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INTRODUCTION 
 

The incidence of liver cancer has recently been 

increasing rapidly, by about 3% in women and 4% in 

men each year [1]. Hepatocellular carcinoma (HCC) is 

the second leading cause of cancer-related mortality, 

accounting for the deaths of 21,600 men and 10,180 

women annually [1, 2]. Notably, the five-year survival 

rate of HCC patients is only 18% in the United States 

[1]. Although most HCC patients die within three years, 

some patients overcome this fatal disease and survive 

for more than 5 years. Understanding the mechanisms 

that promote long-term survival (LTSs, survival ≥ 5 

years) would be very valuable for the diagnosis and 

treatment of HCC [3]; however, little is known about 

the molecular characteristics of LTSs. 

 

Numerous previous studies have identified genes 

associated with HCC oncogenesis, including NOTCH2 

and β-CATENIN [4–6]; however, most of these studies 

have focused on differentially expressed genes (DEGs) 

between normal and tumor tissues. For example, 
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ABSTRACT 
 

Hepatocellular carcinoma is one of the most fatal cancers, and the majority of patients die within three years. 
However, a small proportion of patients overcome this fatal disease and survive for more than five years. To 
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and clinical data of hepatocellular carcinoma patients from The Cancer Genome Atlas and the International 
Cancer Genome Consortium databases, and identified molecular features that were strongly associated with 
the patients’ prognosis. Genes involved in the cell cycle were expressed at lower levels in tumor tissues from 
long-term survivors than those from short-term survivors (survival ≤ 1 years). High levels of positive regulators 
of the G1/S cell cycle transition (cyclin-dependent kinase 2 [CDK2], CDK4, Cyclin E2 [CCNE2], E2F1, E2F2) were 
potential markers of poor prognosis. Hepatocellular carcinoma patients with TP53 mutations were mainly 
belonged to the short-term survivor group. Abemaciclib, an FDA-approved selective inhibitor of CDK4/6, 
inhibited the cell proliferation and tumor growth of hepatocellular carcinoma cells in vitro and in vivo. Thus, 
high G1/S transition-related gene levels and TP53 mutations are promising diagnostic biomarkers for short-term 
survivals, and abemaciclib may be a potential targeted drug for hepatocellular carcinoma. 

mailto:lijue0923@sina.com
mailto:liyf@sumhs.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 7518 AGING 

NOTCH2 was reported to be highly expressed in HCC 

tumor tissues [4], and Yes-associated protein (a member 

of the Hippo signaling pathway) was found to induce 

the oncogenesis and excessive growth of HCC [7, 8]. 

Though it is very important to identify the DEGs 

between normal and tumor tissues, it is also of great 

value to study the DEGs between tumor tissues from 

LTSs and short-term survivors (STSs, survival ≤ 1 years) 

of HCC [3], because these genes may be critical 

determinants for the survival time of patients or 

potential biomarkers for prognostic prediction and 

therapy. However, such genes have not yet been 

identified. 

 

Uncontrolled cellular proliferation is a hallmark of 

tumorigenesis and cancer progression [9]. Cellular 

proliferation is dynamically and strictly controlled 

during different phases of the cell cycle, especially the 

G1/S and G2/M transitions [9]. The G1/S transition is the 

most important breaker in the cell cycle, and after that 

period, extracellular stimulants are no longer required 

[10, 11]. This transition is tightly regulated by multiple 

genes and pathways, and its disruption is associated 

with cancer development [12, 13]. For example, cyclin 

D1 (CCND1), a promoter of the G1/S transition, is 

overexpressed in estrogen receptor-positive breast 

cancer cells [14]. The G1/S transition is considered as 

an effective target for cancer therapies; for instance, 

palbociclib, a selective cyclin-dependent kinase 4/6 

(CDK4/6) inhibitor that leads to G1/S arrest, was found 

to significantly prolong the progression-free survival of 

patients with hormone-receptor-positive metastatic 

breast cancer [15, 16]. Although the G1/S transition is 

very important in tumor development and therapy, its 

roles on HCC have not been clearly elucidated. 

 

In this study, we investigated novel molecular 

biomarkers of HCC to provide effective prognostic 

predictors and therapeutic targets. For this purpose, we 

performed a combinational analysis of whole-exome 

sequencing data, whole-transcriptome sequencing data 

and patients’ clinical information from the Liver 

Hepatocellular Carcinoma (LIHC) project in The 

Cancer Genome Atlas (TCGA) database and the LIRI-

JP project in the International Cancer Genome 

Consortium (ICGC) database. We then conducted in 

vitro and in vivo experiments to validate the reliability 

of these biomarkers in HCC. 

 

RESULTS 
 

The molecular differences between HCC tissues 

from LTSs and STSs 

 

In this study, we first compared the global gene 

expression profiles of treatment-naive, surgically 

resected HCC samples from LTSs (n = 40; TCGA-LIHC 

cohort) and STSs (n = 68; TCGA-LIHC cohort) (Figure 

1A and Table 1). The median survival time was much 

shorter in STSs than that in LTSs (Figure 1B). Based on 

our predefined cut-off criterion (false discovery rate 

[FDR] < 0.01), 1199 DEGs were identified, including 

760 upregulated and 439 downregulated genes in STS 

tumor tissues versus LTS tumor tissues (Figure 1C). 

 

We then used the Database for Annotation, 

Visualization and Integrated Discovery (DAVID) to 

perform Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway enrichment 

analyses of the DEGs. We found that the cell cycle was 

the most significant pathways enriched in STS tumor 

samples (Figure 1D, 1E). Gene Set Enrichment 

Analysis (GSEA) using GO terms as the reference gene 

set revealed that GO terms associated with cell cycle 

regulation (e.g., mitotic cell cycle, mitotic nuclear 

division, DNA replication, cell cycle G1/S phase 

transition) were enriched in primary HCC samples from 

STSs compared with those from LTSs (Figure 1F). We 

then performed GSEA using canonical pathways mainly 

from Reactome and the Pathway Interaction Database 

(PID) as the reference gene set. The results also 

demonstrated that cell cycle-related pathways such as 

the mitotic cell cycle, DNA strand elongation, G1/S-

specific transcription and E2F pathway were 

significantly enriched in tumor tissues from STSs 

(Figure 1G). 

 

Metastasis and the anticancer immune response are very 

important determinants of the treatment response and 

prognosis of HCC patients [17, 18]. Therefore, we 

assessed the expression of genes involved in these 

processes in HCC samples from STSs and LTSs. 

Surprisingly, no obvious differences were observed 

between the two groups (Supplementary Figure 1), 

suggesting that these pathways do not critically 

influence the survival of HCC patients. 

 

To confirm the correlation between cell cycle-related 

gene expression and the survival of HCC patients, we 

constructed a protein-protein interaction (PPI) network 

with the upregulated genes in STS HCC samples, and 

used the Molecular Complex Detection (MCODE) 

algorithm to determine the top significant modules in 

the network. Consistently, many nodes in module 1 

were target genes of E2F transcription factors (e.g., 

BUB1B, CDCA8, CENPE, KIF2C, NUP107, PLK1 and 

RAD21) (Figure 1H), which promote the G1/S transition 

in the cell cycle via the CyclinD-CDK4/6-

Retinoblastoma-E2F pathway. In addition, many nodes 
in module 1 were cell cycle regulators (e.g., BUB1 and 

CCNB1) (Figure 1H). Most of the nodes in module 2 

were also target genes of E2Fs (e.g., MCM2-6, ORC6 
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Figure 1. Gene expression profiling of LTSs and STSs of HCC. (A) Kaplan-Meier curve and log-rank test of STSs and LTSs of HCC. (B) The 

median survival days of STSs and LTSs of HCC. (C) Volcano plot of DEGs between 68 STS HCC samples and 40 LTS HCC samples. Red dots 
represent upregulated genes and green dots represent downregulated genes in HCC samples from STSs. (D) and (E) GO analysis (D) and KEGG 
pathway analysis (E) of DEGs via DAVID. Blue bars that cross the threshold line (P < 0.01) represent GO terms or KEGG pathways that differed 
significantly between the 68 STS HCC samples and the 40 LTS HCC samples. (F) and (G) GSEA of the global gene expression profiles of 68 STS 
HCC samples and 40 LTS HCC samples. Gene sets annotated with GO terms (F) and Gene sets annotated with canonical pathways mainly from 
Reactome and PID databases (G) were used in the analysis. NES = normalized enrichment score; P = nominal P value; FDR = false discovery 
rate. (H) and (I) The MCODE algorithm was used to identify the most significant modules in the PPI network constructed from the 
upregulated genes in STS HCC samples. The MCODE score of module 1 was 29 (H). The MCODE score of module 2 was 13 (I). 
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Table 1. Clinical and pathological characteristics of patients in TCGA-LIHC project. 

Variable Short term (n = 68) n (%) Long term (n = 40) n (%) 

Gender   

  Male 52 (76.5) 26 (65) 

  Female 16 (23.5) 14 (35) 

Age   

  Mean (Range) 59 (18-81) 59 (32-78) 

Race   

  Asian 42 (61.8) 18 (45) 

  White 22 (32.4) 20 (50) 

  Black or African American 1 (1.5) 1 (2.5) 

  NA 3 (4.4) 1 (2.5) 

Pathological Stage   

  I 22 (32.4) 23 (57.5) 

  II 15 (22.1) 9 (22.5) 

  III 27 (39.7) 7 (17.5) 

  IV 1 (1.5) 0 (0) 

  NA 3 (4.4) 1 (2.5) 

T Stage   

  T1 21 (30.9) 24 (60) 

  T2 15 (22.1) 9 (22.5) 

  T3 26 (38.2) 7 (17.5) 

  T4 5 (7.4) 0 (0) 

  NA 1 (1.5) 0 (0) 

N Stage   

  N0 48 (70.6) 34 (85) 

  N1 19 (27.9) 6 (15) 

  NX 1 (1.5) 0 (0) 

M Stage   

  M0 49 (72.0) 35 (87.5) 

  M1 1 (1.5) 0 (0) 

  MX 18 (26.5) 5 (12.5) 

Histologic Grade   

  G1 10 (14.7) 8 (20.0) 

  G2 39 (57.4) 21 (52.5) 

  G3 16 (23.5) 10 (25.0) 

  G4 2 (3.0) 0 (0) 

  NA 1 (1.5) 1 (2.5) 

NA, Not Available. 

and CHEK1) (Figure 1I). These data suggested that 

genes involved in cell cycle regulation, but not in 

cancer metastasis or antitumor immunity, are 

essential determinants of the survival time of HCC 

patients. 

 

Cell cycle pathways were greatly enriched in 

matched tumor tissues from STSs of HCC 

 

Matched primary tumor tissues and normal liver tissues 

were available for nine of the STSs included in this 

study. Therefore, we analyzed the global gene 
expression profiles of these tissues. After filtering the 

data based on a predefined cut-off criterion (FDR < 

0.01), we identified 1356 DEGs between the tumor and 

normal tissues of STSs, including 668 upregulated and 

688 downregulated genes in the tumor tissues versus 

normal liver tissues (Figure 2A). GSEA revealed that 

gene sets involved in cell cycle regulation (e.g., the 

mitotic cell cycle, DNA replication and E2F-mediated 

regulation of DNA replication) were enriched in the 

primary tumor tissues (Figure 2B). 

 

Next, we used DAVID for GO and BioCarta pathway 

analyses of the DEGs between tumor and normal 

tissues from STSs. The BioCarta pathway analysis 

indicated that CDKs and cyclins, which regulate DNA 
replication and the cell cycle, were overrepresented in 

STS tumor samples (Figure 2C). In the GO analysis, 

cell cycle-related terms such as mitotic nuclear division 
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Figure 2. Cell cycle pathways were enriched in tumor samples from STSs. (A) Volcano plot of the DEGs between primary tumor 

tissues and matched normal liver tissues from nine STSs. Red dots represent upregulated genes and green dots represent downregulated 
genes in the primary tumor tissues. (B) GSEA of the global gene expression profiles of nine primary tumor tissues and matched normal liver 
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tissues from STSs. Gene sets were annotated with canonical pathways mainly from Reactome. NES = normalized enrichment score; P = 
nominal P value; FDR = false discovery rate. (C) and (D) BioCarta pathway analysis (C) and GO analysis (D) of DEGs via DAVID. Blue bars that 
cross the threshold line (P < 0.01) represent pathways that differed significantly between primary tumor tissues and matched normal liver 
tissues from nine STSs. (E) The MCODE algorithm was used to identify the most significant module in the PPI network constructed from the 
upregulated genes in STS HCC samples. The MCODE score of this module was 37. 

and the G1/S transition of the mitotic cell cycle were 

also significantly upregulated in STS tumor samples 

(Figure 2D). 

 

We then constructed a PPI network with the upregulated 

genes in STS HCC samples, and used MCODE 

algorithm to identify the most significant module 

(Figure 2E). Many nodes in this module were target 

genes of E2Fs (e.g., CDK1, BUB1B, CDCA8, CDC20, 

CCNB2, CENPE, PLK1 and RAD21) (Figure 2E). These 

findings demonstrated that genes involved in cell cycle 

pathways were upregulated in tumor tissues from STSs. 

 

The upregulation of cell cycle pathways was 

associated with a poor prognosis in HCC patients 

 

To further investigate the relationship between the 

expression of cell cycle-related genes and the prognosis 

of HCC patients, we analyzed the expression levels of 

300 mitotic cell cycle genes from the Reactome in 40 

LTS and 68 STS tumor samples. After stratifying the 

tumor samples based on their gene expression patterns 

and examining the proportion of LTSs, we observed two 

clusters. Cluster I expressed higher levels of mitotic cell 

cycle genes and captured a higher proportion of STSs 

(77.3%), while cluster II expressed lower levels of 

mitotic cell cycle genes and captured a lower proportion 

of STSs (40.5%) (Figure 3A). Then, we examined the 

prognoses of the patients in these clusters, and found that 

cluster I exhibited a poorer survival probability, whereas 

cluster II exhibited a better prognosis (Figure 3B). 

 

To confirm these results, we stratified the tumor 

samples from LTSs and STSs into two clusters based on 

their expression of cell cycle G1/S phase transition 

genes from the GO resource. Cluster I expressed higher 

levels of cell cycle G1/S phase transition genes and 

captured a higher proportion of STSs (78.0%), while 

cluster II expressed lower levels of cell cycle G1/S 

phase transition genes and captured a lower proportion 

of STSs (44.9%) (Figure 3C). Moreover, cluster I 

exhibited a poorer prognosis (Figure 3D). These data 

suggested that the upregulation of cell cycle pathways is 

associated with a poorer prognosis in HCC patients. 

 

The expression signature of G1/S phase transition 

inducers was an independent prognostic factor in 

HCC patients 

 

CDK4, CDK6 and CDK2 are major inducers of the G1/S 

phase transition, and function in complexes with their 

cyclin partners [19]. In total, 13 positive regulators of 

the CyclinD-CDK4/6-Retinoblastoma-E2F pathway and 

the CyclinE-CDK2 pathway directly promote the cell 

cycle transition from G1 into S phase [19]. Therefore, 

we compared the expression of these genes between 

STSs and LTSs. The levels of eight positive regulators 

(CDK2, CDK4, CCNE1, CCNE2, E2F1, E2F2, E2F3 

and TFDP1) were significantly increased in STS than in 

LTS tumor samples (Figure 4A, 4B), whereas the levels 

of the other five positive regulators (CDK6, CCND1, 

CCND2, CCND3 and TFDP2) did not differ between 

the two groups (Supplementary Figure 2). Then, we 

performed an unsupervised hierarchical clustering 

analysis to determine the expression patterns of these 

eight positive regulators in 355 HCC samples from 

TCGA. Two groups were observed: cluster I expressed 

higher levels of these genes, had a higher proportion of 

STSs (30.1%) and exhibited significantly poorer 

survival (Figure 4C, 4D), whereas cluster II expressed 

lower levels of these genes, had a lower proportion of 

STSs (11.8%) and exhibited a better prognosis (Figure 

4C, 4D). 

 

We then performed Cox proportional hazards regression 

analyses to investigate whether the expression pattern of 

these eight positive regulators or patients’ clinical 

characteristics were associated with overall survival. In 

a univariate analysis, five factors (residual tumor, 

pathologic stage, T stage, treatment procedures and the 

expression pattern of the eight positive regulators) were 

associated with patients’ overall survival with P values 

< 0.05 (Table 2). However, in a multivariate analysis, 

only R2 residual tumors (hazard ratio = 9.5270, P = 

0.03652) and high levels of the eight positive regulators 

(hazard ratio = 1.8178, P = 0.00478) were found to  

be independent prognostic factors in HCC patients 

(Table 2). Subsequently, we examined the effects of 

each of the eight G1/S phase transition inducers on 

patients’ prognoses. Notably, higher levels of seven of 

these genes (CDK2, CDK4, CCNE1, CCNE2, E2F1, 

E2F2 and E2F3) were associated with poorer survival 

(Figure 4E and Supplementary Figure 3). Thus, these 

cell cycle-related genes that promote the G1/S transition 

are promising prognostic markers in HCC patients. 

 

HCC patients with TP53 mutations tended to be 

STSs 

 

Next, we investigated whether there were differences in 

somatic mutations between LTSs and STSs from 

TCGA. TP53 is a well-known negative regulator of the 
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Figure 3. The upregulation of cell cycle pathways was associated with a poor prognosis in HCC patients. (A, C) Unsupervised 
hierarchical clustering with Euclidean distances and Ward linkages of the expression matrices of 300 mitotic cell cycle genes in Reactome 
(A) and 108 cell cycle G1/S phase transition genes in the GO resource (C) for 108 tumor samples (68 STS and 40 LTS). Rows indicate the 
genes and columns indicate the patients. The patient survival status for each tumor is depicted directly above each column. Cluster I 
expressed higher levels of the genes in these two pathways, while cluster II expressed lower levels. (B) Kaplan-Meier curves for the clusters 
resulting from the unsupervised hierarchical clustering in (A). (D) Kaplan-Meier curves for the clusters resulting from the unsupervised 
hierarchical clustering in (C). 
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Figure 4. The expression signature of eight positive regulators of the G1/S cell cycle transition was an independent 
prognostic factor in HCC. (A) Tumor sample transcriptomic profiling of eight positive regulators of the G1/S cell cycle transition that 

differed significantly between STSs and LTSs of HCC. The data are shown as the mean ± standard deviation, and were compared using an 
unpaired two-tailed Student’s t-test. cpm, counts per million. (B) Tumor sample expression signature heatmap of thirteen positive regulators 
of the G1/S cell cycle transition in STSs and LTSs of HCC. Rows indicate the genes and columns indicate the patients. The patient survival status 
for each tumor is depicted directly above each column. (C) Unsupervised hierarchical clustering with Euclidean distances and Ward linkages 
of the expression matrix of eight positive regulators of the G1/S cell cycle transition in 355 HCC samples. Rows indicate the genes and columns 
indicate the patients. The patient survival status for each tumor is depicted directly above each column. (D) Kaplan-Meier curves for the 
clusters resulting from the unsupervised hierarchical clustering in (C). (E) Kaplan-Meier curve and log-rank test for HCC patients based on the 
expression of CDK2 and E2F1. 
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Table 2. Univariate and multivariate cox proportional hazard regression analysis of 355 HCC patients in TCGA-LIHC 
project. 

Variables 
Univariate cox regression analysis Multivariate cox regression analysis 

P HR 95%CI P HR 95%CI 

Age (<60 vs. ≥60) 0.283 1.212 0.8534 to 1.721    

Residual Tumor       

R0       

R1 0.2564 1.517 0.7388 to 3.114 0.94781 0.9660 0.3425 to 2.725 

R2 0.0167 11.461 1.5565 to 84.399 0.03652 9.5270 1.1519 to 78.796 

Pathologic Stage (I+II vs.III +IV) 3.3e-06 2.42 1.667 to 3.511 0.85305 1.2103 0.1606 to 9.118 

Cluster (Low vs. High) 1.21e-05 2.184 1.539 to 3.098 0.00478 1.8178 1.2002 to 2.753 

T Stage (1,2 vs. 3,4) 3.37e-07 2.51 1.762 to 3.574 0.65792 1.5751 0.2108 to 11.769 

Gender (Female vs. Male) 0.29 0.8252 0.5778 to 1.178    

Histologic Grade       

G1       

G2 0.525 1.186 0.7003 to 2.010    

G3 0.492 1.213 0.6990 to 2.105    

G4 0.539 1.406 0.4737 to 4.174    

Procedure       

Extended Lobectomy       

Lobectomy 0.68217 0.8789 0.4739 to 1.6301 0.64648 1.1766 0.5873 to 2.357 

Segmentectomy, Multiple 0.28649 0.7040 0.3692 to 1.3424 0.81762 1.0903 0.5229 to 2.273 

Segmentectomy, Single 0.00317 0.3290 0.1572 to 0.6884 0.06069 0.4389 0.1856 to 1.038 

Other* 0.11096 1.8678 0.8663 to 4.0269 0.37462 1.6500 0.5462 to 4.984 

HR, Hazard Ratio. * Other procedures include hepatic resection, left hepatic lobectomy, total hepatectomy with transplant 
and so on. 

G1/S phase transition of the cell cycle [20–22]. We 

found that TP53 mutations accounted for more than 

28% of the mutations in HCC patients, and the majority 

of TP53 mutations were missense mutations (Figure 5A, 

5B). Interestingly, HCC patients with TP53 mutations 

mainly belonged to the STS group (Table 3) and 

exhibited a poor overall survival rate (Figure 5C). HCC 

patients with TP53 mutations and high CDK4 (or E2F1) 

levels had the shortest survival expectancy of all the 

groups (Figure 5D). These data suggested that TP53 

mutations contribute to and are promising diagnostic 

markers of STSs. 

 

The expression of G1/S phase transition inducers and 

TP53 mutations predicted survival in the ICGC 

dataset 

 

We then investigated whether the eight positive 

regulators of the G1/S phase transition and TP53 

mutations exhibited similar prognostic trends in other 

HCC datasets. We chose the LIRI-JP project in the 

ICGC database, which contained data from 203 HCC 

patients. Consistent with our previous results (Figure 4E 

and Supplementary Figure 3), higher levels of seven 

inducers of the G1/S phase transition (CDK2, CDK4, 

CCNE2, E2F1, E2F2, E2F3 and TFDP1) were 

associated with poorer survival (Figure 6A). Moreover, 

HCC patients with wild-type TP53 and low CDK4 (or 

E2F1) expression had the longest survival expectancy 

(Figure 6B). These data confirmed that the levels of 

seven G1/S phase transition inducers and TP53 

mutations predicted survival in HCC patients. 

 

Abemaciclib significantly inhibited the proliferation 

of HCC cells in vitro 

 

Because higher levels of CDK4 and its downstream 

effector E2F1 were observed in STSs (Figure 4E and 

Figure 6A), we speculated that inhibiting CDK4 might 

prolong the survival of HCC patients. Therefore, we 

assessed the effects of abemaciclib (the first FDA-

approved CDK4 inhibitor for breast cancer treatment) 

on the HCC cell lines Hep3B and Huh7 [23]. 

Retinoblastoma (RB) is inactivated upon its 

phosphorylation by CDK4, so we detected the protein 

levels of phosphorylated RB and total RB in these two 

cell lines. While total RB protein levels remained 

relatively constant in Hep3B and Huh7 cells, phospho-

S780-RB levels decreased significantly following 

abemaciclib treatment (Figure 7A). Abemaciclib also 
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Figure 5. TP53 mutations were associated with a poor prognosis in HCC patients. (A) OncoPlot of the top ten mutated genes. The 

upper bar plot indicates the number of genetic mutations per patient, while the right bar plot displays the number of genetic mutations per 
gene. The mutation types were added as annotations on the bottom. Variants annotated as Multi_Hit are genes that mutated more than 
once in the same sample. (B) The lollipopPlot of TP53. The amino acid axis was labeled for the domain. The mutation types were added as 
annotations on the bottom. (C) Kaplan-Meier curve and log-rank test for HCC patients based on the TP53 mutational status classification. (D) 
Kaplan-Meier curve and log-rank test for HCC patients based on the TP53 mutational status and the expression of CDK2 and E2F1. The 
patients were stratified into the high expression group and the low expression group according to the median of normalized RNA-seq data. 
The patients were stratified into mutant TP53 group and wild type TP53 group according to TP53 mutational status. 
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Table 3. The relationship between TP53 mutational status and survival status in 348 HCC patients in TCGA-LIHC 
project. 

Survival status TP53 mutant type TP53 wild type P value 

STSs N (%) 26 (25.3) 38 (15.5) 0.01891* 

LTSs N (%) 6 (5.8) 34 (13.9)  

Other N (%) 71 (68.9) 173 (70.6)  

* Fisher’s Exact Test. STSs, Short Term Survivors. LTSs, Long Term Survivors. 

 

 
 

Figure 6. The expression of eight G1/S phase transition inducers and TP53 mutations predicted survival in the ICGC dataset. 
(A) Kaplan-Meier curve and log-rank test for HCC patients based on the expression of the eight G1/S phase transition inducers. (B) Kaplan-
Meier curve and log-rank test for HCC patients based on the TP53 mutational status and the expression of CDK2 and E2F1. The patients were 
stratified into the high expression group and the low expression group according to the median of normalized RNA-seq data. The patients 
were stratified into mutant TP53 group and wild type TP53 group according to TP53 mutational status. 
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Figure 7. Abemaciclib substantially inhibited the proliferation of HCC cells in vitro. (A) The protein levels of retinoblastoma (p-S780) 
and retinoblastoma in Hep3B and Huh7 cells. (B, C) Clone formation assays were used to detect the effects of abemaciclib on the 
proliferation of Hep3B and Huh7 cells. (D) A CCK-8 assay was used to analyze cell proliferation in control and abemaciclib-treated Hep3B and 
Huh7 cells. (E) An Edu assay was used to analyze cell proliferation in control and abemaciclib-treated Hep3B and Huh7 cells. Bar= 100μm; For 
(C, D) * was compared with Control (**, P < 0.01; ***, P < 0.001). 
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notably reduced the clone numbers of these two cell 

lines (Figure 7B, 7C). A Cell Counting Kit 8 (CCK-8) 

assay (Figure 7D) and a 5-ethynyl-2´-deoxyuridine (Edu) 

assay (Figure 7E) confirmed that abemaciclib repressed 

HCC cell proliferation. These data demonstrated that 

abemaciclib substantially inhibited the proliferation of 

HCC cells in vitro. 

 

Abemaciclib inhibited the tumor growth of HCC 

cells in vivo 

 

Finally, we assessed the effects of abemaciclib on HCC 

development in vivo in mice subcutaneously injected 

with Hep3B cells. Abemaciclib treatment significantly 

reduced the size (Figure 8A) and weight (Figure 8B) of 

the tumors in these mice. Dynamic analyses of tumor 

development also revealed that the tumor volume was 

significantly reduced after abemaciclib treatment (Figure 

8C). These data demonstrated that abemaciclib can 

significantly inhibit the proliferation of HCC cells in vivo. 

 

DISCUSSION 
 

Prognostic prediction for cancer patients is vital, not 

only for identifying potential STSs who will need 

special treatments, but also for designing appropriate 

strategies to prolong survival [24]. For example, B-Raf 

proto-oncogene (BRAF) mutation, especially V600E, is 

an ideal marker of poor prognosis and new treatment 

target in colon cancer patients [25, 26]. However, the 

ability to predict HCC patients’ prognoses is still 

limited [1]. Here, we identified molecular markers that 

could effectively distinguish STSs from LTSs of HCC, 

allowing HCC patients to be stratified into good and 

poor prognosis groups easily and efficiently. Patients 

with low levels of eight G1/S phase transition inducers 

survived for nearly 7 years, whereas patients with high 

levels of these eight genes had a survival expectancy of 

only 2.07 years. Besides G1/S phase transition inducers, 

TP53 mutations are another critical factors to STSs, and 

promising biomarker for HCC prognosis. Therefore, we 

speculated that HCC patients with heightened 

expression of G1/S phase transition inducers and TP53 

mutations tent to be STSs; and these predicted poor 

prognosis patients desperately need to receive more 

timely and effective treatments. 

 

Many proteins involved in the G1/S transition contribute 

substantially to the development and progression of 

HCC [27–30]. Aberrant expression and activation of 

 

 
 

Figure 8. Abemaciclib substantially inhibited the proliferation of HCC cells in vivo. (A) Phenotypes of tumors derived from Hep3B 
cells in mice treated with the vehicle (DMSO) or abemaciclib. (B) The weights of Hep3B cell tumors were detected in mice treated with the 
vehicle or abemaciclib. (C) The dynamics of tumor development in mice treated with the vehicle or abemaciclib. The tumor volumes were 
measured as follows: Volume = length*width*width/2. Measurements were taken at the indicated time points. For (B, C) * was compared 
with Control (***, P < 0.001). 
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these genes can stimulate the proliferation of HCC cells 

[31, 32], and uncontrolled cell proliferation promotes 

cancer initiation [33]. Here, we demonstrated that genes 

that induce cell proliferation were highly expressed in 

STSs, suggesting that they are critical for cancer 

development. Sonntag et al. reported that CCNE1 and 

CDK2 were crucial for the initiation but not the 

progression of HCC [23]. These contradictory results 

may largely because of their synergistic effects; thus, it 

is important to treat these proteins as a unit. 

Intriguingly, though immune pathway activation and 

metastasis are key determinants of cancer development 

and patient survival [34, 35], we observed no significant 

differences in these two pathways between STSs and 

LTSs (Supplementary Figure 1). These interesting 

results may be contributed to the characteristics of 

HCC, including the short survival time and shortage of 

immunotherapies [18, 36]. Further clinical studies will 

be valuable to elucidate the involvement of these 

pathways in the development and treatment of HCC. 

 

Aberrant activation of CDK4, one of the eight positive 

regulators of the G1/S transition, is frequently seen in 

various cancers, including HCC [37, 38]. As one of the 

most fatal cancers, HCC is an aggressive cancer with 

dismal prognosis, largely contributing to lack of 

efficient treatment [39]. In this study, we demonstrated 

that CDK4 expression was significantly lower in LTS 

HCC tissues than in STS HCC tissues, suggesting that 

inhibiting CDK4 might prolong the survival of HCC 

patients. In recent years, abemaciclib, a highly selective 

and FDA-approved oral inhibitor of CDK4, has been 

clinically applied with promising therapeutic effects 

[40–42]. However, its effects on HCC have not been 

clarified [43]. We found that abemaciclib suppressed 

HCC cell proliferation in vitro and tumor growth in 

vivo, suggesting that it was an attractive drug for HCC 

patients, especially those with high CDK4 expression. 

Thus, it is of value to investigate the effects of 

abemaciclib on HCC through further experimentations 

and clinical explorations. Additionally, Goel demons-

trated that CDK4 inhibition activates anti-tumor 

immunity [44]; therefore it is of interest to treat STS 

patients with combined therapy including CDK4/6 

inhibitor and immune-checkpoint inhibitor. Besides 

CDK4, CDK2 is highly expressed in the tumor tissues 

of STSs. Accumulating evidence suggest that CDK2 

inhibition are particularly useful for several cancers 

including lung cancer, prostate cancer, and breast cancer 

[45]. Herein, HCC patients with high CDK2 might have 

particular susceptibility to CDK2 inhibition. 

 

Our study had several limitations. First, the numbers of 
LTSs and STSs in the TCGA-LIHC cohort were 

relatively small (40 LTSs and 68 STSs). Moreover, only 

nine matched HCC and normal liver samples from the 

STSs were available. Second, the clinical applicability 

of the CDK4/6 inhibitor abemaciclib for HCC treatment 

is still unclear, and clinical trials are needed to 

investigate its efficacy. Further studies are also needed 

to determine whether positive regulators of the G1/S 

transition can be used as prognostic predictors and 

treatment targets in HCC patients. 

 

In summary, we performed a comprehensive comparison 

of the transcriptome between STSs and LTSs of HCC, 

and demonstrated that genes that induce the G1/S 

transition were significantly enriched in STSs. TP53 

mutations, the most common mutations in HCC, were 

also associated with STSs. Higher expression of eight 

G1/S transition inducers strongly predicted a poorer 

prognosis in HCC patients. In terms of HCC treatment, 

abemaciclib substantially inhibited the proliferation of H 

CC cells. This study has suggested new targets for the 

personalized diagnosis and treatment of STSs of HCC. 

 

MATERIALS AND METHODS 
 

TCGA data 

 

RNA-seq raw counts (HTSeq - Counts) data, Mutation 

Annotation Format (MAF) data (generated by the 

mutect2 algorithm from whole-exome sequencing data), 

clinical data and survival data were downloaded from 

the LIHC project of TCGA (https://cancergenome. 

nih.gov/). LTSs were defined as patients whose overall 

survival extended 5 years from surgery, while STSs 

were defined as patients who survived > 3 months and < 

1 year from surgery, to exclude perioperative 

mortalities. In total, 361 HCC patients with survival 

data were included in our analyses, including 40 LTSs 

and 68 STSs. RNA-seq data from primary tumor tissues 

were available for 355 of these HCC patients. RNA-seq 

data from primary tumor tissues and matched normal 

tissues were available for nine STSs. Mutation data 

were available for 348 HCC patients, including 342 

patients with RNA-seq data from primary tumor tissues. 

 

ICGC data 

 

Normalized RNA-seq data (fragments per kilobase 

million, FPKM), annotated mutation data, clinical data and 

survival data were downloaded from the LIRI-JP project 

of the ICGC database (https://www.icgc.org). In total, 203 

HCC patients were included in our analyses. RNA-seq 

data from primary tumor tissues, along with mutation data 

and survival data, were available for all patients. 

 

Prognostic analyses 

 

Survival curves were constructed using the Kaplan-

Meier method and compared using the log-rank test via 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.icgc.org/
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the survival R package. Univariate and multivariate Cox 

proportional hazards regression analyses were 

conducted using the survival R package. 

 

DEG analysis 

 

The DEGs between primary tumor tissues from LTSs 

and STSs or between primary tumor tissues and 

matched normal liver tissues from STSs were analyzed 

with the edgeR R/Bioconductor package [46]. Genes 

with FDRs < 0.01 were considered to be significantly 

DEGs. GO, KEGG and BioCarta pathway enrichment 

analyses of the DEGs were performed using DAVID 

(https://david.ncifcrf.gov/) [47]. 

 

PPI network analysis 

 

We used the plug-in StringApp [48] in Cytoscape 

software [49, 50] to construct PPI network of the DEGs 

with default parameters. Subsequently, Molecular 

Complex Detection (MCODE) [51] in Cytoscape was 

applied to screen top significant modules within PPI 

network with default parameters. 

 

GSEA 

 

GSEA was implemented through GSEAPreranked tool 

in GSEA software (http://www.broadinstitute.org/gsea/) 

[52]. The value of log2 (FC) calculated by edgeR 

package was used as ranking metric. We chose C5 

collection that contains genes sets annotated by GO 

terms in the Molecular Signatures Database (MSigDB) 

(https://www.gsea-msigdb.org/gsea/msigdb) as the 

reference gene set in GSEA software. We also used the 

canonical pathways sub-collection of C2 collection in 

the MSigDB as the reference gene set in GSEA 

software. The annotated pathways in this sub-collection 

are mainly from BIOCARTA, KEGG, REACTOME 

and PID databases. 

 

Analysis and visualization of somatic mutations 

 

We used the Maftools R/Bioconductor package [53] to 

extract detailed mutational information from the MAF 

file. The OncoPlot function [54] and the lollipopPlot 

function were used to create the OncoPlot of the top ten 

mutated genes and the lollipopPlot of TP53, respectively. 

 

Hierarchical clustering 

 

The gene expression data for two genes sets (the cell 

cycle G1/S phase transition in GO, and the mitotic cell 

cycle in Reactome) were extracted from normalized and 
log2-transformed RNA-seq data from 108 HCC samples 

in TCGA. Unsupervised hierarchical clustering was 

used to discover groups based on the expression 

patterns of the genes in these two genes sets. In total, 

108 cell cycle G1/S phase transition genes from the GO 

resource and 300 mitotic cell cycle genes from the 

Reactome were used. The expression values of these 

genes in the 108 samples were hierarchically clustered 

with Euclidean distances and Ward linkages using the 

dendextend R package [55] and the heatmap.2 function 

in the gplots R package. The proportions of STSs in the 

resulting clusters were calculated. Kaplan-Meier 

survival curves were plotted for the clusters and 

compared using the log-rank test. 

 

Normalized and log2-transformed RNA-seq data for 

eight positive regulators of the G1/S phase transition 

(CDK2, CDK4, CCNE1, CCNE2, E2F1, E2F2, E2F3 

and TFDP1) in 355 HCC samples from TCGA were 

hierarchically clustered with Euclidean distances and 

Ward linkages using the dendextend R package [55] and 

the heatmap.2 function in the gplots R package. The 

proportions of STSs in the resulting clusters were 

calculated. Kaplan-Meier survival curves were plotted 

for the clusters and compared using the log-rank test. 

 

Cells and reagents 

 

The HCC cells (Hep3B and Huh7) were obtain from the 

Cell Bank of the Type Culture Collection of the Chinese 

Academy of Sciences, Shanghai Institute of Cell Biology, 

Chinese Academy of Sciences. They were both cultured 

in high-glucose Dulbecco’s modified Eagle’s medium 

(Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, 

USA) supplemented with 10% FBS (Gibco), and 1% 

penicillin/streptomycin (Hyclone; GE Healthcare Life 

Sciences, Logan, UT, USA). The HCC cells were 

cultured in a humidified incubator containing 5% CO2 at 

37° C (Thermo Fisher Scientific, Inc.). Abemaciclib 

(S5716) was purchased from Selleck Chemicals 

(Houston, TX, USA). A stock solution of abemaciclib 

was prepared in dimethyl sulfoxide (DMSO; Sigma, St. 

Louis, MO, USA) and stored at - 80° C. Abemaciclib 

was diluted to a final concentration of 10 µM for use in 

experiments. 
 

Western blotting 

 

HCC cells were lysed with a strong 

radioimmunoprecipitation assay buffer containing HaltTM 

Protease Inhibitor Cocktail (Thermo, Waltham, MA, 

USA). The concentrations of the proteins in the lysate 

were determined with a bicinchoninic acid protein assay 

kit (Pierce, Rockford, IL, USA). Proteins were detected 

on a 12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and then transferred onto a 
polyvinylidene fluoride membrane. The membranes were 

incubated overnight at 4° C with primary antibodies for 

retinoblastoma (phospho S780) (ab47763, Abcam, 

https://david.ncifcrf.gov/
http://www.broadinstitute.org/gsea/
https://www.gsea-msigdb.org/gsea/msigdb
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Cambridge, UK), retinoblastoma (ab181616) and 

GAPDH (BM1623, Boster, Wuhan, China), and then 

were incubated with the appropriate horseradish 

peroxidase-conjugated secondary antibodies for 2 hours. 

The proteins were detected using an Amersham Imager 

600 (GE Healthcare Life Sciences, Boston, MA, USA). 

 

Clone formation assay 

 

For the clone formation assay, 1000 HCC cells were 

seeded in each well of a six-well plate and cultured in 

an incubator for more than 12 days. The medium was 

replaced every three days. Then, the cells were fixed 

with methanol for 20 min and stained with crystal 

violet. Pictures were taken with a digital camera (Nikon, 

Japan). 

 

CCK-8 assay 

 

HCC cells were cultured in 96-well plates at a density 

of 1000 cells/well. After the cells had been cultured 

for 12, 36 or 60 hours, each well was treated with  

10 µL of the assay reagent (Dojindo Molecular 

Technologies, Kumamoto, Japan), and the plate was 

returned to the incubator for 2 hours. Then, the 

absorbance at 450 nm was recorded with a SpectraMax 

M5 microplate reader (Thermo Fisher Scientific, 

Waltham, MA, USA). 

 

Animal model 

 

Twelve male BALB/c nude mice (four weeks old) were 

obtained from SLAC Laboratory Animal Company 

(Shanghai, China). For tumor generation, the mice 

received a subcutaneous axillary injection of Hep3B 

cells (6×106
 cells/mouse) in the right forelimb. The mice 

were gavaged with abemaciclib (50 ug/g) daily, 

beginning seven days after the cell injection. The mice 

were sacrificed after 28 days, and their tumor weights 

were evaluated. 

 

Ethical approval and consent to participate 

 

All the animal experiments were performed according 

to National Institutes of Health guide for the care and 

use of laboratory animals (NIH Publications No. 8023, 

revised 1978) and were approved by the Institutional 

Animal Care and Use Committee of Tongji University. 

 

Statistical analysis 

 

All the data represented three independent experiments, 

with the data expressed as the mean ± SD. Differences 
between the Control and Abemaciclib groups were 

analyzed using Student's t-test in SPSS 17.0. A p-value 

less than 0.05 was considered significant. 

Availability of data and materials 

 

All data analyzed during this study are included in this 

published article. Raw and processed data are stored in 

the laboratories are available upon reasonable request. 
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Supplementary Figure 1. Tumor sample expression signature heatmaps of three pathways related to cancer metastasis and 
immune responses between STSs and LTSs of HCC. (A) Reactome pathway: Activation of Matrix Metalloproteinases. (B) Reactome 
pathway: TGF-beta receptor signaling in epithelial to mesenchymal transition. (C) Biocarta pathway: CTL mediated immune response against 
target cells. Rows indicate the identity of the genes and columns indicate the identity of the patients. The survival status for each tumor is 
depicted directly above each column. 
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Supplementary Figure 2. Tumor sample transcriptomic profiling of five statistic non-significant positive regulators of G1/S 
cell cycle transition between STSs and LTSs of HCC. The data are represented as mean ± SD and compared by unpaired two-tailed 

Student’s t-test. cpm, counts per million. 
 

 
 

Supplementary Figure 3. Kaplan-Meier curves and log-rank tests for 342 HCC patients from LIHC project in TCGA database. 
The patients were stratified into the high expression group and the low expression group according to the median of normalized RNA-seq 
data. 


