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INTRODUCTION 
 

Lung cancer is the second most common malignant 

tumor and the leading cause of death in all carcinomas 

[1]. Nearly 85% of lung cancer patients have non-small-

cell lung cancer (NSCLC) [2]. Lung adenocarcinoma 

(LUAD) is the primary histological subtype in NSCLC 

and is more likely in young, female patients [3, 4]. In 

recent years, LUAD morbidity has been increasing, 

with a five-year survival rate below 15% [5]. Although 

LUAD pathogenesis studies have shown significant 

progress, there are still several problems that need to be 

resolved. Therefore, there is an urgent need to identify 

new diagnoses and therapeutic molecular markers of 

LUAD. 

 

Glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) 

is a key enzyme associated with uridine diphosphate-N-

acetylglucosamine biosynthesis. It can participate in 

insulin secretion and also influence cell cycle progression 

and cell apoptosis [6]. If GNPNAT1 is deficient or 

inactivated, the cell cycle is delayed, and subsequently 

cells die [7]. One of the hallmarks of tumor cells is 

increased metabolism, included glucose metabolism, 

fatty acid metabolism, amino acid metabolism, and 

nucleotide synthesis metabolism [8]. Zhao et al. reported 
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ABSTRACT 
 

Glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) is a key enzyme associated with glucose metabolism 
and uridine diphosphate-N-acetylglucosamine biosynthesis. Abnormal GNPNAT1 expression might be associated 
with carcinogenesis. We analyzed multiple lung adenocarcinoma (LUAD) gene expression databases and verified 
GNPNAT1 higher expression in LUAD tumor tissues than in normal tissues. Moreover, we analyzed the survival 
relationship between LUAD patients’ clinical status and GNPNAT1 expression, and found higher GNPNAT1 
expression in LUAD patients with unfavorable prognosis. We built GNPNAT1 gene co-expression networks and 
further annotated the co-expressed genes’ Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways, and various associated regulatory factors. These co-expression genes’ functional 
networks mainly participate in chromosome segregation, RNA metabolic process, and RNA transport. We 
analyzed GNPNAT1 genetic alterations and co-occurrence networks, and the functional networks of these genes 
showed that GNPNAT1 participates in multiple steps of cell cycle transition and in the development of some 
cancers. We assessed the correlation between GNPNAT1 expression and cancer immune infiltrates and showed 
that GNPNAT1 expression is correlated with several immune cells, chemokines, and immunomodulators in 
LUAD. We found that GNPNAT1 correlates with LUAD development and prognosis, laying a foundation for 
further research, especially in immunotherapy. 
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that underexpression of GNPNAT1 in lung cancer A549 

cells resulted in inhibited tumor cell adhesion and 

infiltration [9]. However, further research is needed to 

explore the role of GNPNAT1 as a tumor metabolism 

gene, whether it is an influencing factor in LUAD 

progression, and the related mechanisms. 

 

Our study aimed to elucidate the potential role of 

GNPNAT1 in the occurrence and development of LUAD. 

Moreover, we aimed to provide new insights to support 

diagnosis and therapy for LUAD. 

 

RESULTS 
 

The expression of GNPNAT1 in LUAD 

 

We obtained data regarding the expression of GNPNAT1 

in LUAD and normal lung tissues from the Cancer 

Genome Atlas (TCGA) and the Gene Expression 

Omnibus (GEO) database. There were five cohort meta-

analyses of the differential expression of GNPNAT1 in 

the Lung Cancer Explorer (LCE) database, showing  

that the mRNA GNPNAT1 expression level was 

significantly higher in LUAD tumor tissues than in 

normal tissues (Figure 1A). We obtained similar results 

for the mRNA GNPNAT1 expression features using  

the Gene Expression Profiling Interactive Analysis 

(GEPIA) database (Figure 1B) and Oncomine database 

(Figure 1C). 

 

We used the UALCAN database to identify the mRNA 

GNPNAT1 expression in TCGA LUAD samples, 

grouped by characteristics such as age, sex, stage, race, 

and smoking status. (Figure 2A). In all subgroups, the 

mRNA GNPNAT1 expression level was higher in 

LUAD tumor tissues than in normal tissues. Therefore, 

GNPNAT1 might be a potential biomarker for the 

diagnosis of LUAD. 

 

To further assess GNPNAT1 expression levels in LUAD, 

we also detected GNPNAT1 protein levels in LUAD 

tissues and normal tissues by immunohistochemical 

staining in the Human Protein Atlas (HPA) database. As 

shown in Figure 2B, GNPNAT1 protein expression in 

cell cytoplasmic/membranous staining intensity was 

moderate or low in LUAD tissues, but it was not 

detected in normal tissues. 

 

GNPNAT1 expression associated with survival in 

LUAD 

 

This study aimed to determine the GNPNAT1 

expression associated with survival in patients with 

LUAD. Kaplan-Meier survival curves were used to 

identify survival outcomes in the multiple LUAD 

cohorts. The median value of GNPNAT1 expression was 

the cutoff value, and each LUAD cohort was divided 

into a high and a low GNPNAT1 expression group. 

Compared to the low GNPNAT1 expression group, the 

high GNPNAT1 expression group had significantly 

poorer overall survival (OS) (log-rank test, p < 0.05) in 

the LUAD TCGA cohort (Figure 3A) and in the 

GSE72094 cohort (Figure 3B). From the LCE database, 

we got a 17 cohorts meta-analysis of GNPNAT1 

expression associated with survival in LUAD; Figure 

3C shows that the high GNPNAT1 expression group had 

poorer OS (test for all cohorts, p < 0.01, HR = 1.27) 

compared to the low GNPNAT1 expression group. 

 

The co-expression networks of GNPNAT1 in LUAD 

 

We used LinkedOmics to obtain the GNPNAT1 co-

expression networks in the LUAD TCGA cohorts. 

There were 4039 positively co-expressed genes and 

6654 negatively co-expressed genes with GNPNAT1 

(FDR < 0.01); in Figure 4A, the dark red dots represent 

positively correlated genes and the dark green dots 

represent negatively correlated genes. We drew 

heatmaps with the 50 most significant positively and 

negatively co-expressed genes, respectively (Figure 4B). 

All these significantly correlated genes are shown in 

Supplementary Table 1. 

 

The five most significant genes positively associated 

with GNPNAT1 expression were cyclin dependent 

kinase inhibitor 3 (CDKN3), cyclin B1 (CCNB1), DLG 

associated protein 5 (DLGAP5), NIMA related kinase 2 

(NEK2), and mitotic arrest deficient 2 like 1 (MAD2L1). 

The five most significant negatively associated genes 

were chromobox 7(CBX7), Golgi-associated, gamma 

adaptin ear-containing, and ARF-binding protein 2 

(GGA2), calpain 3 (CAPN3), solute carrier family 27 

member 1 (SLC27A1), and enhancer of zeste 1 

polycomb repressive complex 2 subunit (EZH1). We 

used GEPIA to identify the 10 genes associated with OS 

in LUAD. Kaplan-Meier survival curves are shown in 

Figure 4C. All the five positive high expressions showed 

significant risk genes in LUAD (p < 0.05); conversely, 

the five negative high expressions showed protective 

genes in LUAD (p < 0.05; except CAPN3, p = 0.072). 

 

We used gene set enrichment analysis (GSEA) to annotate 

GNPNAT1 co-expressed genes with a significant GO term. 

It showed that GNPNAT1 co-expressed genes are mainly 

involved in chromosome segregation, ncRNA processing, 

organelle fission, ribonucleoprotein complex biogenesis, 

rRNA and tRNA metabolic process, etc., and in inhibited 

ion transmembrane transport, transporter activity, metal 

ion transport, neuron projection guidance, export across 
plasma membrane, and so forth (Figure 4D and 

Supplementary Table 2). KEGG pathway analysis showed 

enrichment in the ribosome, proteasome, RNA transport, 
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Figure 1. GNPNAT1 transcription level in LUAD. (A) The forest plot shows GNPNAT1 expression level meta-analysis of LUAD tumor 

tissues and normal tissues in five different LUAD cohorts (LCE). (B) The box plot shows GNPNAT1 mRNA expression levels of LUAD tumor 
tissues and normal tissues in the TCGA (GEPIA) datasets. (C) The box plot shows GNPNAT1 mRNA expression levels of LUAD tumor tissues and 
normal tissues in the Garber Lung, Okayama Lung, Selamat Lung, and Hou Lung datasets (Oncomine), respectively. 
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Figure 2. GNPNAT1 transcription and proteomics level in LUAD patients. (A) GNPNAT1 transcription level in normal and LUAD 

samples, and in subgroups of LUAD patients stratified by age, nodal metastasis, gender, race, smoking status, stage, and TP53 mutant status 
(UALCAN). The central mark is the median; the edges of the box are the 25th and 75th percentiles. The t-test was used to estimate the 
significance of difference in gene expression levels between groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001. (B) Expression of GNPNAT1 in 
LUAD tumor specimens and normal specimens from the human protein profiles database (HPA). 
 

 
 

Figure 3. GNPNAT1 expression was associated with the survival in LUAD. (A) Overall survival (OS) in the TCGA cohort (GEPIA). (B) OS 
in GSE72094 (Schabath_2016) cohort (LCE). (C) The forest plot shows 17 cohorts meta-analysis OS (LCE). 
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Figure 4. GNPNAT1 co-expressed genes in LUAD (LinkedOmics). (A) The volcano plot shows the GNPNAT1 highly correlated 

genes identified by the Pearson test in the LUAD cohort. (B) The heat maps show the top 50 genes positively and negatively correlated 
with GNPNAT1 in LUAD. (C) Top five genes positively and negatively correlated with GNPNAT1 associated with survival in LUAD. (D) 
Significantly enriched GO annotations of GNPNAT1 in the LUAD cohort. (E) Significantly enriched KEGG pathways of GNPNAT1 in the 
LUAD cohort. 
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ribosome biogenesis in eukaryotes, spliceosome, and so 

forth (Figure 4E and Supplementary Table 3). 

 

GNPNAT1 networks of kinase, miRNA, and 

transcription factor targets in LUAD 

 

To further explore the targets of GNPNAT1 in LUAD, we 

analyzed the kinase, miRNA, and transcription factor 

target networks of GNPNAT1 co-expressed genes. The 

top five most significant kinase-target networks were 

cyclin-dependent kinase 1 (CDK1), polo-like kinase 1 

(PLK1), Aurora kinase B (AURKB), cyclin-dependent 

kinase 2 (CDK2), and Aurora kinase A (AURKA)  

(Table 1 and Supplementary Table 4). Except for CDK2, 

the expression of these genes in LUAD tissue was higher 

compared with that in normal tissue. Furthermore, except 

for CDK2, for all the kinase genes, higher expression was 

associated with poor OS of LUAD (Supplementary 

Figure 1). CDK1 is a diagnostic biomarker and a 

prognostic biomarker in LUAD [10, 11]. 

 

We obtained miRNA-target networks of GNPNAT1 co-

expressed genes by GSEA, but there was no statistical 

significance. (Supplementary Table 5). The transcription 

factor-target networks related primarily to the E2F 

transcription factor family, including E2F-Q6, E2F1-Q6, 

E2F-Q4, E2F1DP1_01, and E2F1DP2_01 (Supplementary 

Table 6). High expression levels of E2F family genes  

are associated with an unfavorable prognosis in LUAD 

[12, 13]. 

 

Genomic alterations of GNPNAT1 in LUAD 

 

We used the cBioPortal to determine the types and 

frequency of GNPNAT1 alterations in LUAD based on 

sequencing data from LUAD patients in the TCGA 

database. There were 39 out of 522 (7.47%) LUAD 

patients with GNPNAT1 alterations (Figure 5A). The 

alterations were mRNA upregulation in 23 cases 

(4.41%), amplification in 11 cases (2.11%), mutation in 

1 case (0.19%), deep deletion in 1 case (0.19%), and 

multiple alterations in 3 cases (0.57%). Although 

GNPNAT1 alterations in LUAD were not frequent, 

mRNA upregulation and amplification were the most 

common types of GNPNAT1 copy number variation 

(CNV) in LUAD. We estimated the frequency 

distribution of GNPNAT1 CNV patients in different 

stage groups; as shown in Figure 5B, stage I and stage II 

patients had a high occurrence of GNPNAT1 CNV 

alteration in LUAD. We divided the patients with LUAD 

into a GNPNAT1 CNV alteration group and a no 

GNPNAT1 CNV alteration group; GNPNAT1 CNV 

alteration group patients had poorer OS than patients in 
the no GNPNAT1 CNV alteration group (p < 0.05) 

(Figure 5C). The median survival time was 32.82 

months and 49.31 months, respectively. 

Gene co-occurrence of GNPNAT1 alterations in 

LUAD 

 

Gene co-occurrence reflected common genetic risk 

factors constituting functional relationships. We 

subsequently identified the co-occurrence genes with 

GNPNAT1 amplification in LUAD. There were 120 

significant co-occurrences with GNPNAT1 amplification 

genes, as shown in Figure 5D (Supplementary Table 7). 

The top 10 alterations were solute carrier family 25 

member 21 (SLC25A21), DDHD domain containing 

1(DDHD1), endoplasmic reticulum oxidoreductase 1 

alpha (ERO1A), fermitin family member 2 (FERMT2), 

G-protein-coupled receptor 137C (GPR137C), 

proteasome 26S subunit, ATPase 6 (PSMC6), 

serine/threonine/tyrosine interacting protein (STYX), 

thioredoxin domain containing 16 (TXNDC16), long 

intergenic non-protein coding RNA 517 (LINC00517), 

bromodomain adjacent to zinc finger domain 1A 

(BAZ1A), shown in Figure 5E. Enriched KEGG 

pathway analysis indicated that these co-occurrent genes 

were mainly enriched in Hippo signaling pathway-

multiple species (Figure 5F). This signal pathway is 

primarily associated with the proliferation and apoptosis 

of tumor cells. GO term analysis of these genes showed 

enrichment in the G1/S transition of the mitotic cell 

cycle (Figure 5G and Supplementary Table 8), which 

also indicated that these genes participate in the growth 

of tumors. 

 

Moreover, we constructed a GNPNAT1 co-occurrence 

gene protein-protein interaction (PPI) network using 

lung-specific data collected from the DifferentialNet 

database (Figure 5H). Proteasome 20S subunit alpha 

(PSMA) 3, PSMA4, PSMA5, tripartite motif containing 

9 (TRIM9), and GTP cyclohydrolase 1(GCH1) were the 

top 5 hub genes. PSMA is a proteasome subunit alpha 

type associated with the occurrence and development of 

multiple cancers [14, 15]. 

 

Finally, we constructed the GNPNAT1 co-occurrence 

genes TF-miRNA coregulatory interactions using the 

RegNetwork repository (Figure 5I). Forkhead box 

A1(FOXA1), Kelch-like family member 28 (KLHL28), 

cofilin 2 (CFL2), SIX homeobox 4 (SIX4), and glia 

maturation factor beta (GMFB) were the top five TFs. 

Many studies have shown that FOXA1 participates in 

the development of lung cancer, prostate cancer, and 

several other types of cancers [16–19]. 

 

Association between GNPNAT1 expression and 

immune infiltration level in LUAD 

 
We used the TISIDB database to assess whether 

GNPNAT1 expression was significantly correlated with 

immune cell infiltration level in LUAD, as shown in 
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Table 1. The kinase, miRNA and transcription factor targets of GNPNAT1 in LUAD. 

Enriched category Geneset LeadingEdge Num FDR 

Kinase Target Kinase_CDK1 84 0 

 Kinase_PLK1 30 0 

 Kinase_AURKB 34 0 

 Kinase_CDK2 90 0 

 Kinase_AURKA 14 0.00018945 

miRNA Target GGGGCCC,MIR-296 27 0.085139 

 CCTGTGA,MIR-513 47 0.10451 

 CCCAGAG,MIR-326 49 0.12147 

 GAGCCTG,MIR-484 40 0.14007 

 AGCGCTT,MIR-518F, 

MIR-518E,MIR-518A 

7 0.1568 

Transcription Target V$E2F_Q6 81 0 

 V$E2F1_Q6 85 0 

 V$E2F_Q4 81 0 

 V$E2F1DP1_01 82 0 

 V$E2F1DP2_01 82 0 

 

Table 2 (Figure 6). There were 20/28 significantly 

correlated immune cells, including B cells, CD4 T cells, 

CD8 T cells, CD56dim cells, eosinophils, IMM B cells, 

macrophages, mast cells, MDSC cells, neutrophils, NK 

cells, NKT cells, pDC cells, Tem CD8 cells, Tfh cells, 

Tgd cells, Th1 cells, Th2 cells, Th17 cells, and Treg 

cells. We also observed associations between GNPNAT1 

expression and immune cell infiltration levels across 

different cancer types (Supplementary Figure 2A). 

 
Immunomodulators included immunoinhibitors, 

immunostimulators, and MHC molecules, which 

regulate immune system functions. We found that 

GNPNAT1 expression was significantly negatively 

correlated with immunomodulators (Table 3). The five 

most highly correlated immunoinhibitors (Figure 7A) 

were galectin 9 (LGALS9), adenosine A2a receptor 

(ADORA2A), transforming growth factor beta 1 

(TGFB1), colony-stimulating factor 1 receptor (CSF1R), 

B and T lymphocyte associated (BTLA). The five most 

highly correlated immunostimulators (Figure 7B) were 

transmembrane protein 173 (TMEM173), TNF receptor 

superfamily member 14 (TNFRSF14), CD40 ligand 

(CD40LG), TNF receptor superfamily member 13B 

(TNFRSF13B), and PVR cell adhesion molecule (PVR). 

The five most highly correlated MHC molecules (Figure 

7C) were major histocompatibility complex, class II,  

DP beta 1 (HLA-DPB1), major histocompatibility 

complex, class II, DO alpha (HLA-DOA), major 

histocompatibility complex, class II, DM alpha (HLA-

DMA), major histocompatibility complex, class II, DR 

beta 1 (HLA-DRB1), and major histocompatibility 

complex, class II, DP alpha 1 (HLA-DPA1). We also 

observed associations between GNPNAT1 expression 

and immunomodulators across different cancer types 

(Supplementary Figure 2B–2D). 

 

Chemokines expression levels are key factors in 

controlling immune cell infiltration. We identified the 

correlation between GNPNAT1 expression and 

chemokines (Table 4). The five most highly correlated 

chemokines (Figure 8A) were C-C motif chemokine 

ligand (CCL)-14, C-X3-C motif chemokine ligand 1 

(CX3CL1), CXC motif chemokine ligand 8 (CXCL8), 

CCL17, CCL19. The top five chemokine receptors 

(Figure 8B) were C-X3-C motif chemokine receptor 1 

(CX3CR1), CC motif chemokine receptor (CCR)-6, 

CCR7, CCR4, CXC motif chemokine receptor 5 

(CXCR5). Moreover, we described the correlation of 

GNPNAT1 expression with chemokines or receptors 

across different cancer types (Supplementary Figure 3). 

 

We evaluated these 25 immune genes correlated with 

GNPNAT1, including 23 negatively correlated genes 

and 2 positively correlated genes, and we found that 

higher expression of 18/23 negatively correlated genes 

was associated with favorable prognosis in patients with 

LUAD, while higher expression of 2/2 positively 

correlated genes was associated with unfavorable 

prognosis. (Table 5 and Figure 9). 

 

DISCUSSION 
 

Metabolic pathways, including glucose metabolism, 

amino acid metabolism, and fatty metabolism, 

participate in regulating tumor cell proliferation and 
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progression, as reported by several researchers [20]. 

GNPNAT1, also called GNA1, is a protein with a crucial 

role in acetylglucosamine biosynthesis. Downregulation 

of GNPNAT1 expression has been found to be the key 

reason for the inhibition of lung cancer A549 cell 

proliferation and adhesion [9]. GNPNAT1 has also been 

reported to be a part of a metabolic gene signature in 

LUAD in six-gene and five-gene signatures [21, 22]. To 

obtain more detailed insights into GNPNAT1 potential 

functions and regulatory networks in LUAD and guide 

future LUAD research, we conducted a bioinformatics 

analysis of public data. 

 

 
 

Figure 5. Genomic alterations of GNPNAT1 in LUAD (cBioPortal). GNPNAT1 alterations in the LUAD cohort. The different types of 
genetic alterations highlighted in different colors. (A) There were 39 out of 522 (7.47%) LUAD patients with GNPNAT1 alterations. (B) 
GNPNAT1 CNV frequency distribution in different stage subgroups. (C) GNPNAT1 CNV affected OS in LUAD. (D) The volcano plot shows genes 
co-occurring with GNPNAT1 amplification. (E) The bar plot shows the top 10 GNPNAT1 co-occurrent alteration genes. (F) KEGG pathway 
analysis of significant GNPNAT1 co-occurrent genes. (G) GO_BP terms of significantly GNPNAT1 co-occurrent genes. (H) The lung-specific PPI 
network of significant GNPNAT1 co-occurrent genes. (I) Transcription factor-miRNA (TF-miRNA) coregulatory network of significant GNPNAT1 
co-occurrent genes. 
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Table 2. Correlation analysis between GNPNAT1 expression and immune cells infiltration level in LUAD. 

Immune cell Correlation coefficient P value 

Activated B cell -0.262 1.64e-09*** 

Activated CD4 T cell 0.31 7.82e-13*** 

Activated CD8 T cell 0.09 0.0419* 

Activated dendritic cell 0.024 0.589 

CD56bright natural killer cell 0.024 0.586 

CD56dim natural killer cell 0.196 7.86e-06*** 

Eosinophil cell -0.504 <2.2e-16*** 

Immature dendritic cell -0.063 0.154 

Immature  B cell -0.317 1.98e-13*** 

Macrophage cell -0.203 3.28e-06*** 

Mast cell -0.397 <2.2e-16*** 

Myeloid derived suppressor cell -0.156 0.000375*** 

Memory B cell 0.007 0.876 

Monocyte 0.014 0.746 

Neutrophil -0.111 0.0112* 

Natural killer cell -0.282 8.41e-11*** 

Natural killer T cell -0.112 0.011* 

Plasmacytoid dendritic cell -0.261 1.87e-09*** 

Central memory CD4 T cell 0.002 0.964 

Central memory CD8 T cell -0.016 0.708 

Effector memory CD4 T cell -0.017 0.707 

Effector memory CD8 T cell -0.274 2.7e-10*** 

T follicular helper cell -0.249 1.1e-08*** 

Gamma delta T cell 0.098 0.0264* 

Type 1 T helper cell -0.148 0.000751*** 

Type 2 T helper cell 0.119 0.00658** 

Type 17 T helper cell -0.304 2.23e-12*** 

Regulatory T cell -0.143 0.00115** 

*, p < 0.05; **, p < 0.01; ***, p < 0.001. 

 

From the TCGA and GEO databases containing five 

LUAD study cohorts, we analyzed transcriptomes of 

more than 800 clinical samples and found that 

GNPNAT1 mRNA expression levels were higher in 

LUAD than in normal lung tissues (Figure 1). The 

analysis also confirmed that higher GNPNAT1 

expression in LUAD was related to more unfavorable 

prognosis in multiple LUAD study cohorts. We analyzed 

our results, which indicated that overexpression of 

GNPNAT1 occurred in many patients with LUAD, and 

that further clinical and experimental validation was 

needed to investigate on its potential role as a diagnostic 

and prognostic marker. 

 

The GNPNAT1 co-expression networks in LUAD are 

shown in Figure 4. The positively correlated genes with 

higher expression in LUAD were usually associated with 

worse survival outcomes, while the negatively correlated 

genes were associated with opposite outcomes. The 

overexpression of CDKN3 increased mitotic activity, 

resulting in more unfavorable prognosis in patients with 

LUAD [23]. Floriana Forzati and colleagues reported 

that CBX7 is a tumor suppressor, and its inactivation 

promotes LUAD progression [24]. We used GSEA to 

annotate the co-expressed genes; GO terms were mainly 

enriched in cell chromosome segregation and RNA 

metabolisms, etc., and KEGG pathways in ribosome and 

proteasome, etc. These enrichment functions commonly 

participate in cell proliferation and differentiation. 

 

To identify the regulators that are potentially responsible 

for GNPNAT1 dysregulation, we revealed a network of 

kinases related to GNPNAT1 in LUAD, including CDK1, 

PLK1, AURKB, CDK2, and AURKA. These kinases 

target the regulation of genomic stability, mitosis 

progression, and cell cycle transition, which show 
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differential expression and different prognoses in LUAD 

[11, 25–28]. CDK1 is mainly defined as a pivotal cell 

cycle regulator that not only participates in mitosis, but 

also in meiosis and protein synthesis [29]. Researchers 

have demonstrated that CDK1 inactivation influences 

multiple tumors cell cycle progression, thereby CDK1 

might be a tumor therapeutic target. Many CDK1 

inhibitors have been discovered and used in various 

tumors [30]. PLK1, AURKB, and AURKA are crucial 

factors not only in mitosis, but also in non-mitosis 

function and DNA damage response. For cancer 

therapies, these kinase inhibitors have been developed in 

diverse tumors [31–34]. In LUAD, GNPNAT1 

deficiency results in cell cycle arrest, DNA damage, and 

repair response dysfunction, which might be due to the 

synergistic effects of these kinases. E2F family members 

are the key transcription factors of GNPNAT1 in LUAD. 

These E2F family genes mainly participate in cell cycle 

regulation, and uncontrolled cell cycle progression 

results in cancerous events [35]. Previous studies have 

shown that E2F transcription factors are significantly 

enriched in multiple tumor tissues and have verified that 

high E2F expression in hepatocellular carcinoma and 

LUAD is correlated to a worse prognosis [12, 13]. E2F1 

is a key factor that prompts cell cycle transition in 

LUAD, and higher E2F1 expression in LUAD indicates 

unfavorable survival outcome [36]. Retinoblastoma (RB) 

protein and tumor protein P53 (TP53) participate in 

increasing E2F family gene expression in some 

particular tumors, and GNPNAT1 might also be a 

targeted gene in LUAD. Though, further research is 

required to prove this [37, 38]. 

 

Genomic alteration is frequently detected in patients 

with LUAD, and this alteration might predict 

unfavorable prognosis. CNVs might have significant 

genomic influence, disrupt genes, and change genetic 

content, leading to phenotypic differences [39, 40]. Our 

analysis results showed that the CNV of GNPNAT1 in 

LUAD had increased, and mRNA upregulation and 

amplification were the main types of GNPNAT1 

alterations associated with unfavorable prognosis. By 

analyzing GNPNAT1 co-occurrence gene function, we 

found that GNPNAT1 might participate in multiple 

tumor cell cycle progression, further influencing tumor 

cell proliferation and apoptosis. 

 

 
 

Figure 6. GNPNAT1 expression had a significant correlation with immune cells infiltration level in LUAD. 
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Table 3. Correlation analysis between GNPNAT1 expression and immunomodulators expression in LUAD. 

Immunomodulators Geneset Correlation coefficient P value 

Immunoinhibitors ADORA2A -0.273 3.3e-10*** 

 BTLA -0.226 2.25e-07*** 

 CSF1R -0.251 7.64e-09*** 

 LGALS9 -0.323 6.98e-14*** 

 TGFB1 -0.253 5.94e-09*** 

Immunostimulators CD40LG -0.382 <2.2e-16*** 

 PVR 0.352 1.58e-16*** 

 TMEM173 -0.436 <2.2e-16*** 

 TNFRSF13B -0.353 1.21e-16*** 

 TNFRSF14 -0.411 <2.2e-16*** 

MHC molecules HLA-DMA -0.404 <2.2e-16*** 

 HLA-DOA -0.414 <2.2e-16*** 

 HLA-DPA1 -0.37 <2.2e-16*** 

 HLA-DPB1 -0.419 <2.2e-16*** 

 HLA-DRB1 -0.386 <2.2e-16*** 

***, p < 0.001. 

 

 
 

Figure 7. GNPNAT1 expression associated with immunomodulators in LUAD. (A) Top five immunoinhibitors correlated with 
GNPNAT1 expression in LUAD. (B) Top five immunostimulators correlated with GNPNAT1 expression in LUAD. (C) Top five MHC molecules 
correlated with GNPNAT1 expression in LUAD. 
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Table 4. Correlation analysis between GNPNAT1 expression and chemokines expression in LUAD. 

Chemokines Geneset Correlation coefficient P value 

Chemokines CCL14 -0.384 <2.2e-16*** 

 CCL17 -0.307 1.34e-12*** 

 CCL19 -0.296 8.88e-12*** 

 CX3CL1 -0.328 2.81e-14*** 

 CXCL8 0.324 5.5e-14*** 

Chemokine receptors CCR4 -0.295 9.1e-12*** 

 CCR6 -0.398 <2.2e-16*** 

 CCR7 -0.316 2.69e-13*** 

 CX3CR1 -0.427 <2.2e-16*** 

 CXCR5 -0.249 1.05e-08*** 

***, p < 0.001. 

 

Malignant tumors are composed of not only tumor 

cells, but also non-tumor cells, such as immune cells, 

stromal cells, and normal epithelial cells, which are 

also called tumor micro-environment (TME) [41]. 

These cells in the TME can promote or inhibit tumor 

cell growth [42]. In TME, with the occurrence and 

development of tumors, abnormal tumor metabolism 

might lead to immunosuppression, and tumor cells 

might evade the immune response [43]. In this study, 

the tumor metabolism gene GNPNAT1 expression was 

closely related to immune cell infiltration in LUAD 

and was correlated with immunomodulators and 

chemokines. These immune factors were significantly 

associated with the prognosis of LUAD. In recent 

years, immunotherapy for LUAD has progressed 

significantly, and more research is needed to assess 

whether GNPNAT1 may be an immunotherapy critical 

factor in the future. 

 

In this study, we found that GNPNAT1 is an important 

gene in the development and progression of LUAD by 

multi-omics analyses. GNPNAT1 was expressed at 

higher levels in LUAD tumor tissues than in normal 

tissues, which makes GNPNAT1 a potential biomarker in 

LUAD. GNPNAT1 overexpression in LUAD predicts a 

worse prognosis, which might be caused by the 

disruption of RNA metabolism and transport, and by that 

of mitotic cell cycle progression. We also found that 

 

 
 

Figure 8. Correlation between GNPNAT1 expression and chemokines in LUAD. (A) Top five chemokines correlated with GNPNAT1 

expression in LUAD. (B) Top five chemokine receptors correlated with GNPNAT1 expression in LUAD. 
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Table 5. The prognosis of the top 25 immune genes correlative with GNPNAT1 in LUAD. 

 Geneset Hazards ratio(high) P value 

Negatively correlative gene ADORA2A 0.64 0.045* 

 BTLA 0.6 0.018* 

 CCL14 0.6 0.023* 

 CCL17 0.64 0.04* 

 CCL19 0.71 0.093 

 CCR4 0.51 0.0027** 

 CCR6 0.52 0.0036** 

 CCR7 0.57 0.012* 

 CD40LG 0.43 0.00016*** 

 CSF1R 0.89 0.58 

 CX3CL1 0.62 0.024* 

 CX3CR1 0.58 0.018* 

 CXCR5 0.91 0.66 

 HLA-DMA 0.5 0.0021** 

 HLA-DOA 0.54 0.0046** 

 HLA-DPA1 0.5 0.0031** 

 HLA-DPB1 0.5 0.0024** 

 HLA-DRB1 0.57 0.009** 

 LGALS9 0.83 0.39 

 TGFB1 0.98 0.91 

 TMEM173 0.63 0.042* 

 TNFRSF13B 0.46 4e-04*** 

 TNFRSF14 0.61 0.031* 

Positively correlative gene CXCL8 1.6 0.028* 

 PVR 1.9 0.0013** 

*, p < 0.05; **, p < 0.01; ***, p < 0.001. 

 

 
 

Figure 9. Prognosis of the top 25 immune genes correlated with GNPNAT1 in LUAD, including 23 negatively correlated genes 
and 2 positively correlated genes. 
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GNPNAT1 has a potential novel immunomodulatory role 

in LUAD tumor immunity, and it might be a new 

target for lung cancer immunotherapy in the future. 

Nonetheless, all our findings need to be verified by 

further LUAD genomics research and subsequent 

functional studies. 

 

MATERIALS AND METHODS 
 

LCE database analysis  

 

LCE is a lung cancer-specific database including 

expression data and clinical data from over 6700 

patients in 56 studies [44]. We could easily obtain an 

overview analysis of tumor versus non-malignant tissue 

(normal tissue) differential gene expression and 

expression–survival association by meta-analyses. In 

addition, we obtained an individual data set-based 

survival analysis, comparative analysis, and correlation 

analysis. 

 

GEPIA database analysis 

 

The GEPIA database (http://gepia.cancer-pku.cn/) is an 

interactive website that contains 9736 tumor samples 

and 8587 normal samples from TCGA and GTEx 

datasets [45]. We used GEPIA to generate OS curves, 

based on gene expression with the log-rank test and the 

Mantel-Cox test in LUAD. We obtained tumor versus 

non-malignant tissue (normal) gene differential 

expression map. The threshold values were p-value of 

0.05 and fold change of 1.0. 

 

Oncomine database analysis 

 

The Oncomine database (https://www.oncomine.org/) is 

a cancer microarray database and web-based data-

mining platform. The gene GNPNAT1 expression level 

in LUAD was examined in the Oncomine 4.5 database. 

We used a p-value of 0.05, fold change of 1.2, and gene 

ranking of all as the threshold values. 

 

UALCAN database analysis 

 

The UALCAN (http://ualcan.path.uab.edu) database  

is a comprehensive, user-friendly, and interactive web 

resource for analyzing cancer omics data [46]. We 

used the UALCAN database to obtain the gene 

GNPNAT1 expression analysis across LUAD and 

normal samples in various tumor sub-groups based on 

TCGA data.  

 

HPA database analysis 

 

The HPA (http://www.proteinatlas.org) database maps 

human proteins in cells, tissues, and organs using the 

integration of various omics technologies [47]. GNPNAT1 

protein expression in LUAD tissues and normal lung 

tissues was mapped by immunohistochemistry. 

 

LinkedOmics database analysis 

 

The LinkedOmics database (http://www.linkedomics. 

org/login.php) is a publicly available portal that includes 

multi-omics data from all 32 TCGA cancer types [48]. 

We used LinkedOmics to gain the GNPNAT1 co-

expression assessed by Pearson’s correlation coefficient 

statistical analysis, presented in volcano plots and heat 

maps. We used the GSEA function modules in the 

LinkedOmics database to obtain Gene Ontology 

biological process (GO_BP), KEGG pathways, kinase-

target enrichment, miRNA-target enrichment, and 

transcription factor-target enrichment analysis. FDR  

< 0.05 and 1000 simulations were the standard in this 

enrichment analysis. 

 

c-BioPortal database analysis 

 

The cBioPortal (http://cbioportal.org) includes 

multidimensional cancer genomics [49]. We used the c-

BioPortal tool to analyze GNPNAT1 mutation, gene co-

occurrence, and CNV in LUAD (TCGA, Firehose 

Legacy). We also obtained the GNPNAT1 alterations 

overview per sample via this portal. 

 

NetworkAnalyst database analysis 

 

NetworkAnalyst 3.0 (https://www.networkanalyst.ca/) 

[50] is a tool that allows to create cell-type or tissue-

specific PPI networks, gene regulatory networks, 

enrichment networks, and gene co-expression networks. 

All the GNPNAT1 co-occurrence gene networks were 

built using this tool. 

 

TISIDB database analysis 

 

TISIDB is a web portal for tumor and immune system 

interaction, which integrates data regarding 30 cancer 

types from TCGA (http://cis.hku.hk/TISIDB/) [51]. We 

used TISIDB tools to analyze the correlation of 

GNPNAT1 with 28 tumor-infiltrating lymphocytes 

(TILs), 45 immunostimulators, 24 immunoinhibitors, 21 

MHC molecules, 41 chemokines, and 18 receptors. 

 

Statistical analysis 

 

We used Student’s t-tests to identify the different 

GNPNAT1 expression levels. Kaplan-Meier curves and 

the log-rank test were used to compare the OS of 
various gene expression subgroups. The correlation 

between GNPNAT1 expression, immune cell infiltration, 

and immune genes was evaluated by Spearman’s 

http://gepia.cancer-pku.cn/
https://www.oncomine.org/
http://ualcan.path.uab.edu/
http://www.proteinatlas.org/
http://www.linkedomics.org/login.php
http://www.linkedomics.org/login.php
http://cbioportal.org/
https://www.networkanalyst.ca/
http://cis.hku.hk/TISIDB/


 

www.aging-us.com 7444 AGING 

method. In these analyses, p < 0.05 was considered 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. The expression and survival outcome of GNPNAT1-associated top five most significant kinase in 
LUAD. 

 

 
 

Supplementary Figure 2. The relationship between GNPNAT1 expression and immune cells, immunomodulators across 
different cancers. (A) GNPNAT1 expression correlated with immune cells infiltration level across different cancer types. (B) GNPNAT1 

expression correlated with immunoinhibitors across different cancer types. (C) GNPNAT1 expression correlated with immunostimulators 
across different cancer types. (D) GNPNAT1 expression correlated with MHC molecules across different cancer types. 
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Supplementary Figure 3. The relationship between GNPNAT1 expression and chemokines across different cancers.  
(A) GNPNAT1 expression correlated with chemokines across different cancer types. (B) GNPNAT1 expression correlated with chemokine 
receptors across different cancer types. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 7. 

 

Supplementary Table 1. GNPNAT1 co-expressed genes. 

 

Supplementary Table 2. GO term annotation of GNPNAT1 co-expressed genes. 

Gene Set Description Size 
Leading Edge 

Number 
ES NES P Value FDR 

GO:0050000 chromosome localization 67 25 0.80986 2.4816 0 0 

GO:0034502 protein localization to 

chromosome 

68 32 0.79979 2.4853 0 0 

GO:0007059 chromosome segregation 262 85 0.75424 2.8388 0 0 

GO:0006399 tRNA metabolic process 162 83 0.72772 2.5441 0 0 

GO:0006414 translational elongation 123 74 0.72479 2.4747 0 0 

GO:0034470 ncRNA processing 312 154 0.71468 2.7154 0 0 

GO:0016072 rRNA metabolic process 210 132 0.70636 2.5728 0 0 

GO:0031123 RNA 3'-end processing 111 52 0.68634 2.3087 0 0 

GO:0032200 telomere organization 136 46 0.68176 2.3781 0 0 

GO:0048285 organelle fission 404 128 0.68041 2.6252 0 0 

GO:0044839 cell cycle G2/M phase transition 192 62 0.6801 2.4743 0 0 

GO:0051321 meiotic cell cycle 217 64 0.67269 2.4339 0 0 

GO:0006413 translational initiation 184 104 0.66986 2.3769 0 0 

GO:0022613 ribonucleoprotein complex 

biogenesis 

386 186 0.66862 2.6023 0 0 

GO:0006260 DNA replication 233 94 0.66663 2.4424 0 0 

 

Supplementary Table 3. KEGG annotation of  GNPNAT1 co-expressed genes. 

Gene Set Description Size 
Leading Edge 

Number 
ES NES P Value FDR 

hsa04110 Cell cycle 118 55 0.76905 2.6367 0 0 

hsa03010 Ribosome 131 89 0.7476 2.5746 0 0 

hsa03050 Proteasome 44 32 0.86201 2.4789 0 0 

hsa03013 RNA transport 158 69 0.68131 2.3982 0 0 

hsa03008 Ribosome biogenesis in eukaryotes 70 39 0.75238 2.3585 0 0 

hsa03040 Spliceosome 115 58 0.6893 2.355 0 0 

hsa03030 DNA replication 36 20 0.83389 2.3474 0 0 

hsa00970 Aminoacyl-tRNA biosynthesis 43 18 0.7767 2.2158 0 0 

hsa00240 Pyrimidine metabolism 96 46 0.66328 2.1687 0 0 

hsa03430 Mismatch repair 23 11 0.8588 2.1161 0 0 

hsa03440 Homologous recombination 34 14 0.75934 2.0666 0 0 

hsa01230 Biosynthesis of amino acids 69 26 0.63926 2.021 0 0 

hsa04973 Carbohydrate digestion and absorption 41 12 -0.69606 -1.9057 0 0 

hsa04640 Hematopoietic cell lineage 93 41 -0.62775 -1.9117 0 0 

hsa05150 Staphylococcus aureus infection 52 21 -0.70608 -1.9824 0 0 
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Supplementary Table 4. Kinases enrichment of GNPNAT1 co-expressed genes. 

Gene Set Description Size 
Leading Edge 

Number 
ES NES P Value FDR 

Kinase_CDK1 cyclin dependent kinase 1 258 84 0.67502 2.5115 0 0 

Kinase_PLK1 polo like kinase 1 90 30 0.74839 2.4721 0 0 

Kinase_AURKB aurora kinase B 87 34 0.68299 2.1948 0 0 

Kinase_CDK2 cyclin dependent kinase 2 278 90 0.58084 2.1651 0 0 

Kinase_AURKA aurora kinase A 46 14 0.69064 2.0178 0 0.00018945 

Kinase_ATR ATR serine/threonine kinase 66 24 0.66378 2.0493 0 0.00022103 

Kinase_ATM ATM serine/threonine kinase 123 38 0.61277 2.0683 0 0.00026523 

Kinase_CHEK1 checkpoint kinase 1 130 40 0.57089 1.9762 0 0.00033154 

Kinase_PLK3 polo like kinase 3 20 11 0.77975 1.9258 0 0.00073676 

Kinase_CSNK2A1 casein kinase 2 alpha 1 256 78 0.50468 1.8799 0 0.0015914 

Kinase_CHEK2 checkpoint kinase 2 27 10 0.70791 1.8659 0 0.0016879 

Kinase_TTK TTK protein kinase 12 8 0.84249 1.8095 0 0.0061888 

Kinase_BRSK1 BR serine/threonine kinase 1 6 2 0.92299 1.7393 0 0.019484 

Kinase_WEE1 WEE1 G2 checkpoint kinase 5 5 0.9652 1.7001 0 0.034765 

Kinase_SYK spleen associated tyrosine kinase 35 19 -0.6636 -1.7288 0 0.051696 

 

Supplementary Table 5. miRNA enrichment of GNPNAT1 co-expressed genes. 

Gene Set Size Leading Edge Number ES NES P Value FDR 

GGGGCCC, 

MIR-296 

67 27 -0.54235 -1.5749 0.0031696 0.085139 

CCTGTGA, 

MIR-513 

118 47 -0.50051 -1.5758 0.0014771 0.10451 

CCCAGAG, 

MIR-326 

141 49 -0.48688 -1.5844 0 0.12147 

GAGCCTG, 

MIR-484 

98 40 -0.53109 -1.6521 0 0.14007 

AGCGCTT, 

MIR-518F, 

MIR-518E, 

MIR-518A 

16 7 -0.69131 -1.5058 0.032787 0.1568 

CAGGGTC, 

MIR-504 

79 29 -0.52777 -1.5939 0.0014925 0.16032 

AGGGCAG, 

MIR-18A 

130 43 -0.44353 -1.4185 0.0061538 0.16062 

CTTTGCA, 

MIR-527 

222 63 -0.41799 -1.4216 0.0013793 0.16492 

GGCCAGT, 

MIR-193A, 

MIR-193B 

83 18 -0.47446 -1.426 0.014331 0.1673 

CAGCACT, 

MIR-512-3P 

143 51 -0.45013 -1.4577 0.0028694 0.16883 

ATGCTGG, 

MIR-338 

104 29 -0.48116 -1.5086 0.0047022 0.17491 

CCAGGGG, 

MIR-331 

83 28 -0.47609 -1.4274 0.016692 0.17648 

GCACCTT, 

MIR-18A,MIR-18B 

112 39 -0.47258 -1.4821 0.0014948 0.17974 

ACAGGGT, 119 33 -0.45265 -1.4311 0.0088496 0.18111 
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MIR-10A, 

MIR-10B 

GAGCTGG, 

MIR-337 

147 57 -0.45475 -1.4701 0.0044577 0.18214 

 

Supplementary Table 6. Transcription factor enrichment of GNPNAT1 co-expressed genes. 

Gene Set Size Leading Edge Number ES NES P Value FDR 

V$E2F_Q6 211 81 0.59091 2.1599 0 0 

V$E2F1_Q6 213 85 0.5917 2.1597 0 0 

V$E2F_Q4 212 81 0.58525 2.1476 0 0 

V$E2F1DP1_01 218 82 0.58088 2.128 0 0 

V$E2F1DP2_01 218 82 0.58088 2.128 0 0 

V$E2F4DP2_01 218 82 0.58088 2.128 0 0 

V$E2F_02 218 82 0.58057 2.1245 0 0 

V$E2F4DP1_01 220 82 0.57988 2.1119 0 0 

V$ELK1_02 226 71 0.57447 2.1078 0 0 

SGCGSSAAA_V$E2F1DP2_01 155 62 0.58411 2.0639 0 0 

V$E2F_Q3 204 63 0.56112 2.0575 0 0 

V$E2F_Q4_01 215 77 0.56263 2.0537 0 0 

V$E2F1_Q3 225 75 0.5513 2.0241 0 0 

V$E2F1DP1RB_01 210 61 0.54952 2.0132 0 0 

V$E2F_Q3_01 215 68 0.54189 1.9856 0 0 

 

 

Supplementary Table 7. GNPNAT1 significant co-occurence genes. 
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Supplementary Table 8. Functional annotation of GNPNAT1 AMP significant co-occurrence genes. 

GO BP term Total Expected Hits P-Value FDR 

G1/S transition of mitotic cell cycle 209 1.14 6 0.000976 0.8 

DNA_dependent DNA replication 121 0.661 4 0.00431 1 

S phase of mitotic cell cycle 144 0.786 4 0.00793 1 

S phase 153 0.835 4 0.00977 1 

Regulation of mitotic cell cycle 351 1.92 6 0.0123 1 

Regulation of cell cycle 886 4.84 10 0.0219 1 

Chromatin remodeling 111 0.606 3 0.0228 1 

Interphase of mitotic cell cycle 435 2.37 6 0.0314 1 

Adenylate cyclase-activating G-protein coupled receptor signaling pathway 53 0.289 2 0.0339 1 

Interphase 443 2.42 6 0.0339 1 

Mitotic cell cycle 968 5.28 10 0.0372 1 

Epithelial cell differentiation 339 1.85 5 0.0378 1 

Negative regulation of cellular protein metabolic process 463 2.53 6 0.0407 1 

DNA replication 346 1.89 5 0.0407 1 

KEGG Pathway      

Hippo signaling pathway -multiple species 29 0.112 2 0.00553 0.963 

Basal transcription factors 45 0.174 2 0.013 0.963 

Proteasome 45 0.174 2 0.013 0.963 

Nucleotide excision repair 47 0.182 2 0.0141 0.963 

Insulin signaling pathway 137 0.531 3 0.0156 0.963 

Ribosome 153 0.593 3 0.0208 0.963 

Hippo signaling pathway 154 0.597 3 0.0212 0.963 

Prolactin signaling pathway 70 0.271 2 0.0298 1 

Fc gamma R-mediated phagocytosis 91 0.353 2 0.0481 1 

Inflammatory mediator regulation of TRP channels 100 0.388 2 0.0569 1 

 


