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INTRODUCTION 
 
The aging process is a complex physiological process 
leading to substantial alterations of biological functions. 
At the same time, aging is accompanied by a general 
promotion of disease risk and increased susceptibility to 
age-related diseases (ARDs), ultimately followed by 
death [1].  
 
With increasing age a distinct remodeling of genomic 
DNA methylation (DNAm) patterns takes place which 
is characterized by a decrease in global DNAm that 
affects mainly CpG poor regions in the neighborhood of 
CpG islands (CpG shores/shelves) and also repetitive 
regions [2, 3]. At the same time, hypermethylation in 
specific regulatory regions increases, primarily at CpG 

islands (CGIs) within gene promoters and near gene-
rich regions [4, 2]. Where this process appears to be 
directional, it may reflect a programmed change of the 
methylation code contributing to the aging process. In 
this context, DNA hypermethylation is known to be 
important for the regulation of various genes involved 
in crucial physiological processes like cell cycle and 
apoptosis, but occurs also during development, aging 
and tumorigenesis [5, 6].  
 
CpGs in such genes and their respective age-related 
DNAm changes are used as biomarkers forming the basis 
of ‘epigenetic clocks’ that enable accurate biological and 
chronological age estimation in humans and other 
mammals [7–9]. While the ‘Hannum epigenetic clock’ 
[8] accurately estimates age based on blood methylation 
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ABSTRACT 
 
The process of aging has been associated with differential patterns of DNA methylation which relate to changes in 
gene expression. Hence, we aimed to identify genes with significant age-related methylation differences and to 
study their mRNA and protein expression profile. Genome-wide DNA methylation analysis was performed with the 
Illumina Infinium Methylation EPIC BeadChip Microarray on bisulfite-converted DNA prepared from monocytes 
derived from young (average age: 23.8 yrs) and old (average age: 81.5 yrs) volunteers that are separated by at least 
50 years of age difference, n=4, respectively. Differentially methylated CpG sites were assigned to the associated 
genes and validated by deep sequencing analysis (n=20). Demonstrating an age-associated significant increase of 
methylation in the promoter region (p=1x10-8), Homeobox A5 (HOXA5), also known to activate p53, emerged as an 
interesting candidate for further expression analyses by Realtime PCR, ELISA and Western Blot Analysis (n=30, 
respectively). Consistent with its hypermethylation we observed significant HOXA5 mRNA downregulation 
(p=0.0053) correlating with significant p53 downregulation (p=0.0431) in the old cohort. Moreover, we observed a 
significant change in HOXA5 protein expression (p=3x10-5) negatively correlating with age and promoter 
methylation thus qualifying HOXA5 for an eligible p53-related aging marker. 
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levels, ‘Horvath's epigenetic clock’ [7] was developed as 
a multi-tissue epigenetic clock based on changes at 353 
age-associated CpG sites. While this clock has been 
applied to many mammals and human cohorts, including 
patients with diseases such as HIV, cancer and progeria 
[10–13], it was also applied to predict accelerated or 
delayed aging caused by lifestyle [14]. However, 
biological aging of blood can also be tracked by DNAm 
changes at just three CpG sites [15]. Intriguingly, aging-
associated DNAm changes can be counteracted in 
induced pluripotent stem cells (iPSCs) as DNAm of iPS 
was shown to be significantly younger than that of 
corresponding primary cells. [7, 15]. While Yamanaka 
transcription factors (OSKM) can reverse aging-
associated DNAm changes, they were recently applied to 
progeroid mice in short term cyclic exposure thereby 
restoring levels of H3K9me3 and H4K20me and 
increasing maximal lifespan by approximately 15% [16]. 
Yet, common regimens known to prolong life span like 
sirtuin activation, calorie restriction, CoA depletion and 
polyamines, seem to function through epigenetic/DNAm 
alterations, that affect histone acetylation, ultimately 
stimulating autophagy [17]. Concerning heredity 
transmission of DNAm, it is commonly assumed that 
most marks are erased and not intergenerationally 
inherited. However, individual epigenomic loci may not 
be erased or they may be restored by yet unknown 
mechanisms in subsequent generations [18] explaining 
why PBMCs of Italian semi-supercentenarians (age 105-
109 years) and their off-spring showed decreased 
epigenetic age compared to age-matched controls [19]. 
 
In spite of all the exciting examples of progress in aging-
related DNAm research and although pathological effects 
of altered DNAm have been connected with increasing 
age [20], it is still a matter of debate if and how DNAm 
changes contribute to aging. Then again, genome-wide 
DNA methylation analyses have discovered similar 
methylation patterns shared between the aging process 
and tumorigenesis and associated alterations in 
methylation with an increased risk for the development of 
tumors in the elderly suggesting that malignant 
transformation may even be promoted by senescence [21, 
22]. In this context, it has been suggested that most 
methylation changes are generated in a programmed 
manner predisposing cells for tumorigenesis [23]. Thus, 
accumulation of age-associated regional hypermethylation 
in promoter-associated CGIs of tumor suppressor genes 
and the subsequent changes in gene expression may add 
to the phenotypic onset of many tumors [24, 21].  
 
To date, genome-wide epigenomic profiling enables 
large-scale epigenetic biomarker screening for disease 
diagnosis and prognosis on patient-derived samples [25]. 
Hence, the detection of promoter hypermethylation and 
transcriptional silencing based on genome-wide DNA 

methylation analyses has significantly facilitated the 
detection of disease-associated candidate genes. Whole-
genome arrays in combination with high-density 
expression array analyses have identified a number of 
genes that are frequently methylated and silenced in 
various tumor entities [26, 27]. Based on these methods, 
we identified various genes of which Homeobox A5 
(HOXA5), an anti-angiogenic member of the HOX 
family, turned out to be the most interesting candidate 
displaying a significant age-dependent increase of DNAm 
correlating with a significant decrease of its gene and 
protein expression. Deregulation of HOXA5 gene 
expression is involved in tumor predisposition and 
development where it may be modulated by epigenetic 
mechanisms [28–31]. HOXA5 is also known to increase 
vascular stability by the downregulation of pro-angiogenic 
factors and the upregulation of anti-angiogenic factors, 
such as tumor suppressor protein p53 [32, 33]. In addition 
to its well-established role in tumorigenesis, p53 has also 
been associated with aging and may contribute as a key 
factor to the protection from diseases and cancer in 
centenarians [34]. p53 in turn is involved in a complex 
network of interactions with Phosphatase and Tensin 
Homolog deleted on Chromosome 10 (PTEN), also an 
effective suppressor of cancer and a contributor to 
longevity, which in reciprocal cooperation promotes 
stability and transcriptional activity of p53, while p53 was 
reported to enhance PTEN transcription [35, 36].  
 
Based on the knowledge that epigenetic marks, especially 
methylation, change with age we aimed to identify genes 
with significant age-related methylation differences 
which led to the detection of HOXA5 as a potential 
cancer-related candidate marker for old age. 
 
RESULTS 
 
Genome-wide DNA methylation analysis  
 
To generate genome-scale DNA methylation profiles the 
Illumina Infinium MethylationEPIC BeadChip 
Microarray was applied which covers promoters and 
putative regulatory domains of all designable RefSeq 
genes [37]. The microarray results are based on 
monocytes isolated from a cohort of young (average age: 
23.8 yrs, range: 22-25 yrs) and old (average age: 81.5 yrs, 
range: 78-89 yrs) adults separated by at least 50 years of 
age difference, n = 4, respectively. As the association 
between DNA methylation and an exposure of interest 
could be confounded by cellular heterogeneity [38], we 
have chosen the monocyte fraction of peripheral blood as 
the most homogeneous cell type in the blood best suited 
for addressing epigenetic issues. 
 
To detect differentially methylated CpG sites, also 
referred to as methylated quantitative trait loci 



www.aging-us.com 4833 AGING 

(methQTLs) between the two cohorts, the microarray raw 
data were fed into the RnBeads software package [39]. 
Based on defined criteria, which comprise a measured 
bead count of at least 5 and a false discovery rate (FDR) 
adjusted p-value less than 0.05, the RnBeads software 
revealed 1481 differentially methylated CpGs (dmCGs) 
that were aligned against the hg19 annotation of the 
ENCODE database [40] and assigned to the associated 
genes and respective gene regions in which the CpG sites 

are located. Global methylation differences (MDs) 
between the trial participants were subjected to a 
hierarchic cluster analysis. Based on the methylation 
values derived from the RnBeads software package a 
scatter plot was created comparing the mean methylation 
values of each analysed CpG site of the individual trial 
participants between the young and old cohort as 
presented in Figure 1A. Although a strong correlation 
between the methylation values of the two participant 

 

 

Figure 1. Genome-wide DNAm analysis. Genome-scale DNAm profiles derived from the RnBeads software package. (A) Scatter plot 
based on the mean DNAm values of each analysed CpG site of the individual trial participants compared between the young and old cohort 
(red dots correspond to dmCGs with p-values < 0.05). The correlation coefficient is ρ = 0.9971. (B) Numbers of differentially hypo- and 
hypermethylated CpGs (DMCG) in old compared to young individuals demonstrate distinctly more hyper- than hypomethylated DMCG in old 
compared to young individuals. (C) Hypo- and hypermethylated dmCGs are annotated in terms of gene regulatory regions (intergenic gene 
regions, 1st exon, 3′; and 5′; untranslated region (UTR), gene body, promoter areas: transcription start sites (TSS) 1500 and 200; upper pie 
charts), and CGIs (CGIs and flanking regions before (N shelf, N shore) and after (S shelf, S shore) CGIs; lower pie charts) in comparison to the 
overall distribution of markers on the whole 850 K array (left pie charts), respectively. 
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groups was measured (ρ = 0.9971), we also found 1481 
red dotted CpG-sites which fulfilled the filter criteria 
mentioned above with a significant MD > 5% between 
young and old individuals. Comparing the number of 
differentially hypo- and hypermethylated CpGs in the old 
versus the young cohort we observed that 1286 of the 
CpGs (86.8%) were hypermethylated whereas 195 CpGs 
(13.2%) were hypomethylated in the elderly (Figure 1B). 
Annotation of hypo- and hypermethylated CpGs in terms 
of gene regulatory regions revealed that a major part of 
dmCGs was located to the gene body while 13.6% of 
CpGs were located around transcription start sites as 
shown in the top panel of Figure 1C. In CGIs of the old 
cohort we found more hypermethylated CpGs (27.7%) 
compared to the young cohort (18.3%) as presented in the 
bottom panel of Figure 1C. In the old individuals we also 
found more hypomethylated CpGs located to non-CGI 
DNA sequences (Figure 1C bottom panel). With respect 
to their location we found 589 (38.5%) dmCGs located in 
the gene body, 141 (9.2%) dmCGs were located between 
1 and 200 bp upstream of the transcription start sites 
(TSSs) and 212 (13.9%) dmCGs were located between 1 
and 1500 bp upstream of the TSSs, 39 (2.5%) dmCGs 
were located in the 3’UTR and 160 (10.5%) dmCGs were 
located in the 5’UTR. 142 (9.3%) dmCGs were located in 
the first exon, while we found 247 (16.1%) dmCGs not 
associated with any transcription unit. 
 
Three target genes with significant aging-related MD  
 
Among the top ranking dmCGs we identified three CpGs 
with more than 20% MD associated with three genes, 

respectively dual specificity protein phosphatase 3 
(Dusp3) with a MD of 29.8% (fdr-adj.p = 0.0008), 
HOXA5 with a MD of 25.7% (fdr-adj.p = 0.0061) and 
ryanodine receptor 1 (RYR1) with a MD of 22.4% (fdr-
adj.p = 0.0363) as presented in Figure 2. All three 
dmCGs indicated significant hypermethylation associated 
with old age. 
 
The HOXA5 target CpG was located 1450 bp upstream of 
the transcription start site (TSS) thus being associated 
with the promoter region. In addition, the HOXA5 target 
CpG site was located in a multiple transcription factor 
binding region including the binding site for transcription 
factor RBL2. However, the target CpG of DUSP3 was 
located in the 3’UTR while the target CpG of RYR1 was 
situated in the gene body. The target CpG of DUSP3 was 
situated in exon 3 in a multiple transcription factor 
binding region with annotated binding including inter alia 
the binding site for transcriptional repressor CTCF and 
transcription factor STAT1. Unlike HOXA5 and DUSP3 
the target CpG of RYR1 which was located in exon 13, 
indicated no annotated binding of regulatory proteins [40].  
 
Hence, we aligned our 1481 dmCGs with Horvath’s clock 
[7] and also with an RnBeads pipeline consisting of 
Horvath CpGs and additional Age-Prediction- CpGs from 
diverse tissues. Eight of our dmCGs overlapped with the 
353 CpGs of Horvath’s clock while 29 of our dmCGs 
overlapped with the 761 CpGs of our RnBeads pipeline. 
None of the three CpGs investigated here, associated with 
HOXA5, DUSP3 and RYR1, respectively, overlapped with 
either of these two data sets. A detailed table showing the 

 

 
 

Figure 2. DNAm of the target CpG sites of DUSP3, HOXA5 and RYR1. Mean DNA methylation values of the differentially methylated 
CpG sites are demonstrated in young and old subjects. The associated genes were assigned to the target CpG site, respectively. Detection 
of mean DNA methylation was performed by microarray on bisulfite-converted DNA prepared from monocytes. Error bars denote SEM (n = 
4, average age: 23.8 yrs and 81.4 yrs, respectively). P values are FDR adjusted. 
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position of all the 1481 differentially methylated CpG sites 
with indication of the assigned gene, the chromosomal 
location and the respective gene region as well as the 
overlapping dmCGs described above is provided in 
Supplementary Table 1. 
 
As HOXA5, DUSP3 as well as RYR1 displayed significant 
aging-associated MDs and functional methylation has been 
demonstrated not only for promoter regions but e.g. also for 
3‘UTRs [41], we chose to investigate all three dmCGs in 
more detail using local deep bisulfite sequencing analysis. 
 
Bi-PROF revealed significant aging-associated 
hypermethylation of HOXA5 
 
Based on our filter criteria used for the Bead array 
analysis, target CpGs of HOXA5, DUSP3 and RYR1 
were selected for bisulfite profiling (Bi-PROF) [42] in a 
cohort of young (average age: 23.4 yrs, range: 18-25 
yrs) and old (average age: 79.6 yrs, range: 75-90 yrs) 
adults, n = 20, respectively. Deep sequencing revealed 
no significant age-associated MD for DUSP3 and RYR1 
neither for the target CpG site (Figure 3A) nor for the 
mean amplicon methylation.  
 
However, examining the cohort applied in the 
MethylationEPIC BeadChip Microarray which consisted 
of 4 young and 4 old individuals (red dots Figure 3B–3D), 
we saw a significant aging-related MD for the dmCGs 
associated with DUSP3 (red dots Figure 3B) and RYR1 
(red dots Figure 3D) also in the Bi-PROF experiments 
with p = 4.27x10-5 and p = 0.0188, respectively, 
indicating that the quality of the microarray and data 
evaluation was sufficient but sample number was too low.  
 
In contrast, a significant age-associated MD was observed 
for the target CpG site (Figure 3A) and all other 13 CpGs 
present in the deep sequenced amplicon of HOXA5 (p = 
1x10-8) in the larger Bi-PROF cohort. Moreover, a linear 
correlation between HOXA5 methylation in the target 
CpG site of the promoter region and the participants’ age 
was observed as depicted in Figure 3C. Increasing 
methylation correlated with increasing age as reflected in 
the respective correlation coefficient (r = 0.7437).  
 
Significant aging-associated down-regulation of 
HOXA5 mRNA expression 
 
Although deep sequencing revealed no significant 
age-associated MD for DUSP3 and RYR1, in the next 
set of experiments we compared HOXA5, DUSP3 and 
RYR1 DNAm results to the gene expression level. 
mRNA expression was studied in the same cohorts of 
young and old volunteers that were included in Bi-
PROF as well as in 10 additional volunteers, 
respectively (average age: 23.0 yrs, range: 18-25 yrs, 

n = 30 and average age: 81.1 yrs, range: 75-90 yrs, n 
= 30). As presented in Figure 4, HOXA5 mRNA 
expression is significantly downregulated in 
monocytes from old subjects compared to the young 
cohort (p = 0.0053) while DUSP3 and RYR1 mRNA 
expression shows no significant difference as was 
expected from the deep sequencing results. Since 
DNAm of HOXA5 in the promoter region is 
significantly increased in old subjects, significant 
down-regulation of HOXA5 mRNA expression 
corresponds well with these results. Therefore, only 
HOXA5 was chosen for further investigation of gene 
expression on the protein level. 
 
Significant aging-associated down-regulation of 
HOXA5 protein expression 
 
Next, we were intrigued to find out, if ageing-related 
significant down-regulation of HOXA5 mRNA 
expression is translated into protein expression. 
Therefore, HOXA5 protein expression was studied in 
the same cohorts of young and old volunteers that were 
included in the mRNA expression analysis, n = 30, 
respectively. In accordance with significant down-
regulation of HOXA5 mRNA expression in the old 
cohort, HOXA5 protein levels in the elderly were also 
significantly reduced (p = 3x10-5, Figure 5A). Further, a 
linear correlation between HOXA5 protein expression 
and the participants age was observed as depicted in 
Figure 5B. Decreasing protein levels were shown to 
correlate with increasing age as reflected in the 
respective correlation coefficient (r = -0.5357). As 
assessed by western blot analysis, HOXA5 protein 
levels also correlate negatively with increasing age 
(Figure 5C). As summarized in Figure 5D HOXA5 
protein expression is also negatively correlated with 
promoter methylation which is reflected in the 
respective correlation coefficient (r = -0.5070). 
Altogether, our findings suggest that age-related up-
regulation of HOXA5 methylation may lead to the 
down-regulation of HOXA5 mRNA and protein 
expression in old age. 
 
Significant aging-associated correlation of HOXA5 
expression with p53 and PTEN 
 
As Hoxa5 is known to interact with p53 and PTEN we 
investigated their age-dependent correlation on the gene 
and protein expression level. Expression was studied in 
the same cohorts of young and old volunteers that were 
included in the previous expression experiments (average 
age: 23.0 yrs, range: 18-25 yrs, n = 30 and average age: 
81.1 yrs, range: 75-90 yrs, n = 30). As presented in Figure 
6A, HOXA5, p53 and PTEN mRNA expressions are 
downregulated in monocytes from the old subjects 
compared to the young cohort. However, while HOXA5 
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Figure 3. Deep analysis of CpG sites. (A) Validated methylation values of the microarray-detected CpG sites are demonstrated in 
young and old subjects. Detection of mean DNA methylation was performed by local deep sequencing on bisulfite-converted DNA 
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prepared from monocytes. The associated genes are assigned to the target CpG site, respectively. Error bars denote SEM (n = 20, 
average age: 23.4 and 79.6 yrs, respectively). (B–D) shows the correlation between the methylation of the target CpG site of DUSP3, 
HOXA5 and RYR1 and the participant's age. Methylation values of the 8 individuals that were originally applied in the MethylationEPIC 
BeadChip Microarray are accentuated by red dots. (B) Depicts the correlation between the methylation of the target CpG site of DUSP3 
and the participants age showing a very low correlation coefficient (r = -0.0255). (C) Delineates a linear correlation between HOXA5 
methylation in the target CpG site of the HOXA5 promoter region and the participants age showing increasing methylation levels  
with increasing age as reflected in the respective correlation coefficient (r = 0.7437). (D) Depicts the correlation between the 
methylation of the target CpG site of RYR1 and and the participants age showing a very low correlation coefficient (r = 0.1174).
 

and p53 were shown to be significantly down-regulated (p 
= 0.0053 and p = 0.0431, respectively), PTEN mRNA 
expression only showed a tendency of down-regulation 
without significance (p = 0.0803). Further, moderate to 
strong linear correlations were observed between HOXA5 
and p53 mRNA expressions (r = 0.6294) and between 
HOXA5 and PTEN (r = 0.7115) mRNA expressions as 
depicted in Figure 6B, 6C, respectively. Comparing p53 
with PTEN mRNA expressions, we also observed a 
moderate to strong linear correlation (r = 0.6685) as 
shown in Figure 6D. 
 
On the protein expression level, Hoxa5 was compared 
only to PTEN expression, since p53 is not expressed in 
monocytes as described in the GeneCards Human 
Integrated Protein Expression Database (HIPED) [43]. 
In line with HOXA5 protein expression, we observed 
significant down-regulation of PTEN protein expression 
in the old cohort as assessed by ELISA (Figure 7A) and 
western blot analysis (Figure 7B). Correlation analysis 
between HOXA5 and PTEN protein expression 
revealed a moderate linear correlation as reflected in a 
correlation coefficient of r = 0.5887 (Figure 7C). 
 

DISCUSSION 
 
In the course of aging epigenetic mechanisms play an 
important role and in particular, changes in DNA 
methylation are associated with aging [44]. Here, we were 
interested to identify specific genomic loci differentially 
methylated in the aging process which may basically be 
assessed by genome-wide analysis and single gene 
analysis. Hence, it was the aim of this study to identify 
specific genes or regulatory regions with significant age-
related MDs and to study whether altered DNAm may be 
accompanied by altered mRNA or protein expression. 
 
Three dmCGs with MD > 20% were identified which 
were associated with HOXA5, further RYR1, known to 
code for a ryanodine receptor in skeletal muscles [45] 
and DUSP3, which is implicated in cancer and 
negatively regulates members of the mitogen-activated 
protein (MAP) kinase superfamily [46]. As all three 
genes displayed a significant increase of DNAm with 
age in the MethylationEPIC BeadChip Microarray, they 
were all considered in a subsequent Bi-PROF analysis. 
While the target CpG site of HOXA5 revealed a 

 

 
 

Figure 4. Age- dependent HOXA5 mRNA decline. mRNA expression levels of DUSP3, HOXA5 and RYR1 are demonstrated in young and 
old subjects. While there was no significant difference in mRNA expression demonstrated for DUSP3 and RYR1, HOXA5 mRNA levels are 
significantly down-regulated in monocytes of old blood donors. Detection of mRNA expression was performed by qRT-PCR on total cellular 
RNA prepared from monocytes. Error bars denote SEM (n = 30, average age: 23.0 yrs and 81.1 yrs, respectively). 
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significant age-associated MD, the microarray results of 
RYR1 and DUSP3 were not confirmed by the Bi-PROF. A 
significant age-associated MD for DUSP3 and RYR1 was 
neither confirmed for the target CpG sites (p = 0.7732 and 
0.5728, respectively) nor for the mean amplicon 
methylation. However, the cost intensive genome-wide 
methylation analysis was based on only 4 participants of 
the young and 4 participants the old group. These 8 
individuals showed a significant aging-related MD for 
DUSP3 and RYR1 in the Bi-PROF experiments with p = 
4.27x10-5 and p = 0.0188, respectively, confirming the 
microarray results. Therefore, the discrepancy concerning 
MD significance for DUSP3 and RYR1 between the 
genome-wide methylation analysis and the Bi-PROF may 
be explained by the low number of participants that the 
microarray was based on. In contrast, a significant age-
associated MD was observed not only for the target CpG 
site of HOXA5 (p = 1x10-8) but also for all other 13 CpG 

sites which were part of the amplicon and investigated in 
Bi-PROF. In addition, the corresponding promoter area 
exhibits clustered transcription factor binding sites for 
POLR2A, EZH2 and RBL2 [40]. POLR2A encodes the 
largest subunit of RNA polymerase II, the polymerase 
responsible for synthesizing mRNA while EZH2 
participates in H3K27 methylation and thus in 
transcriptional repression [47]. Also, transcription factor 
RBL2 binds as a transcriptional repressor to methylated 
DNA where it recruits chromatin-modifying enzymes to 
the promoter which leads to epigenetic transcriptional 
repression hereby reinforcing the effect of shutting down 
the gene. The presence of these clustered transcription 
factor binding sites indicates that the target CpG as well as 
the adjacent HOXA5 CpG sites are located in a regulatory 
region in the promoter region. Moreover, in the region of 
the HOXA5 target CpG site histone marks H3K27me3 and 
H3K27Ac are typically found also indicating that the 

 

 

Figure 5. Age- dependent HOXA5 protein decline. HOXA5 protein levels are significantly down-regulated in monocytes from old blood 
donors. (A) HOXA5 protein quantities were determined by ELISA in total cell lysates of monocytes isolated from young and old blood donors 
expressed as ng per mg total protein. Error bars denote SEM (n = 30, average age: 23.0 yrs and 81.1 yrs, respectively). (B) Delineates a linear 
correlation between HOXA5 protein expression and the participants age showing decreasing protein levels with increasing age as reflected in 
the respective correlation coefficient (r = -0.5357). (C) Twenty-five micrograms of total cell lysates from monocytes isolated from young and 
old blood donors were subjected to immuno-protein gel blotting with rabbit monoclonal anti-human HOXA5 antibody ab140636 (1:500), 
recognizing the HOXA5 protein at 42 kDa (predicted molecular weight 29 kDa). ß-actin served as loading control. (D) Delineates a linear 
correlation between HOXA5 expression (ng per mg total protein) and HOXA5 methylation in the target CpG site of the promoter region 
showing decreasing protein levels with increasing methylation as reflected in the respective correlation coefficient (r = -0.5070).  
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Figure 6. Age- dependent correlation of HOXA5, PTEN and p53 mRNA expression. (A) mRNA expression levels of HOXA5, PTEN and 
p53 are downregulated in the old subjects compared to the young cohort. (B) Moderate to strong linear correlations were observed between 
HOXA5 and PTEN mRNA expression (r = 0.7115) (C) between HOXA5 and p53 mRNA expression (r = 0.6294), and (D) between p53 with PTEN 
mRNA expression (r = 0.6685). Detection of mRNA expression was performed by qRT-PCR on total cellular RNA prepared from monocytes. 
Error bars denote SEM (n = 30, average age: 23.0 yrs and 81.1 yrs, respectively).  
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target CpG is located within active regulatory elements. 
Also, Shchukina et al. recently reported (Shchukina et 
al., 2020, unpublished data) hypermethylation events 
are associated with H3K27me3 in the CpG islands near 
promoters of basely expressed genes which is consistent 

with our results as we demonstrated hypermethylation 
in a CpG island near a promoter region that is 
associated with H3K27me3 and leading to a lower 
expression of the associated gene HOXA5. Therefore, 
we assume that DNAm in this area 

 

 
 

Figure 7. Age- dependent correlation of HOXA5 and PTEN protein expression. (A) HOXA5 and PTEN protein quantities are 
significantly down-regulated in the old cohort as determined by ELISA in total cell lysates of monocytes isolated from young and old blood 
donors expressed as ng per mg total protein. Error bars denote SEM (n = 30, average age: 23.0 yrs and 81.1 yrs, respectively). (B) Fifteen 
micrograms of total cell lysates from monocytes isolated from young and old blood donors were subjected to immuno-protein gel blotting 
with primary rabbit monoclonal anti-human PTEN antibody (1:10000), recognizing the 47 kDA PTEN protein. ß-actin served as loading control. 
(C) Delineates a moderate linear correlation between HOXA5 and PTEN protein expression as reflected in the respective correlation 
coefficient (r = 0.5887).  
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has a functional influence on mRNA expression. While 
DNAm is a critical component of the regulatory 
network controlling gene expression, it may exert 
different influences on gene activities in different 
genomic regions depending on the underlying genetic 
sequence [48]. 
 
With regard to the 353 CpGs of the Horvath Clock and 
the 761 CpGs of the RnBeads pipeline, there was no 
match with the three CpGs examined, although the 
HOXA5 target CpG site showed a significant age-
related difference with regard to methylation in both the 
MethylationEPIC BeadChip Microarray and in the 
validating Bi-PROF. The absent overlap may be 
explained by the fact that the Horvarth Clock and the 
RnBeads age-prediction pipeline are composed of CpG 
sites that have an age-associated methylation difference 
in all human tissues. However, the dmCGs we found 
refer only to human monocytes indicating that the 
HOXA5 target CpG site may not be methylated equally 
with age in all tissues explaining why we did not 
observe an overlap with one of the two databases. As 
the two other target CpGs were not validated by the Bi-
PROF analysis we consequently could not observe a 
match with the two data sets. 
 
Based on the assumption that differential DNAm in a 
regulatory promoter region has downstream 
consequences for gene expression and regulation, 
HOXA5 was further investigated on the gene expression 
level where we expected a regulatory effect. Our 
presumption was confirmed as our results demonstrated 
significant down-regulation of HOXA5 mRNA 
expression in the old cohort. DNAm has also been 
associated with down-regulation of HOXA genes in 
various cancer entities, e.g. HOXA genes were shown to 
be inactivated by hypermethylation in Myeloid and 
Lymphoid Malignancy [28]. Also, for HOXA5 it was 
demonstrated that increased DNA methylation in the 
HOXA5 promoter region correlates with decreased 
expression of the gene during tumor progression [30]. 
While the majority of gene promoters reside within 
CGIs their location is evolutionary highly conserved to 
regulate gene expression by regulating the chromatin 
structure and transcription factor binding [49]. Also, the 
methylation of CpG shores is highly correlated with 
reduced gene expression. Yet, positive associations of 
DNA methylation to gene expression have also been 
reported, i.e. in prostate cancer DNA hypermethylation 
in the promoter region was associated with upregulated 
gene expression [50] suggesting a more diverse 
mechanism of epigenetic regulation. 
 
While our results demonstrate aging-associated 
hypermethylation and down-regulated mRNA 
expression of HOXA5, conclusions concerning a causal 

link between the aging-associated HOXA5 methylation 
and gene expression as well as the causal effects of 
HOXA5 methylation on regulatory activity remain at 
this point rather indirect. However, as summarized 
above there are various indicators that the area around 
the target CpG site of the HOXA5 promoter is a 
regulatory region and therefore, it may be assumed that 
the aging-associated hypermethylation observed for 
HOXA5 is causally related to the decrease in gene 
expression with increasing age. Yet, a direct proof for 
the causal relationship between DNA methylation and 
gene regulation may only be achieved by functional 
approaches like an episomal reporter approach [51], 
endogenous editing [52] or Methyl-Spec-seq [53]. 
However, such experiments will go beyond the scope of 
data presented here and are not mandatory as the 
presence of the regulatory region in the promoter area 
of HOXA5 confers ample evidence for a causal link 
between HOXA5 DNAm and mRNA expression. 
 
Belonging to a large gene family of homeodomain-
containing transcription factors HOXA5 is part of a 
regulatory network involved in embryonic development 
and cellular differentiation as well as in various crucial 
cell functions and human diseases like diabetes and 
cancer where deregulated HOXA5 gene expression has 
been described causally in tumor predisposition and in 
various stages of tumor progression [54, 55]. HOXA5 
also blocks angiogenesis and its sustained expression 
was shown to promote the down regulation of many 
pro-angiogenic genes [33]. In addition, HOXA5 also 
upregulates the expression of anti-angiogenic genes like 
p53, one of the most frequently inactivated tumor 
suppressor genes in human cancers [56]. As p53 is 
known to interact with PTEN in a reciprocal 
cooperation modus to up-regulate each other [35, 36], 
we also investigated the age-dependent correlation of 
p53 and PTEN and their correlation with HOXA5 
expression in our young and old cohorte. On the mRNA 
level we observed significant down-regulation of p53 
and a tendency of down-regulation for PTEN in the old 
cohort as well as a moderate to strong linear correlation 
with HOXA5 expression for both genes indicating that 
all three genes are down-regulated with increasing age. 
Also on the protein level we observed significant down-
regulation of PTEN and a moderate linear correlation 
for PTEN with HOXA5 expression. We could not 
monitor p53 as it is not expressed in monocytes [43]. 
Hence, p53 and PTEN correlated with HOXA5 
expression and p53 also correlated with PTEN mRNA 
expression in our study which is well in line with 
studies demonstrating an increase of p53 stability, 
transcriptional activity and enhanced p53 protein levels 
due to direct binding to PTEN or indirect binding via 
transcriptional coactivator p300/CBP [35, 57]. Yet, up-
regulation of p53 in the absence of PTEN [58] and 
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HOXA5 regulated PTEN down-regulation in murine 
hemangioma cell lines has been shown [59]. However, 
such studies have only been performed in murine 
systems under diseased conditions like induced cancer 
and not under physiological conditions in human 
volunteers.  
 
To date, HOXA5 has been implicated in p53 regulation 
in multiple cancer entities. Hence, HOXA5 promotes 
osteosarcoma cell apoptosis and the suppression of lung 
cancer cell invasion through the p53 pathway [60, 32]. 
Likewise, HOXA5 was reported as a tumour suppressor 
in breast cancer where it transactivates p53 transcription 
through binding at the p53 promoter [61]. Notably, the 
HOXA5 promoter region is methylated in most p53-
negative breast tumour specimens where a 
compromised HOXA5 function was shown to limit p53 
expression, but also in other cancer entities a correlation 
between DNAm and HOXA5 expression has been 
described [30, 61]. Thus, HOXA5 has been discussed as 
a differential epigenetic biomarker between malignant 
and benign biliary tissues [62], while downregulation of 
the HOXA5 gene by aberrant promoter methylation was 
described in the vast majority of NSCLCs [31] and 
shown also for the development and progression of 
AML [28, 63]. 
 
Recently, HOXA5 hypermethylation has not only been 
associated with cancer as an aging-associated disease, 
but also with the age of colorectal cancer patients [55]. 
However, to date not many studies report on aging-
related HOXA5 DNAm or mRNA expression, especially 
not under physiological conditions in trials with healthy 
study participants. An early study described aging-
related restricted expression of homeobox genes thereby 
distinguishing fetal from adult human smooth muscle 
cells [64], while a more recent study implicating 
HOXA5 in aging demonstrated HOXA5 to be 
differentially expressed in photoaging of skin [65]. 
When exploring a molecular relationship between aging 
and replicative senescence, Wagner et al., detected 
reduced HOXA5 expression in mesenchymal stem cells 
(MSCs) [66]. Hence, expression of many homeobox 
transcription factors was found to be regulated upon 
aging and most of these were age-repressed in MSCs. 
Subsequently, DNAm changes in MSCs upon aging 
were investigated and HOXA5 |was found to be 
hypermethylated in MSCs from old donors [67].  
 
Consistent with these earlier findings, our results 
provide evidence that in human aging HOXA5 DNAm 
significantly increases with age. Different from studies 
in MSCc we conducted our studies in monocytes from 
young and old individuals separated by a minimum of 
50 years. Hence, we not only demonstrated HOXA5 
hypermethylation in old age but also substantiated that 

it is attended by a simultaneous decline of HOXA5 
mRNA expression which is translated into protein 
expression. Yet, it is not imperative to conclude from 
the methylation status of a gene to its protein 
expression. However, for HOXA5 we found that protein 
expression is negatively correlated with age and 
methylation thus qualifying HOXA5 for an eligible 
aging marker. Therefore, our findings integrating the 
various surveys presented above, support the view that 
aging forms a major risk factor for HOXA5 DNAm 
which entails down-regulation of HOXA5 mRNA and 
protein expression leading to the down regulation or 
loss of p53 expression. Lack of HOXA5 expression 
resulting in loss of p53 expression in turn promotes the 
development and progression of various cancers. Hence, 
we conclude that HOXA5 hypermethylation in advanced 
age contributes to p53 down-regulation and in that 
context also to the increasing age-dependent cancer risk 
in the elderly. 
 
MATERIALS AND METHODS 
 
Patient selection 
 
We analysed 60 samples obtained from peripheral blood 
comprising 30 samples from donors with an average age 
of 23.0 yrs, range: 18-25 yrs and 30 blood samples from 
donors of an average age of 81.1 yrs, range: 75-90 yrs. 
The young cohort and 11 volunteers of the old cohort 
presented without any known disease background while 
19 volunteers of the old blood cohort presented with a 
minor disease background such as incisional hernia, 
aneurysm, hemorrhoids, varicose veins and thoracic 
stomach. The clinical data and patient characteristics 
were obtained from the clinical and pathological records 
prospectively. Blood samples of the young cohort were 
retrieved from volunteers at the University of the 
Saarland Medical Center, blood samples of the old 
cohort were collected from volunteer healthy controls 
that were identified during routine check-up 
examinations and patients at our clinic. All donors were 
unrelated individuals of Central European Caucasian 
ethnicity. Informed consent for blood sampling was 
obtained from all blood donors. The study was 
approved by the ethics committee of the medical 
association of the Saarland (code number 241/19). 
 
Monocyte isolation from whole blood samples 
 
Peripheral Blood Mononuclear Cells (PBMC) were 
purified from whole blood by density gradient 
centrifugation using the Biocoll Solution (Cat No. 6715, 
Biochrom, Berlin, Germany) according to the 
manufacturer´s instructions. Monocytes were isolated 
from PBMCs by positive selection with magnetic beads 
using the EasySepTM Human CD14 Positive Selection 
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Kit II (Cat No. 17858, Stemcell Technologies, Cologne, 
Germany) according to the manufacturer’s protocol. 
 
DNA, RNA and protein isolation from PBMC 
 
For DNA extraction from monocytes the NucleoSpin® 
Tissue Kit (Cat No. 740952, Machery-Nagel, Düren, 
Germany), for RNA extraction the NucleoSpin® 
miRNA Kit (Cat No. 740971, Macherey-Nagel, Düren, 
Germany) was applied. Proteins were isolated using 
RIPA buffer (Cat No. 10017003, Thermo Fisher 
Scientific, Waltham, Massachusetts, USA), phosphatase 
arrest (Cat No. 786-782, G Biosciences, St. Louis, 
USA) and protease arrest (Cat No. 786-108, G 
Biosciences, St. Louis, USA). 
 
Bisulfite treatment  
 
500 ng of genomic DNA were treated with sodium 
bisulfite using the EZ DNA Methylation-Gold Kit (Cat 
No. D5005, Zymo Research, Irvine, California, USA) 
according to the manufacturer’s protocol.  
 
Infinium MethylationEPIC BeadChip microarray 
 
Bisulfite-treated DNA was subjected to Illumina 
Infinium MethylationEPIC BeadChip array according to 
the manufacturer’s protocol. This microarray measures 
DNA methylation levels at > 850.000 CpG sites and 
covers promoters and putative regulatory domains of  
 all designable RefSeq genes (Illumina’s Infinium 
MethylationEPIC BeadChip Microarray, Cat No. WG-
317-1001, Illumina, San Diego, California, USA). For 
imaging the fluorescently stained chips an Illumina 
HiScan scanner was applied. 
 
Bisulfite profiling 
 
Local deep bisulfite sequencing follows the workflow 
as published by Gries et al., [42]. Briefly, amplicons 
containing the target CpG site were generated using 
region-specific primers (Supplementary Table 2, final 
concentration 0.167 μM each) with the Illumina 
universal adaptor sequences attached at their 5´-ends. 
Next, PCR products were purified with Agencourt 
AmpureBeads and pooled in an equimolar ratio. After 
cluster formation the PCR products were sequenced on 
a MiSeq instrument benchtop sequencer (Illumina) with 
the sequencing-by-synthesis technology [68] according 
to the manufacturer’s instructions aiming at 20,000 
reads per amplicon. 
 
Data analysis 
 
For pre-processing genome-wide methylation raw data 
R statistics software suites minfi and RnBeads were 

applied [69, 39] in order to extract the data, subtract 
the background, and to normalize the data with 
internal controls present on the chips. Only CpGs with 
fdr-adjusted p-value < 0.05 and a minimum MD of 5% 
in all samples were included (n = 1,481 of 853,307) 
and all samples were analyzed as individual samples 
(n = 1).  
 
After Bi-PROF DNAm level and patterns were 
evaluated employing multiple sequence alignment 
based on the BiQ Analyzer HT [70]. All samples were 
examined as individual samples (n = 1). All reads with a 
fraction of unrecognized CpG sites of more than 10% 
were eliminated and data presented as mean ± SD. 
Samples identified in differential methylation analyses 
were assigned to corresponding gene IDs according to 
Illumina annotation data.  
 
Single-strand cDNA synthesis  
 
For HOXA5 cDNA synthesis the High Capacity cDNA 
Reverse Transcription Kit (Cat No. 4368814, Thermo 
Fisher Scientific) was applied to reversely-transcribe 1 
µg of each total RNA sample in a final reaction volume 
of 20 µl containing 10x TaqMan RT buffer, 25X dNTP 
Mix and 50 U/μL Multiscribe RT, 10x random primers, 
1 µg RNA and nuclease-free water. The cycler 
conditions were 10 min at 25° C, 120 min at 37° C and 
5 min at 85° C.  
 
Quantitative real-time PCR 
 
qRT-PCR for mRNA detection was performed using 
10 µl 2x Taqman Universal PCR Master Mix II and 1 
µl Taqman gene expression assay (HOXA5 - Cat No. 
Hs00430330_m1, DUSP3 - Cat No. Hs01115776_m1, 
RYR1 - Cat No. Hs01062613_m1, p53 - Cat No. 
Hs01034249_m1 and PTEN - Cat No. Hs02621230_s1, 
Thermo Fisher Scientific), 8 µl RNase-free water and 
1 µl cDNA template (50 ng/µl). Duplicates were run 
for all reactions together with no template controls  
and an additional control for DNA contamination 
where the reverse transcriptase was omitted. As a 
detection system the ABI Prism 7900 sequence 
detector (Thermo Fisher Scientific) was programmed 
to an initial step of 10 min at 95° C, followed by  
40 thermal cycles of 15 s at 95° C and 10 min at  
60° C. The log-linear phase of amplification was 
monitored to obtain CT values for each RNA  
sample. The expression level of the respective mRNAs 
was analyzed in relation to the levels of housekeeping 
gene POLR2A (Cat No. Hs00172187_m1, Thermo 
Fisher Scientific). Conversion of the individual CT 
values to the linear form was performed according to 
the 2–∆∆CT method [71] and the relative standard curve 
method. 
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Enzyme-linked immunosorbent assay (ELISA) 
 
The expression levels of HOXA5 and PTEN proteins in 
monocytes were quantified by sandwich-type ELISA 
with Human HOXA5 ELISA Kit from My Biosource 
(Cat No. MBS9325409, San Diego, California, United 
States) and Human PTEN ELISA Kit (Cat No. 
ab206979, Abcam, Cambridge, UK) according to the 
manufacturer's protocol. Samples were assayed in 
duplicate with all values calculated as the mean of 2 
measurements. For measurement of protein expression 
levels, the absorbance at 450 nm (with 562 nm 
reference wavelength) was read in a 96-well microtiter 
plate reader. The HOXA5 protein concentration from 
each cell lysate was normalized to the total protein 
content of each sample. 
 
Western blot analysis  
 
Total protein (15 µg/lane) was separated by SDS-PAGE 
using a 10% gel and blotted onto nitrocellulose 
membranes (Hybond ECL, Amersham Biosciences, 
Piscataway, NJ, USA). Membranes were blocked by 
incubation in Tris-buffered saline (TBS) containing 5% 
non-fat dry milk and 0.2% Tween 20, for 1 h at room 
temperature, and were then incubated overnight at 4° C 
with primary rabbit monoclonal anti-human HOXA5 
antibody from Abcam (1:500, Cat No. ab140636, 
Abcam, Cambridge, UK) and primary rabbit 
monoclonal anti-human PTEN antibody from Abcam 
(1:1000, Cat No. ab32199, Abcam, Cambridge, UK) 
respectively. Blots were washed and incubated at room 
temperature for 1 h with IRDye 800CW goat anti-rabbit 
IgG secondary antibody (diluted 1:15,000, Cat No. 926-
32211, LI-COR, Lincoln, Nebraska USA). Bands were 
visualized by LI-COR Odyssey CLx imaging system 
(LI-COR). ß-actin served as a loading control (mouse 
monoclonal anti-human ß-actin, 1:51:1000, Cat No. 
ab8226, Abcam; IRDye 680RD goat anti-mouse 
secondary antibody, Cat No. 926-68070, LI-COR). 
 
Calculations and statistical methods 
 
Methylation and expression profiles are shown as mean 
and standard error of the mean (SEM). The statistical 
significance of differences between groups was 
determined by the Student´s t test. The significance 
levels were P < 0.05, P < 0.01 or P < 0.001, 
respectively. 
 
Abbreviations 
 
HOXA5: Homeobox protein A5; CpG: Cystein 
phosphatidyl Guanin; p53: Phosphoprotein p53; ELISA: 
Enzyme-linked immunosorbent assay; PBMC: Peripheral 
blood mononuclear cells. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Table1. 
 
Supplementary Table 1. A detailed table showing the position of all the 1481 differentially methylated CpG sites with 
indication of the assigned gene, the chromosomal location and the respective gene region.  

 
Supplementary Table 2. Region-specific primers applied for single CpG analysis.  

Gene Number of 
CpGs Forward primer Reverse primer 

HOXA5 14 5`-AGCTTCCTTCCTGTTCTGGG-3` 5`TCAGAGACACTAGCACAGGAGCC-3` 
DUSP3 4 5`-TCCATCACCATGGGTGGAAGGCA-3` 5`-CTGTCAGTCAAAGAAAGGGA-3` 
RYR1 25 5`-TCCCTGTAGGAGCCTGGACA-3` 5`-GGAACCCCAGCCAGTGAGAA-3` 

 


