reference wavelength of 630 

nm. Data of 3 replicates were averaged and normalized to 

indicated controls. 
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Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Rapamycin reduced A549 proliferation in a dose-dependent manner. Cells were treated indicated 
rapamycin concentrations for 48 hours. Non-treated cells and cell at the time of plating (0h) were used as control. MTT assay was used to 
examine relative cell number and the colorimetric reads were normalized to non-treated cells at the time of plating. Error bars stands for 3 
biological replicates. Mean difference was tested by t-test. **P<0.01, ***P<0.001. 
 

 
 

Supplementary Figure 2. Maf1 is not involved in rapamycin regulation of cell proliferation. Maf1 was knocked down by siRNA (si) 
in A549 cells. Control and knockdown cells were then irradiated (IR) with 6 Gy x-ray and treated with 100 nM rapamycin (Rap) as indicated. 
MTT assay was used to examine relative cell number and the colorimetric reads were normalized to non-treated cells. Error bars stands for 3 
technical replicates. Mean difference was tested by t-test. ns, not significant, **P<0.01. 


