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INTRODUCTION 
 

Gastric cancer (GC), also known as stomach cancer, 

develops from the cells lining of the stomach. In 2018, 

more than one million new cases of gastric cancer were 

diagnosed, and an estimated 783,000 associated deaths 

occurred. One out of 12 cancer deaths worldwide 

resulted from GC, making it the fifth most common 

cancer and the third leading cause of death due to 

cancer [1]. Gastric cancer poses a particularly serious 

health problem in Eastern Asia. Parkinson’s disease is a 

long-term degenerative disorder of the central nervous 
system that mainly affects the motor system. It is 

currently listed as the second most prevalent 

neurodegenerative disorder after Alzheimer’s disease 

and the most common disorder affecting body 

movements [2]. The causes of Parkinson’s disease and 

gastric cancer are very complicated, and increasing 

evidence supports the involvement of both genetic and 

environmental factors. 

 

It is believed that the gastrointestinal tract comprises an 

intrinsic nervous system — the enteric nervous system 

(ENS). Referred to as “the second brain” [3], the ENS 

regulates the gastrointestinal tract’s motility and owns 

neuroendocrine functions. The ENS interacts bi-

directionally with the Central Nervous Systems (CNS), 

in a connection referred to as the “brain-gut axis” [4], 

which is composed of neural pathways in the CNS, 
autonomic nervous system, and the hypothalamic-

pituitary-adrenal axis. A large number of patients with 

Parkinson’s disease experience constipation, abdominal 
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ABSTRACT 
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overlapped differentially expressed genes were identified, their biological relevance was investigated. Thus, 
using the gene expression profiles and bioinformatics methods, we demonstrate that Parkinson’s disease and 
gastric cancer are indeed linked. This research may serve as a pilot study, and it will stimulate more research to 
investigate the relationship between gastric cancer and Parkinson’s disease from the perspective of gene 
profiles and their functions. 
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distension, and other gastrointestinal symptoms before 

they experience motor symptoms [5]. More importantly, 

dysbiosis of gut microbiota plays a critical role in the 

pathogenesis of Parkinson’s disease, such as [6]. On the 

other hand, gastrointestinal symptoms and microbiome 

dysbiosis frequently occur in patients with gastric 

cancer [7]. Especially, increased gut permeability 

promotes the leakage of bacteria and their products into 

the blood, leading to the maturation of antigen-

presenting cells and thus the stimulation of 

inflammatory pathways that are of crucial importance in 

these two diseases. 

 

Epidemiological studies [8–12] have suggested that 

patients with Parkinson’s disease have a reduced risk of 

developing cancers, including gastric cancer, compared 

to people who do not have Parkinson’s disease. 

Nevertheless, other studies have showed a positive 

association between Parkinson’s disease and cancers, 

that is, an increased risk of cancers in patient with 

Parkinson’s disease [13, 14]. For instance, for gastric 

cancer, the hazard ratio was 1.59 (95% CIs: 1.30-1.94) 

by Lin et al. [14], who attributed the inconsistency to 

the fact that most of those epidemiological studies were 

carried out upon the Western population, while their 

study was performed in Taiwan. Therefore, Lin et al. 

[14] concluded that the race or/and environmental 

exposures have an interactive effect on the association 

between cancers and Parkinson’s disease. Also, the 

Columbia Open Health Data (COHD) [15], which is 

based on electronic health records (EHR), indicated that 

the concurrence of Parkinson’s disease and gastric 

cancer is significantly higher than what expected by 

chance (odds ratio=2.02, p=2.23×10-6). This implies 

that both diseases are positively related. It is worth 

noting that patients in the electronic health records may 

not represent the general population; thus, the 

association between the two diseases may be biased. 

Therefore, it is natural to speculate that Parkinson’s 

disease and gastric cancer may be linked. 

 

At the molecular level, studies suggest that 

neurodegenerative disorders (including Alzheimer’s 

disease, Parkinson’s disease, and Huntington’s disease) 

and cancers (including lung cancer, liver cancer, and breast 

cancer) are linked to each other with respect to somatic 

mutations, mRNAs or microRNAs, such as [16–19]. 

However, only a few of the studies focused on the specific 

association between Parkinson’s disease and gastric cancer 

from this perspective [20, 21]. For example, Hu and 

colleagues [20] demonstrated that a specific miRNA, miR-

148a, is not only a potential tumor suppressor that inhibits 

gastric cancer metastasis, but is also involved in 
neurological development and functions. In particular, the 

expression level of miR-148a is lower in patients with 

Parkinson’s disease compared to that in normal controls. 

Microarray and RNA-sequence techniques enable 

monitoring expression changes of thousands of genes 

simultaneously. For both gastric cancer and Parkinson’s 

disease, numerous microarray and RNA-Sequence 

experiments such as [22–32] have been conducted to 

distinguish between the diseased patients and normal 

controls, or predict the progression of the two diseases, 

with the aid of a variety of bioinformatics tools and 

statistical methods. To the best of our knowledge, no 

investigation has been carried out to explore the link 

between gastric cancer and Parkinson’s disease, using 

the gene expression profiles generated through either 

microarray or RNA-Sequencing. The objective of this 

study is to bridge this gap by using gene expression 

profiles and the barcode algorithm [33] to investigate 

the potential association between the two diseases. 

 

RESULTS 
 

Differentially expressed genes 

 

For gastric cancer, 2,114 differentially expressed genes 

(DEGs) between the patients and the normal controls 

were identified. Among them, 1,296 exhibited a higher 

expressed proportion, and 818 had a higher silenced 

proportion higher in the gastric cancer patients 

compared to the normal controls. For Parkinson’s 

disease, 36 DEGs were identified. Of them, 33 genes 

had the propensity of being expressed higher in the 

disease group than that in the control group. Between 

the two sets of DEGs, 15 genes overlapped on each 

other (Fisher’s exact test: p=0.033). The gene symbols 

for the 15 overlapping genes are presented in Figure 1A, 

and the odds ratios (ORs) and false discovery rates 

(FDR) stratified by the gastric cancer cohort and the 

Parkinson’s disease cohort are listed in Table 1. Of 

note, in gastric cancer, several overlapped genes had 

extreme ORs (either 0 or infinite), while in Parkinson’s 

disease the ORs were basically moderate. 

 

All genes except GPX3, ZBTB16, and KCNQ1 have OR 

of >1 for gastric cancer, whereas all genes have OR of 

>1 for Parkinson’s disease, suggesting that for a patient 

who has either Parkinson’s disease or gastric cancer, 

the status of 12 genes is highly likely to be un-silenced. 

This might imply that when a person suffers from one 

disease, the likelihood of having the other disease tends 

to increase, which is consistent with the results of a 

previous epidemiology study conducted in Taiwan [14] 

and the high concurrent rate between these two 

diseases indicated by the COHD database [15]. 

Nevertheless, Lin’s study [14] indicated that race might 

play an interactive role on the association between 

Parkinson’s disease and cancers. Thus, for the Asians, 

this association tends to positive, but for the 

Caucasians, this association is more likely to be 



 

www.aging-us.com 6173 AGING 

negative. Since no large Western gastric cancer cohort 

or Asian Parkinson’s disease cohort on the same 

microarray platform is available on the GEO database, 

thus, whether the statement is true cannot be verified 

using the proposed procedure in this study. Further 

investigation is warranted. In contrast, the COHD 

database is based on electronic health records, which 

may introduce biases to the estimation of the 

concurrent rate of the two diseases. 

 

Lastly, a respective logistic regression model with 15 

overlapped genes as predictors was fit for either gastric 

cancer or Parkinson’s disease microarray dataset. The 

predictive capacity of resulting 15-gene signatures for 

gastric cancer and Parkinson’s disease was validated on 

external datasets. As shown by the ROC curves in 

Figure 2, the list of 15-genes was validated to perform 

fairly well; especially for gastric cancer, it achieved an 

AUC statistic of 0.93. 

 

Pathway enrichment analysis 

 

In the GO biological process category, 313 terms were 

enriched by the gastric cancer DEGs, and 10 terms were 

enriched by the Parkinson’s disease DEGs. Among 

them, three enriched biological process terms were 

commonly shared by the Parkinson’s disease DEGs and 

the gastric cancer DEGs. Fifty-one GO chemical 

component terms were indicated to be enriched by the 

gastric cancer DEGs, none was enriched by the 

Parkinson’s disease DEGs. In terms of GO molecular 

function and KEGG pathway, the numbers are 7 and 17 

for gastric cancer DEGs, 0 and 0 for Parkinson’s disease 

DEGs, respectively. Therefore, no overlapped pathways 

were found between gastric cancer and Parkinson’s 

disease regarding the GO molecular function terms, the 

GO chemical component terms, or KEGG pathways. In 

Figure 1B, the overlapped GO biological process terms 

along with their corresponding false discovery rates are 

presented. Many review articles indicated that both cell 

proliferation and differentiation as well as ubiquitin-

proteasome system play critical roles in the two diseases 

[34–37]. 

 

The three overlapped GO biological process terms 

deserve further investigation, which may facilitate 

deciphering the association between Parkinson’s disease 

and gastric cancer at the gene set level, where the 

involved genes work in coordination to influence a 

phenotype of interest. 

 

 
 

Figure 1. Venn-diagrams for differentially expressed genes identified by gastric cancer cohort and Parkinson’s disease 
cohort. (A) On the gene level. (B) On the level of enriched Gene Ontology annotation. PD, Parkinson’s disease; GC, gastric cancer; GO, gene 
ontology; BP, biological process. The gene symbols indicated by the GeneCards database to directly associate with gastric cancer and 
Parkinson’s disease are highlighted in green. Of note, on the gene level the overlapped rate of gastric cancer and Parkinson’s disease is 
significant according to a Fisher’s exact test (p=0.033). 
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Table 1. Overlapped differentially expressed genes by gastric cancer and 
Parkinson’s disease cohorts. 

 Gastric cancer Parkinson’s disease 

 OR FDR OR FDR 

CTSD 13.073 4.43×10-23 2.439 0.010 

GPX3 0 1.70×10-26 2.320 0.014 

SPINT1 4.134 3.27×10-6 2.563 0.024 

LTBR 11.191 3.40×10-14 2.416 0.006 

UBE2M 2.719 5.10×10-4 4.163 0.030 

NUP98 ∞ 0.013 2.126 0.033 

CEBPA 17.688 1.73×10-8 2.519 0.005 

KCNQ1 0.304 2.30×10-6 2.139 0.030 

GMDS 3.267 2.16×10-3 3.011 0.048 

ABHD2 ∞ 2.07×10-5 2.631 0.026 

ZBTB16 0.046 3.51×10-14 2.116 0.030 

CSNK1D 56.713 1.89×10-14 2.308 0.034 

RNF19B ∞ 3.42×10-5 2.437 0.010 

SRA1 32.759 5.97×10-9 2.437 0.013 

90-= 2.350 0.025 2.443 0.044 

OR: odds ratio, FDR: false discovery rate; ∞: infinite value resulting from have 0’s values 
in off-diagonal corresponding 2×2 tables. 

Analysis at the network level 

 

Using the String software, only four connections 

(CSNK1D to ZBTB16, ZBTB16 to RNF19B, RNF19B 

to CSNK1D, and ZBTB16 to CEBPA) were revealed for 

the 15 overlapped genes. As a result, a data-driven 

strategy was used to obtain the information on gene-to-

gene interactions (as stated in the Methods section). The 

corresponding networks for the information on co-

expression of the 15 overlapped genes between 

Parkinson’s disease and gastric cancer (through the 

calculation of Spearman’s correlation coefficients), are 

presented in Figure 3. Among the gastric cancer 

patients, all the 15 overlapping genes appear to be 

 

 
 

Figure 2. ROC curves showing predictive performance of the identified 15-gene signature. (A) For Parkinson’s disease. (B) For 

gastric cancer. Here, external validation sets were used. AUC, area under curve; GC, gastric cancer; PD, Parkinson’s disease. 
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isolated from each other, whereas among the controls, 

three gene pairs (SPINT1 and GMDS, GMDS and 

TNRC18, and CSNK1D and RNF19B) are connected. 

This may correspond to a loss of connectivity in the 

gastric cancer patients, which is consistent with the 

findings by Anglani et al. [38]. In contrast, for 

Parkinson’s disease patients, five pairs of connections 

were gained, six pairs were lost, while five pairs 

remained connected. Interestingly, two loss-of-

connectivity pairs for gastric cancer (SPINT1 and 

GMDS, and GMDS and TNRC18) were observed 

among the five gain-of-connectivity pairs for 

Parkinson’s disease, implying a possible opposite 

direction of change at the gene-to-gene interaction level 

for Parkinson’s disease and gastric cancer. 

 

DISCUSSION 
 

Biological relevance 

 

The biological relevance of the 15 overlapping genes to 

gastric cancer and Parkinson’s disease was explored in 

the GeneCards database [39], and PubMed was searched 

for more recent information. The GeneCards [39] search 

revealed that nine of the 15 overlapping DEGs are 

directly associated with gastric cancer. Meanwhile, four 

genes related to Parkinson’s disease (CTSD, GPX3, 

CSNK1D, and UBE2M) are included in the nine genes 

directly related to gastric cancer. The remaining 

overlapping genes are all indirectly associated with either 

gastric cancer or Parkinson’s disease. 

 

According to the GeneCards [39], Cathespin D (CTSD) 

exhibits pepsin-like activity and plays a role in protein 

turnover and in the proteolytic activation of hormones 

and growth factors. CTSD may be involved in the 

pathogenesis of several diseases, including breast 

cancer and Alzheimer's disease. The pathways related to 

CTSD include lysosome and degradation of the 

extracellular matrix, and related GO annotations include 

aspartic-type endopeptidase activity. Liu et al. [40] 

showed through western blot assay that the CTSD 

protein is significantly up-regulated in the gastric cancer 

tissues compared to the normal tissues. Another study 

[41] showed this regulation pattern using 

immunohistochemistry. On the other hand, the CTSD 

levels in Parkinson’s disease patients show a consistent 

over-expression pattern across several studies, as 

pointed out in a recent review [42]. 

 

The pathways, with which glutathione peroxidase 3 

(GPX3) has been associated, include folate metabolism 

and detoxification of reactive oxygen species, and GO 

terms are transcription factor binding and selenium 

binding. In a recent study [43], using two microarray 

data, viz, GSE99039 (the dataset we used in this study) 

and GSE72267 as the training set, GPX3 was identified 

as a DEG for Parkinson’s disease as well. Subsequently, 

the over-expression of this gene in the diseased tissues 

was experimentally validated by qRT-PCR. In contrast, 

GPX3 expression was shown to be lower in gastric 

cancer patients compared to the normal tissues, and the 

overexpression of GPX3 can inhibit gastric cancer cell 

migration and invasion [43]. Meanwhile, another recent 

study [44] used the The Cancer Genomic Atlas data to 

show that GPX3 was hypermethylated in gastric cancer, 

which may consequently increase the possibility of 

tumor recurrence. 

 

 
 

Figure 3. Data-driven gene-to-gene interaction networks of the overlapped 15 genes. (A) For the control group in Parkinson’s 

disease. (B) For the diseased group in Parkinson’s disease. (C) For the control group in gastric cancer. PD, Parkinson’s disease; GC, gastric 
cancer. The edges highlighted in red are unique for the corresponding categories. Specifically, among the gastric cancer patients, all the 15 
overlapped genes are isolated from each other, whereas among the controls, 3 gene pairs (SPINT1 and GMDS, GMDS and TNRC18, and 
CSNK1D and RNF19B) are connected. In contrast, for Parkinson’s disease patients 5 pairs of connections are gained, 6 pairs are lost, while 5 
pairs remain connected. 
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The related pathways of casein kinase 1 delta 

(CSNK1D) are neuroscience and organelle biogenesis 

and maintenance. GO annotations related to this gene 

include transferase activity, transferring phosphorus-

containing groups and protein tyrosine kinase activity. 

UBE2M gene codes for Ubiquitin conjugating enzyme 

E2 M protein. Among its related pathways are signaling 

by GPCR and regulation of activated PAK-2p34 by 

proteasome mediated degradation. GO annotations 

related to this gene include ubiquitin-protein transferase 

activity and ubiquitin protein ligase activity. As far as 

these two genes are considered, there are no recent 

experiments reported in PubMed to provide more 

support on their relevance to either Parkinson’s disease 

or gastric cancer. 

 

Of note, a long non-coding RNA, steroid receptor RNA 

activator 1 (SRA1), has been experimentally validated to 

play roles in a variety of cancer types, including breast 

cancer, prostate cancer, and liver cancer. While there is 

no experimental evidence on its association with gastric 

cancer and Parkinson’s disease, it was predicted to 

associate with these two diseases using computational 

methods in the lncRNADisease2.0 database [45]. 

Therefore, exploration of the potential association 

between these two diseases in terms of lncRNAs may 

be a promising research avenue. 

 

CONCLUSIONS 
 

Using gene expression profiles and the barcode 

algorithm, we show that two distinct diseases, 

Parkinson’s disease, and gastric cancer are indeed 

linked to each other at the molecular level. Our future 

work will focus on two questions, whether the 

association is positive or negative and whether and how 

race or certain environmental factors influence the 

association between these two diseases. 

 

To conclude, the present study may serve as a pilot 

study, and it may inspire more research to evaluate the 

relationship between cancer and neurodegenerative 

diseases from the perspective of genes and their 

interaction networks. 

 

MATERIALS AND METHODS 
 

Experimental data 

 

The barcode algorithm was used in this study to identify 

differentially expression genes between the diseased 

group and the control group. Therefore, some 

restrictions on the microarray platforms were imposed. 
Specifically, for human studies, chips that are 

applicable to the barcode algorithm include Affymetrix 

U133A (GPL96), U133 2.0 (GPL571), U133plus 2.0 

(GPL570), and human gene 1.0 ST (GPL6244) because 

a large number of chips are required to estimate the null 

mean and variance in the method. 

 

To acquire a sufficient statistical power to evaluate the 

association between these two diseases, the sample sizes 

of both gastric cancer and Parkinson’s disease cohorts 

need to be large. As a result, two microarray experiments 

in the NIH’s Gene Expression Omnibus (GEO) repository 

from the National Institute of Health were selected: 

GSE99039 [46] for Parkinson’s disease and GSE66229 

[47] for gastric cancer. In addition, GSE20146 [22] and 

GSE79973 [28] were used as external validation sets to 

evaluate the predictive performance of the resulting gene 

list. The demographical characteristics of these four 

studies are summarized in Table 2. 

 

Pre-processing procedures 

 

Raw data (CEL files) of the two microarray experiments 

were downloaded from the GEO repository and pre-

processed using the fRMA algorithm [48], which can 

provide effective control on batch effects and enable pre-

processing of a single chip [48–50]. For those multiple 

probe sets matched to the identical gene, the one with the 

largest absolute log fold change was retained. 

 

Statistical methods 

 

Barcode algorithm 

The barcode algorithm proposed by McCall et al. [33] 

transformed the actual expression values into binary 

barcode values, and the expressed genes are coded with 

1’s and the silenced genes are coded with 0’s. Briefly, 

for each gene, a mixture model in the algorithm is used 

to fit the silenced and expressed distribution of observed 

log2 transformed intensity values. The mixture model is 

expressed as: 

 

( ) ( ) ( )2| ~ 1 ,  ,ig g g g g g g gY p N p U S   −  +   

( )2~ , g N    

( )2 ~ , g IG    

 

where Yig is the log2 expression value for gene g in 

sample i, and follows a normal distribution of N (μg, τg
2) 

when gene g is silenced or has a uniform distribution of 

U(μg, Sg) when it is expressed. Here, μg denotes the 

mean of silenced genes, and Sg denotes the saturation 

value (i.e., the upper limit of gene expression values). 

Then, μg and τg
2 for gene g are assumed to follow 

normal and inverse gamma distributions, respectively. 
With a hierarchical model structure, and in particular 

the introduction of higher-level parameters (α, β, ξ, and 

λ), more stable estimates of variances for silenced genes
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Table 2. Characteristics of microarray experiments in this study. 

 Reference Raw data Platform Diseased Controls Race 

Training set 

GSE99039 (Parkinson’s 

disease)  
[46] Yes GPL570 205 233 Western 

GSE66229 (gastric 

cancer)  
[47] Yes GPL570 303 101 Asian 

Validation set 

GSE20146 (Parkinson’s 

disease) 
[22] Yes GPL570 10 10 Western 

GSE79973 (gastric 

cancer) 
[28] Yes GPL570 10 10 Asian 

 

are expected because the information across genes is 

borrowed and shared across genes, leading to a 

shrinkage of estimates for individual genes toward the 

overall level. 
 

To determine if a gene is silenced or expressed, the 

standardized intensity value, (yig − μg)/τg, was calculated. 

Upon a pre-determined cutoff value C, the expression 

barcode for a gene, a vector of 1’s and 0’s is defined as, 
 

( )( )1     /

   0                                   

ig g g

ig

y C
barcode

otherwise

   − − 
= 


 

 

where Φ is the cumulative density function of a 

standard normal, parameter estimation in this 

hierarchical model is done using a modified 

expectation-maximization algorithm (the details of the 

barcode are available in the supplementary material of a 

previous study [33]). The barcode algorithm was 

implemented by the barcode function in the R fRMA 

package, and the default value of C was used. 

 

Differentially expressed genes 

 

On the barcode values, the genes with all values of either 

1’s or 0’s for the respective gastric cancer and Parkinson’s 

disease cohorts were eliminated, and finally, 8,392 probe-

sets were fed into the downstream analysis. 

 

To determine if the expressed ratios differed in the 

diseased group versus the control group, Fisher’s exact 

test for individual genes was carried out upon the 

barcode values. Genes with a false discovery rate (FDR) 

of < 0.05, which was calculated through the Benjamini-

Hochberg (BH) procedure [51] to adjust for multiple 

testing issue, were considered as differentially 

expressed genes in the respective gastric cancer and 

Parkinson’s disease cohorts. The flowchart of the 

proposed procedure is given in Figure 4. 

 

 
 

Figure 4. Flowchart illustrating how the differentially expressed genes are identified with the aid of barcode algorithm. 
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Pathway enrichment analysis and network 

construction 

 

Using the R clusterProfilter package, the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway 

enrichment analysis and Gene Ontology (GO) 

functional annotation were carried out on the 

differentially expressed genes of the gastric cancer 

cohort and the Parkinson’s disease cohort, respectively. 

In these analyses, all default parameters were used, and 

minimum gene set size parameter was set at 5 in the 

enrichGO function and the enrichKEGG function. 

 

Information on data-driven gene-to-gene interaction 

information was obtained by calculating Spearman’s 

correlation coefficients among the overlapped 

differentially expressed genes. If the absolute value of 

Spearman’s correlation coefficients is >0.4 and the 

corresponding false discovery rate is < 0.05, the specific 

gene pair is connected. Otherwise, they are not 

connected. The resulting data-driven gene-to-gene 

interaction information was used to plot network graph 

in the Cytoscape software [52]. 

 

Biological relevance 

 

The GeneCards database [39] was mined to investigate 

the biological relevance of identified differentially 

expressed genes for gastric cancer and Parkinson’s 

disease. In addition, PubMed was searched for more 

recent literature on the potential relationship between 

the overlapped differentially expressed genes with 

gastric cancer and Parkinson’s disease. 

 

Statistical language 

 

All statistical analyses were carried out in R 3.3 

(https://www.r-project.org/). 

 

Availability of data and materials 

 

Four microarray datasets were downloaded from the 

GEO database, the data are open and publicly available. 
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