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INTRODUCTION 
 

Knowledge of expression patterns in ageing organisms 

can be employed as biomarker panels that estimate a 

‘transcriptomic age’ [1], in addition to giving insight 

into the basic processes associated with ageing [2] and 

serving as a starting point from which to identify drugs 

and other interventions that may assist with healthy 

ageing [3]. 

 

Comparative analysis of gene expression data across 

species is a powerful method to determine an expression  

signature of ageing. Previously meta-analysis of gene 

expression with age in mammals has identified changes 

in stress responses, metabolism and immune response 

genes [4] while meta-analysis of the dietary restriction 

expression signature has identified novel changes in 

retinol metabolism and copper-ion detoxification in this 

ageing modulating process [5].  

 

Here, we have performed a meta-analysis of ageing using 
the methods of de Magalhães, et al. [4] on 127 microarray 

and RNA-Seq datasets from humans, mice and rats, and 

applied machine learning alongside enrichment methods 
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ABSTRACT 
 

By combining transcriptomic data with other data sources, inferences can be made about functional changes 
during ageing. Thus, we conducted a meta-analysis on 127 publicly available microarray and RNA-Seq datasets 
from mice, rats and humans, identifying a transcriptomic signature of ageing across species and tissues. 
Analyses on subsets of these datasets produced transcriptomic signatures of ageing for brain, heart and muscle. 
We then applied enrichment analysis and machine learning to functionally describe these signatures, revealing 
overexpression of immune and stress response genes and underexpression of metabolic and developmental 
genes. Further analyses revealed little overlap between genes differentially expressed with age in different 
tissues, despite ageing differentially expressed genes typically being widely expressed across tissues. 
Additionally we show that the ageing gene expression signatures (particularly the overexpressed signatures) of 
the whole meta-analysis, brain and muscle tend to include genes that are central in protein-protein interaction 
networks. We also show that genes underexpressed with age in the brain are highly central in a co-expression 
network, suggesting that underexpression of these genes may have broad phenotypic consequences. In sum, 
we show numerous functional similarities between the ageing transcriptomes of these important tissues, along 
with unique network properties of genes differentially expressed with age in both a protein-protein interaction 
and co-expression networks. 
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to analyse the results. This gave an ageing signature 

consistent with previous analyses. In addition, we 

performed analyses on tissue-specific subsections of these 

datasets for brain, heart and muscle revealing some novel 

tissue specific differences in network connectivity. 

 

RESULTS 
 

Most significant ageing gene expression signatures 

 

The global meta-analysis across various tissues in mice, 

rats and humans identified 449 genes overexpressed  

with age and 162 underexpressed with age. This is 

considerably more than the results of de Magalhães, et al. 

[4], where 56 overexpressed and 17 underexpressed 

genes were identified. For the tissue-specific analyses, in 

brain 147 genes were overexpressed and 16 genes were 

underexpressed, in heart 35 genes were overexpressed 

and 5 genes were underexpressed, and in muscle 49 

genes were overexpressed with 73 genes underexpressed. 

The top-5 overexpressed genes for each analysis are 

presented in Table 1 and the top-5 underexpressed genes 

for each analysis are presented in Table 2.  

 

The most significantly overexpressed genes in this 

meta-analysis were principally involved in immune 

responses and inflammation, particularly for the global 

and the brain-specific analyses.  Several complement 

proteins were overexpressed in these analyses, with 

C1QA appearing at the top of both the global and brain-

specific analyses, C1QC likewise appears in both lists. 

The top genes in the heart-specific results include the 

structural protein gene MGP, genes involved in amine 

metabolism and oxidation-reduction processes (MAOA 

and VAT1) as well as the iron and copper metabolism 

gene CP. In muscle the top overexpressed gene was 

CDKN1A, a cell cycle regulator. Other interesting genes 

overexpressed in muscle include EFEMP1, a gene 

involved in eye morphogenesis that has demonstrated 

involvement in premature-aging like phenotypes in 

mice, possibly playing a role in fascial structural 

integrity [6], and that has recently been shown to be 

overexpressed in aged mouse aorta [7] and CHRNA1 

that codes for a muscle acetylcholine receptor subunit. 

 

A common theme across the top underexpressed genes 

is mitochondrial metabolism. In the global results, the 

top underexpressed gene is UQCRFS1, a subunit of 

mitochondrial complex III, while in heart NDUFS7, a 

component of mitochondrial complex I, is the second 

most significantly underexpressed gene. Another 

mitochondrial complex I subunit, NDUFC1 was the 

third most significantly underexpressed gene in muscle. 

The brain is the only tissue studied that did not see an 

underexpression of mitochondrial genes. Indeed, all the 

top-5 genes underexpressed in the brain signature have 

clear roles in neuronal signalling and/or development. 

Complete lists of all significant genes for all the 

analyses can be found in Supplementary Tables 3–10, 

while intersections between the results from each 

analysis can be found in Supplementary Table 27. 
 

Interestingly, several genes with known involvement in 

ageing-modulating pathways were differentially expressed, 

for instance IGF1 was underexpressed, while IGF2R and 

RICTOR were overexpressed in the global meta-analysis. 

 

Comparison with GenAge signature 

 

The results from the complete meta-analysis were first 

compared to the results from the 2009 microarray meta-

analysis available on the GenAge database [4]. These two 

meta-analyses used similar methods, and this new 

analysis identified 66% and 56.3% of the genes identified 

previously for over- and underexpressed categories 

respectively. The overlap for each class of differential 

expression (over- and underexpressed) between this and 

the previous meta-analysis are shown in Figure 1. 

 

There was significant overlap between these results and 

the GenAge signature for both over- (Figure 1A) and 

underexpressed (Figure 1B) genes (hypergeometric test, 

p<1e-10 for both comparisons), expected given the 

large overlap of studies included in both analyses. 

 

Further, the overlap between the global and tissue-

specific analyses was tested for overexpressed and 

underexpressed genes separately using pairwise 

hypergeometric tests (Bonferroni corrected). The 

overlaps between the analyses are shown in Figure 2. 

 

For overexpressed genes (Figure 2A) there was significant 

overlap between the global analysis and all three tissues 

(hypergeometric test, p<1e-10 for all comparisons).  

The brain analysis also overlapped significantly with the 

heart (hypergeometric test, p=1.43e-2) and muscle 

(hypergeometric test, p=3.17e-3). 

 

For underexpressed genes (Figure 2B) the global 

analysis only significantly overlapped with the brain 

(hypergeometric test, p=1.44e-8) and the muscle 

(hypergeometric test, p<1e-10) analyses. No other 

overlaps were significant. 

 

For both over- and underexpressed genes, there were no 

genes differentially expressed in all four analyses, nor 

in both heart and muscle. 

 

Overlap with other ageing databases 

 

In addition to the GenAge ageing expression signature, 

this meta-analysis was compared to other gene lists 
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Table 1. Top-5 genes most consistently overexpressed with age across datasets for all tissues and for each tissue 
studied.  

 

All Tissues – 449 genes 

Symbol Gene name p-value (1.01e-3) 

C1QA Complement C1q A chain 3.54e-22 
GPNMB Glycoprotein nmb 1.64e-21 
B2M Beta-2-microglobulin 2.55e-20 
EFEMP1 EGF containing fibulin extracellular matrix protein 1 8.06e-20 
C1QC Complement C1q C chain 1.07e-18 

Brain – 147 genes 

Symbol Gene name p-value (2.95e-4) 

C1QA Complement C1q A chain 1.21e-15 
GFAP Glial fibrillary acidic protein 1.00e-13 
C1QB Complement C1q B chain 7.06e-13 
C1QC Complement C1q C chain 2.06e-12 
B2M Beta-2-microglobulin 1.19e-11 

Heart – 35 genes 

Symbol Gene name p-value (6.43e-4) 

MGP Matrix Gla protein 5.57e-4 
MAOA Monoamine oxidase 5.57e-4 
CP Ceruloplasmin 5.57e-4 
VAT1 Vesicle amine transport 1 8.63e-4 
TMED3 Transmembrane p24 trafficking protein 3 8.63e-4 

Muscle – 49 genes 

Symbol Gene name p-value (4.89e-4) 

CDKN1A Cyclin dependent kinase inhibitor 1A 1.84e-8 
RNF115 Ring finger protein 115 7.22e-7 
EFEMP1 EGF containing fibulin extracellular matrix protein 1 7.22e-7 
CHRNA1 Cholinergic receptor nicotinic alpha 1 subunit 2.57e-6 
RPS27L Ribosomal protein S27 like 4.22e-6 

The value given between brackets in the ‘p-value’ column header is the p-value threshold at which FDR <0.05. 

 

hosted on the Human Ageing Genomic Resources 

(HAGR). These were the GenAge database of genes 

suspected to be involved in human ageing [8], the 

GenDR database of genes differentially expressed with 

dietary restriction in model organisms [5] and the 

LongevityMap database of human genes with genetic 

variants associated with longevity [9]. 

 

There was a significant overlap of the genes 

differentially expressed with age in the complete meta-

analysis with both human GenAge genes and the genes 

with longevity associated variants found in 

LongevityMap, however there was no overlap with the 

dietary restriction signature from GenDR, or the human 

homologues of mouse genes that can modulate 

longevity in either direction (Table 3). 

 

Functional classification analysis 

 

The detected ageing expression signature was tested for 

GO enrichment, in addition to the use of data mining 

methods to identify the most important GO terms that 

could be used in the assignment of each gene to a 

differential expression class. The purpose of this dual 

analysis was to provide functional descriptions from two 

very different methods, hopefully providing a robust 

description of functional changes with age. 

 

GO enrichment analysis was performed for each meta-

analysis (global, brain, heart, muscle) on the over- and 

underexpressed expression signatures separately and the 

significantly enriched GO terms were ranked by p-value 

(Supplementary Tables 11–18). 

 

The machine learning analysis was likewise conducted on 

each tissue, and the GO terms determined to be predictive 

of each expression class (overexpressed, underexpressed 

or unchanged) were ranked in terms of descending 

average probability (Supplementary Tables 19–26).  

 

To provide a comprehensive picture of the functional 

changes associated with the ageing expression
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Table 2. Top-5 genes most consistently underexpressed with age across datasets for all tissues and for each tissue 
studied. 

 

All Tissues – 162 genes 

Symbol Gene name p-value (7.13e-4) 

UQCRFS1 Ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 1.96e-9 
SUCLG1 Succinate-CoA ligase alpha subunit 4.11e-9 
MLF1 Myeloid leukemia factor 1 1.37e-8 
UROS Uroporphyrinogen III synthase 4.46e-8 
FKBP4 FKBP prolyl isomerase 4 4.58e-8 

Brain – 16 genes 

Symbol Gene name p-value (4.12e-5) 

CX3CL1 C-X3-C motif chemokine ligand 1 1.23e-8 
OPCML Opiod binding protin.cell adhesion molecule like 2.45e-7 
SOX11 SRY-box transcription factor 11 6.97e-7 
DLG3 Discs large MAGUK scaffold protein 3 1.13e-6 
DCLK1 Doublecortin like kinase 1 3.69e-6 

Heart – 5 genes 

Symbol Gene name p-value (2.67e-3) 

FKBP4 FKBP prolyl isomerase 4 3.38e-5 
NDUFS7 NADH:ubiquinone oxidoreductase core subunit S7 1.79e-3 
APOOL Apolipoprotein O like 2.67e-3 
OSGEPL1 O-sialoglycoprotein endopeptidase like 1 2.67e-3 
KLHL30 Kelch like family member 30 2.67e-3 

Muscle – 73 genes 

Symbol Gene name p-value (4.88e-4) 

TFRC Transferrin receptor 1.78e-9 
STRADB STE20 related adaptor beta 2.88e-8 
NDUFC1 NADH:ubiquinone oxidoreductase subunit C1 4.05e-7 
COL15A1 Collagen type XV alpha 1 chain 9.30e-7 
CKMT2 Creatine kinase, mitochondrial 2 9.30e-7 

The value given between brackets in the ‘p-value’ column header is the p-value threshold at which FDR <0.05. 

 

 

 

Figure 1. Overlap of this current work’s meta-analysis (Palmer et al.) with the microarray signature of mammalian ageing 
currently hosted on GenAge (de Magalhães, et al.) [4]). (A) Gives the overlap for genes overexpressed with age, while (B) gives the 

overlap for genes underexpressed with age. The p-values given are the result of a hypergeometric test, testing the significance of the given 
overlap using all other protein-coding genes as a background (i.e. all genes not differentially expressed in the direction of the given analysis). 
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signature, top-ranked terms that overlap between these 

two analyses are presented below for GO terms 

associated with overexpressed (Table 4) and 

underexpressed genes (Table 5), for each tissue. The 

criteria for inclusion in these tables is that the term was 

significantly differentially expressed (p<0.05) and 

present in the top-20 terms for the prediction of the 

given expression class. The data mining precision was 

prioritised over enrichment significance, and so they 

have been ranked in the following tables according to 

their precision value. Note that although many of the 

precision values for the top-ranked terms are relatively 

low, they are much higher than the class label’s relative 

frequency (given in the column header), which is the 

precision that a classifier would get by randomly 

classifying the genes. 

 

Terms describing the overexpressed genes were 

predominantly related to immune responses; for instance, 

“Regulation of dendritic cell differentiation” was the best 

predictor of overexpression in both the global and brain 

analyses, with an average precision of 0.613 and 0.298 

respectively, while also being significantly enriched in 

both cases. Likewise, “Complement activation, classical 

pathway” another immune term was highlighted in both 

these analyses, while in brain “Positive regulation of 

podosome assembly” and “Negative regulation of 

leukocyte differentiation” were both identified strongly 

by both analysis methods. 

 

Another theme amongst the overexpressed genes that 

crosses tissues is cellular response functions, 

particularly in relation to stress, for instance terms 

raised by the global analysis include “Cellular response 

to cadmium ion” and “Cellular response to zinc ion”, 

while in heart “Cellular response to vitamin” and “Iron 

ion homeostasis” were identified, and finally in muscle 

“Positive regulation of reactive oxygen species 

metabolic process” was determined to be of interest. 

 

Terms describing the underexpressed genes were less 

precise and in lower number than those describing 

overexpressed genes due to the lower numbers of 

underexpressed genes overall (excepting muscle). The 

global meta-analysis is dominated by metabolic and 

developmental terms, with the metabolic theme being 

shared with muscle (e.g. “Oxaloacetate metabolic 

process” was considered important in both) while the 

developmental theme was shared with the brain. 

Interestingly, the machine learning and enrichment 

analyses shared little specific agreement regarding 

genes underexpressed in the brain, with only two terms 

being agreed on as interesting by both methods, this is 

likely due to the low number of genes underexpressed 

in the brain (16). 

 

Tissue specificity of the ageing transcriptome 

 

To determine if there was an association between tissue 

specificity and the ageing expression signature, the τ 

index of tissue specificity was calculated for all genes 

studied in the meta-analysis, using the expression data 

from the GTEx project. This yielded a bimodal 

distribution of gene specificity, typical of this measure 

(Supplementary Figure 2). 

 

There was a weak negative association detected 

between differential expression with age and high 

 

 
 

Figure 2. Overlap of the global and tissue-specific results of this meta-analysis. (A) Gives the overlap for genes overexpressed with 
age while (B) gives the overlap for genes underexpressed with age. 
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Table 3. Overlap of this current work’s meta-analysis with other relevant gene lists, tested by the hypergeometric 
test (Bonferroni corrected).  

Database Description Size Overlapping p-value 

GenDR Expression signature of dietary restriction in mammals. 158 6 1 

GenAge Curated database of human ageing-related genes. 307 25 1.20e-4 

→ Pro-longevity Human homologues of pro-longevity mouse genes. 80 6 0.290 

→ Anti-longevity Human homologues of anti-longevity mouse genes. 28 3 0.404 

LongevityMap Database of human genetic variants associated with longevity. 358 26 5.74e-4 

The overlap shown includes all differentially expressed genes from the expression datasets, regardless of the direction of 
expression change (611 genes total). Comparisons made are with the GenDR dietary restriction expression signature, the 
human entries of GenAge which includes genes for which evidence exists of their involvement in ageing, human homologues 
of genes shown to be pro- or anti-longevity in mice, and genes with longevity associated variants from LongevityMap. 
 

Table 4. Summary of results from the GO enrichment and feature importance analyses on the genes overexpressed 
with age. 

 

All tissues (Overexpressed) 

GO.ID Term p-value 
Precision 

(0.0251) 

GO:2001198 Regulation of dendritic cell differentiation 2.00e-4 0.613 

GO:0071276 Cellular response to cadmium ion 2.90e-5 0.571 

GO:0071294 Cellular response to zinc ion 3.00e-6 0.452 

GO:0006958 Complement activation, classical pathway 1.30e-6 0.276 

O:0051043 Regulation of membrane protein ectodomain proteolysis 3.30e-4 0.267 

Brain (Overexpressed) 

GO.ID Term p-value 
Precision 

(0.0083) 

GO:2001198 Regulation of dendritic cell differentiation 1.40e-4 0.298 

GO:0006958 Complement activation, classical pathway 3.30e-7 0.135 

GO:0071803 Positive regulation of podosome assembly 7.90e-5 0.128 

GO:1902106 Negative regulation of leukocyte differentiation 2.20e-4 0.118 

GO:0032570 Response to progesterone 9.30e-4 0.109 

Heart (Overexpressed) 

GO.ID Term p-value 
Precision 

(0.0025) 

GO:0071295 Cellular response to vitamin 2.56e-2 0.0761 

GO:0042246 Tissue regeneration 5.90e-3 0.0462 

GO:0055072 Iron ion homeostasis 4.49e-2 0.0323 

GO:0007205 
Protein kinase C-activating G protein-coupled  

receptor signalling pathway 
1.90e-3 0.0289 

GO:0018149 Peptide cross-linking 5.70e-3 0.0285 

Muscle (Overexpressed) 

GO.ID Term p-value 
Precision 

(0.0028) 

GO:0031571 Mitotic G1 DNA damage checkpoint 2.70e-4 0.08 

GO:0032925 Regulation of activin receptor signalling pathway 4.21e-2 0.0566 

GO:0006195 Purine nucleotide catabolic process 6.99e-3 0.0279 

GO:0042771 
Intrinsic apoptotic signaling pathway in response to DNA  

damage by p53 class mediator 
2.70e-4 0.0251 

GO:2000379 Positive regulation of reactive oxygen species metabolic process 5.03e-3 0.025 

Presented here are a selection of terms for each tissue which were both significantly enriched in the given gene list and 
present in the top-20 terms, ranked by precision, for the prediction of a gene as being overexpressed by the Random Forest 
model. The value given between brackets in the Precision column header is the class label’s relative class frequency, i.e. the 
precision that a classifier would get by randomly classifying the genes. 
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Table 5. Summary of results from the GO enrichment and feature importance analyses on the genes underexpressed 
with age.  

 

All tissues (Underexpressed) 

GO.ID Term p-value Precision (0.0090) 

GO:0010510 Regulation of acetyl-CoA biosynthetic process from pyruvate 3.20e-6 0.374 
GO:0006122 Mitochondrial electron transport, ubiquinol to cytochrome c 1.60e-9 0.356 
GO:0006099 Tricarboxylic acid cycle 1.50e-10 0.281 
GO:0006107 Oxaloacetate metabolic process 1.20e-4 0.217 
GO:0007528 Neuromuscular junction development 3.06e-2 0.204 

Brain (Underexpressed) 

GO.ID Term p-value Precision (0.0008) 

GO:0021782 Glial cell development 3.69e-2 0.0489 
GO:0021510 Spinal cord development 4.20e-2 0.0425 

Muscle (Underexpressed) 

GO.ID Term p-value Precision (0.0041) 

GO:0043455 Regulation of secondary metabolic process 1.16e-3 0.203 
GO:0006094 Gluconeogenesis 1.50e-9 0.170 
GO:0061621 Canonical glycolysis 4.30e-6 0.146 
GO:0042776 Mitochondrial ATP synthesis coupled proton transport 4.90e-5 0.119 
GO:0006107 Oxaloacetate metabolic process 9.70e-4 0.103 

Presented here are a selection of terms for each tissue which were both significantly enriched in the given gene list and 
present in the top-20 terms, ranked by precision, for the prediction of a gene as being underexpressed by the Random Forest 
model. The value given between brackets in the Precision column header is the class label’s relative class frequency, i.e. the 
precision that a classifier would get by randomly classifying the genes. It should be noted that the list of genes 
underexpressed in the heart was too small for a meaningful analysis and so has been left out. 

 

(τ>0.8) tissue specificity for overexpressed genes in the 

global (p<1e-10, chi-squared; phi=-0.87) and brain 

(p=2.59e-7; phi=-0.042) analyses, and for 

underexpressed genes in the global (p=6.43e-7, phi=-

0.041) and muscle (p=1.84e-4, phi=-0.033) analyses. 

Complete analysis and median tau values are presented 

in Supplementary Table 2. 

 

Network analysis of ageing signatures 

 

For the protein-protein interactions (PPI) network 

(Supplementary Figure 3A), degree centrality 

(Supplementary Figures 4A–7A, 8) was higher for  

genes over- (median=1.06e-3) and underexpressed 

(median=1.43e-3) in the global analysis when compared 

to unchanged (median=6.23e-4) genes (p<1e-10 and 

p=4.3e-10, respectively). The muscle signature showed 

the same result for overexpressed genes (median=1.37e-

3) although degree was lower (median=9.97e-4) in genes 

underexpressed with age in the muscle compared to 

unchanged (median=6.23e-4) genes (p=0.026 and 

p=0.013, respectively). Interestingly, degree centrality 

was borderline significantly higher in overexpressed 

genes (median=9.35e-4) compared to unchanged genes 

(median=6.23e-4) in the brain (p=0.048), but there was 

no such difference for genes underexpressed in the brain. 

The heart signature showed no difference in degree 

centrality, or indeed any other centrality measure. 

Betweenness centrality in the PPI network 

(Supplementary Figures 4B–7B, 9) saw a very similar 

pattern. As with degree, betweenness was higher in 

genes both over- (median=2.8e-5) and underexpressed 

(median=4.57e-5) in the global analysis when compared 

to unchanged (median=8.59e-6) genes (p<1e-10 and 

p=1.9e-10, respectively), as well as being higher  

in both over- (median=3.5e-5) and underexpressed 

(median=2.29e-5) genes, compared to unchanged 

(median=9e-6) in the muscle (p=0.0138 and p=5.7e-3, 

respectively). Again, betweenness was also higher in 

genes overexpressed (median=2.5e-5) compared to 

unchanged (median=9.02e-6) in the brain (p=3.3e-4), 

but there was no change in genes underexpressed in the 

brain. 

 

Closeness centrality in the PPI network (Supplementary 

Figures 4C–7C, 10) was higher in both over- 

(median=0.331) and underexpressed (median=0.334) 

genes in the global analysis compared to unchanged 

(median=0.321) genes (p=2.7e-10 and p=4.3e-6, 

respectively), however this was not observed in any other 

signature, and the increase in the global signature was 

very small. 

 

For the co-expression network (Supplementary Figure 

3B), degree centrality (Supplementary Figures 11A–14A, 

15) was lower in genes underexpressed in the global 
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(p=1.7e-3, median=9.47e-4) and muscle (p=0.025, 

median=9.92e-4) analyses compared to unchanged  

genes (median=2.08e-3), yet in the brain analysis degree 

was higher in the underexpressed genes (median=1.59e-

2) compared to either overexpressed (p=8.8e-4, 

median=2.08e-3) or unchanged genes (p=5.81e-3, 

median=2.08e-3). 

 

Betweenness centrality in the co-expression network 

(Supplementary Figures 11B–14B, 16) was only 

changed in the brain signature, where, as with degree, 

the underexpressed genes (median=3.98e-4) had a 

higher betweenness than unchanged genes (p=0.034, 

median=7.88e-4), although in this case there was no 

significant difference between over- and underexpressed 

genes. 

 

Finally, closeness centrality in the co-expression network 

(Supplementary Figures 11C–14C, 17) was lower in both 

over- (p<1e-10, median=0.154) and underexpressed 

(p=2.1e-4, median=0.152) genes relative to unchanged 

genes (median=0.163) in the global analysis as well as in 

overexpressed genes in the heart analysis (median=0.145) 

when compared to unchanged genes (p=4.2e-4, 

median=0.163) and underexpressed genes in the muscle 

analysis (median=0.151) when compared to unchanged 

genes (p=1.3e-3, median=0.163). In the brain analysis, 

closeness was lower in the overexpressed genes 

(median=0.154) compared to both unchanged (p=1.1e-5, 

median=0.163) and underexpressed (p=2.8e-5, 

median=0.187) genes, while the underexpressed genes 

also had higher closeness compared to the unchanged 

genes (p=0.021). 

 

Evolutionary conservation of ageing signature genes 

 

There were no significant differences between dN/dS 

ratios (the ratio of nonsynonymous to synonymous 

substitutions between the species) of genes over- or 

underexpressed with age when compared to either 

unchanged genes or to the opposite expression category, 

for either human-mouse or human-rat ratios 

(Supplementary Figures 18, 19). The median values 

tended towards a lower dN/dS in those genes 

underexpressed with age relative to those overexpressed 

with age, with the median dN/dS being 0.096 and 0.093 

in underexpressed genes and 0.12 and 0.11 in 

overexpressed genes for human-mouse and human-rat 

comparisons, respectively. 

 

DISCUSSION 
 

There was a significant overlap between this meta-

analysis and the results of de Magalhães, et al. [4] 

(Figure 1) for both over- and underexpressed genes. 

This overlap, although significant, is not as extensive as 

might have been expected, potentially due to the 

differing biases in microarray and RNA-Seq results 

[10], or the heterogeneity demonstrated in expression 

patterns of the mammalian immune response [11]. 

Despite this, the functional themes of the detected genes 

were much the same with overexpressed genes being 

broadly immune and underexpressed genes being 

broadly metabolic. 

 

Enrichment analysis was coupled with data mining to 

identify GO terms that robustly describe the processes 

associated with the altered genes. Examining the top-

ranked GO terms that these methods agreed on (Tables 

4 and 5) reveals some interesting differences and 

similarities between the studied tissues. The global 

analysis of 127 datasets is typical of previous large-

scale expression studies and meta-analyses [4, 12, 13], 

showing overexpression of immune genes, stress 

responses and proteolysis (Table 4A), as well as 

underexpression of metabolic and energy metabolism. 

The preponderance of inflammatory and stress 

response genes in particular is reminiscent of  

the inflammageing hypothesis [14], which argues  

that ageing is caused by steadily failing responses to 

stress, in particular responses to the increased 

antigenic load that comes with age. Coupled with the 

overexpression of immune and inflammatory genes, 

the underexpression of metabolic genes is implicated 

not just in ageing, but in several ageing-related 

diseases for instance Alzheimer’s [15] and Duchenne 

muscular dystrophy [16]. 

 

A similar profile was seen in the brain with immune 

categories dominating the top-ranked terms, including 

“Regulation of dendritic cell differentiation”, which was 

also the most predictive GO term of overexpression 

with age in the global analysis. There is some evidence 

suggesting a causative role of immune processes in 

brain ageing, for example astrocytosis, abnormal 

proliferation of the cells responsible for (among many 

other functions) regulation of inflammation in the 

central nervous system [17] is associated with loss of 

myelin in Alzheimer’s disease, Parkinson disease and 

ageing [18]. It is possible that changes between 

different brain regions exist that could not be detected 

due to the study design. Indeed, different regions of the 

brain do appear to suffer age-related decline at different 

rates [19]. 

 

Differential ageing between tissues was seen in the 

other analyses as well, and it is unclear to what extent 

tissues age at the same rate. Epigenetic measures  

have shown some minor differences in the rate of 
ageing between breast and other tissues [20], and 

environmental effects accelerate age-related changes in 

exposed tissues, for instance skin ageing is influenced 
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by smoking [21] and air pollution [22]. The extent to 

which such changes can be considered increases in the 

rate of ageing are suspect however [23], it could simply 

be that extrinsic stressors cause damage similar to that 

of ageing. The data presented here suggest some 

differences in transcriptomic ageing between tissues, 

particularly between the overexpressed signatures of the 

brain and the heart/muscle, with the brain showing 

changes in immune categories while the heart and 

muscle show changes in local homeostasis and protein 

catabolism (Table 4). 

 

These categories are consistent with previous analyses 

of ageing transcription signatures. de Magalhães, et al. 
[4] likewise identified several overexpressed immune 

and xenobiotic terms, with metabolic terms being 

enriched in the underexpressed genes; while the more 

recent GTEx consortium analysis of human ageing has 

also reported that genes underexpressed with age in 

multiple tissues are consistently enriched for metabolic, 

in particular mitochondrial, GO terms [12]. 

 

An interesting result was the significant 

underexpression of some immune genes (MLF1, 

FKBP4) in the meta-analysis (Table 2A). Dysregulation 

of the immune system may in part explain why the 

immune response becomes less effective with age, 

indeed old mice have been shown to have increased 

heterogeneity of transcriptional response to immune 

stimulus in their CD4+ T cells, with results suggesting 

that they are less able to upregulate adaptive response 

programs when necessary [24]. 

 

Of the other HAGR databases tested, GenDR and the 

longevity modulating mouse genes from GenAge did not 

show a significant overlap (Table 3). This is possibly due 

to the inclusion of human data in this meta-analysis, 

whereas the dietary restriction signature hosted on 

GenDR is based on mouse, rat and pig [5], and the 

longevity modulating mouse genes may not always be 

transferable to other species, or necessarily be 

differentially expressed. Alternatively, although dietary 

restriction slows ageing, it may do so by affecting 

pathways that are not commonly altered with age and that 

perhaps modulate ageing at a deeper level. While there is 

evidence that dietary restriction is able to reverse many 

ageing transcriptional changes [25, 26], it appears that the 

lifespan extension may be caused by an upregulation of 

stress responses and repair mechanisms [27] and thus 

dietary restriction may combat ageing by improving 

defenses to ageing-related damage, rather than altering 

the ageing processes themselves. Additionally, dietary 

restriction may weaken the adaptive immune system in 
aged organisms [28], whereas the opposite might be 

expected if it were simply reversing or slowing ageing 

processes. 

The significant overlap between the ageing expression 

signature and both GenAge and Longevity Map is 

interesting because the genes recorded in those 

databases are genes with either evidence of involvement 

in ageing or genes with genetic association to longevity, 

neither of which would necessarily be expected to be 

altered with age. One caveat is that a large number of 

immune genes were identified in these expression 

signatures, and several of the largest contributing 

studies in LongevityMap were explicitly studying 

variation in immune genes and how it affects ageing, as 

such LongevityMap would be expected to skew towards 

immune and inflammation genes. 

 

These data suggest the most detectable ageing expression 

changes are those that occur in genes expressed across 

tissues, with a weak negative association observed 

between genes being tissue specific (τ>0.8) and being 

differentially expressed with age for overexpressed genes 

in the global and brain analyses, and underexpressed 

genes in the global and muscle analyses (Supplementary 

Table 2). This result is corroborated by other studies, for 

instance in mice genes differentially expressed with age 

tend to be differentially expressed across multiple tissues, 

although gene expression changes in some tissues, for 

example the liver, do tend to be more tissue-specific [29]. 

Further, the AGEMAP project was able to cluster tissues 

into three modes of ageing: neural, vascular and steroid 

responsiveness [30]. This suggests that while there may 

be distinct ageing transcriptional profiles between tissues, 

there are sets of tissues which age by similar 

mechanisms, with similar expression changes. It should 

be noted that the nature of this meta-analysis means that 

only the most consistently differentially expressed genes 

were detected. As such there is potentially a bias towards 

genes that are both highly expressed and expressed across 

tissues, since these will have been detected in more 

studies. 

 

Interestingly, while the underexpressed signatures 

focused on metabolic and developmental genes, both 

heart and muscle showed distinct overexpressed 

signatures relative to the similar profiles observed in the 

global and brain analyses. The heart, for instance, 

shows a focus on cellular responses including to vitamin 

and iron homeostasis (Table 4C). Iron homeostasis 

deregulation with age has been shown to occur in 

several tissues and is a possible driver of oxidative 

stress in aged tissues, with the activation of iron 

detoxification proteins being a possible adaptive 

measure to such changes [31]. The muscle shows 

overexpression of cell-cycle mediators (Table 4D), 

which while typically associated with cellular 
senescence and the prevention of cancer, are also 

involved in the repair of DNA damage, apoptosis, 

autophagy, immune responses and metabolism [32]. 
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Indeed, apoptosis in skeletal muscle may be one of the 

causes of fiber loss that results in sarcopenia [33]. 

 

Considering the PPI network, the higher degree 

centrality of genes differentially expressed with age in 

most tissues is not especially surprising. Several of the 

identified genes are well studied and PPI data favours 

proteins of high abundance [34] and with high 

publication coverage [35]. Despite this, coupling the 

higher degree centrality with the higher betweenness 

centrality seen in the same tissues (Supplementary 

Figures 8, 9), and the higher closeness centrality seen in 

differentially expressed genes from the global analysis 

(Supplementary Figure 10) there is evidence that genes 

differentially expressed with age tend to be highly 

connected within PPI networks, suggesting possible 

regulatory roles and are thus potential bottlenecks to the 

flow of information through the network, making them 

interesting targets for intervention to study the 

regulation of these networks. 

 
In the co-expression network, degree centrality 

(Supplementary Figure 15) was lower in 

underexpressed genes in the global and muscle 

analyses, yet it was higher in underexpressed genes in 

the brain analysis. This trend was mirrored by 

betweenness centrality (Supplementary Figure 16), 

which was higher in genes underexpressed in the brain 

despite not being changed in any other signature. 

Likewise, while closeness centrality tended to be lower 

in both over- and underexpressed genes across the 

analyses (Supplementary Figure 17) it was higher in 

genes underexpressed in the brain. The high centrality 

of both over- and underexpressed genes in the PPI 

network, but particularly the high centrality of the 

underexpressed brain genes in the co-expression 

network, is interesting since high centrality in biological 

networks can indicate importance in disease with highly 

central genes potentially having dramatic or even lethal 

effects when targeted [36]. Further, co-expression in the 

brain is disrupted by diseases such as Alzheimer’s 

disease [37], making these genes potentially important 

in the pathogenesis of aging brain disease. 

 
To summarise: 1) the ageing expression signature in 

humans, mice and rats can be predominantly described 

as an overexpression of genes associated with immune, 

stress and proteolytic processes coupled with an 

underexpression of genes associated with metabolic, 

particularly mitochondrial, and development processes; 

2) genes differentially expressed with age tend to be 

more highly connected in the protein-protein network, 

particularly in the global and brain signatures; 3) genes 

underexpressed with age in the brain are highly central 

in the co-expression network, suggesting these 

underexpressed genes may have significant effects and, 

we hypothesize, play a role in cognitive ageing and; 4) 

the most detectable genes differentially expressed with 

age tend to be expressed across a broad range of tissues. 

We provide the differential expression results used in 

the meta-analysis (Supplementary Datasets), along with 

the tau scores (Supplementary Table 2) of tissue 

specificity calculated from the GTEx database as a 

resource for the community. These data will be most 

useful as a validation dataset, reflecting as they do the 

most commonly observed genes differentially expressed 

with age, however they may also prove useful for 

further discovery, for instance as features for further 

data mining studies, combining these annotations with 

other databases or fresh experimental data. 

 

MATERIALS AND METHODS 
 

Preparation of the dataset 

 

In total, 127 datasets were downloaded from AGEMAP 

[30] and the Gene Expression Omnibus (GEO) [38] 

(Supplementary Table 1), covering a total of 37 tissues 

and cell types. AGEMAP contains the results of 

microarray experiments on mice at various ages, while 

the GEO datasets downloaded were identified using the 

search string: 

 

“((“age”[Subset Variable Type]) or “development 

stage”[Subset Variable Type]) and “mammals” 

[organism]”, 

 

returning 335 microarray and RNA-Seq datasets. These 

were manually filtered to remove non-single channel 

arrays, single-pathway arrays as well as species that 

were not of interest. Mutant or diseased samples were 

likewise removed. Next, RNA-Seq datasets containing 

raw reads were normalised as reads per kilobase million 

(RPKM), and all datasets were log2 transformed, if they 

were not supplied so already. 

 

Linear regression was carried out on each dataset to 

determine differential expression with age (Equation 1) 

where Yij is the expression level of gene j in sample i, 

Agei is the age at which sample i was taken and ϵij is the 

error term. Coefficients β0 and β1 were estimated by least 

squares, and significance was calculated using an F-test.  
 

0 1  ij j j i ijY Age = + +     (1) 

 

A cumulative binomial test was then used to identify 

genes that were significantly differentially expressed 

across the datasets, taking the probability of success as 

the probability that any gene was not over-/ 

underexpressed in any dataset, the number of trials as 

the number of datasets in which the given gene was 

detected, and the number of successes as the number of 
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datasets in which the given gene was not detected as 

significant. Thus the test asks, “for a gene; given the 

number of times a gene was tested across all the data 

sets, the number of times a gene was significantly 

differentially expressed across all the data sets, and the 

probability of seeing any gene differentially expressed, 

what is the probability that this gene is differentially 

expressed more than we expect to see by chance?”. 

False discovery rate (Q) was controlled by randomising 

the datasets 10,000 times, repeating the analyses with 

these randomised data, and then carrying out a linear 

regression on the simulated results to estimate the p-

value cut-off at which Q<0.05.  

 

The meta-analysis was repeated three times, using only 

the datasets from specific tissues. Thus, four analyses 

were carried out, a global analysis of all tissues (127 

datasets) and tissue-specific analyses of brain (29 

datasets), heart (9 datasets) and muscle (26 datasets). 

 

A summary of the method is given in Supplementary 

Figure 1. 

 

Determination of tissue specificity 

 

The expression data from version 7 of the GTEx project 

[39] was downloaded and used to calculate a τ index for 

each gene. The τ index is an indicator of how 

specifically or broadly expressed a gene is, with a τ of 1 

indicating expression specific to only one tissue, and a τ 

of 0 indicating equal expression across all tissues [40]. 

The τ index for a given gene can be calculated as shown 

in Equation 2, where N is the number of tissues being 

studied and xi is the expression profile component for a 

given tissue, normalised by the maximal component 

value for that gene (i.e. the expression of that gene in 

the tissue it is most highly expressed in). 

 

( )
1
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N
 =
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=

−


    (2) 

 

Analysis of differentially expressed genes 
 

Comparison with relevant ageing gene lists  

The overlap between the global signature and relevant 

ageing gene lists was tested using the hypergeometric 

test [41] with all the genes included in the meta-

analysis as the background set. When comparing to  

the GenAge expression signature, over- and under-

expressed genes were considered separately. 

Comparison to the other Human Ageing Genomic 

Resource (HAGR) databases (human genes from 

GenAge [8], GenDR [5] and LongevityMap [9]) was 

performed ignoring the direction of expression change 

(Bonferroni corrected). 

Tissue specificity of ageing genes 

The association between differential expression with 

ageing according to the meta-analysis and tissue 

specificity (defined as a having τ index of >0.8 based on 

the GTEx data) was tested using a chi-squared test and 

the phi coefficient was calculated to indicate the 

strength of the correlation. Association was tested for 

both over- and underexpressed genes, for all four meta-

analyses (Bonferroni corrected). 

 

Enrichment analysis 

The topGO package (v2.28.0) [42] was used in the R 

programming environment using the weight01 

algorithm [43] and Fisher’s exact test to calculate 

enrichment of GO terms. Genes were mapped to the 

GO-2017-03-29 release since this is the release utilised 

by the GO.db package version in Bioconductor 3.5 [44]. 

 

Rule-based precision analysis 

To complement the enrichment analysis, Random 

Forest (RF) machine learning models were used to 

identify the most important GO terms for the 

classification of genes as over- or underexpressed with 

age. The RF algorithm builds many Random Trees (RT) 

during its training (model construction) phase. Each 

node in a RT contains a condition that splits the 

instances (the genes) into two subsets according to the 

values of the selected feature (in our case, the presence 

or absence of a GO term in a gene), creating two child 

nodes. The RF algorithm aims to select features that 

best split genes (based on their change in expression 

label) into the two groups, so that genes of different 

class labels (over vs. under-expressed) are assigned as 

much as possible to different groups. Next, the 

algorithm re-runs the previously described split 

procedure in the two newly generated groups until some 

user-defined condition is met. 

 

To predict the class label of an unseen gene, for every 

RT, the conditions in the tree (starting in the root node) 

are matched against the gene’s features (GO terms from 

GO-2017-03-14) until a leaf node is reached. When the 

instance (gene) reaches a leaf node, the most frequent 

class in the node is selected to be the prediction of the 

tree. The final prediction of the whole RF model is 

defined by the simple voting of all RTs. 

 

We used Rule-Based Precision (RBP) [45] to measure 

the importance of features used by the model. Briefly 

speaking, to measure the RBP we build several RFs, 

where each of them in turn comprises many RTs. For 

each tree and feature (a GO term), we identify all paths 

in the decision trees from root to leaf that use the 
positive value of the GO term feature, that is, paths in 

the tree that “capture” a gene only if the GO term 

annotates that gene. Then, the method calculates the 
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overall precision of these paths, and uses this precision 

to rank the GO terms regarding predictive power. The 

main motivation for using the RBP measure is that it 

was designed specifically to reward “positive” feature 

values (GO term annotations), rather than “negative” 

feature values (lack of GO term annotations), since the 

former are more reliable. Actually, a negative feature 

value denotes lack of evidence, rather than evidence for 

the absence of a given gene function. 

 

Network analysis 

The human PPI network was downloaded from 

BioGRID version 3.3.123 [46] and non-physical 

interactions were removed, leaving 219,240 

interactions. Additionally, an unweighted co-expression 

network of highly correlated genes from the 

GeneFriends RNA-seq co-expression map (V3.1) was 

also used [47]. The betweenness, closeness and degree 

(normalised by dividing by the maximum degree of a 

graph n-1, where n is the number of nodes in graph G) 

of each gene in these networks were calculated using 

the ‘networkx’ Python library [48], and the average 

betweenness, closeness and degree of the genes in each 

expression signature was determined. The centrality 

measures of over- and underexpressed genes were then 

compared to their opposite category, as well as the non-

differentially expressed genes by pairwise Mann-

Whitney U tests (Bonferroni corrected). 

 

dN/dS analysis 

To identify any differences in the evolutionary 

conservation of genes differentially expressed with age, 

the dN/dS ratios for comparison between humans and 

mice, and humans and rats were obtained from Ensembl 

Biomart release 96, keeping only those genes with 1 to 

1 ortholog homology type between the relevant species 

and high orthology confidence. These dN/dS ratios 

compare the rates of synonymous and nonsynonymous 

substitutions between species for a given gene, giving 

an idea of the type of selection that gene may be under, 

if any [49]. The distribution of dN/dS scores was 

compared by pairwise Mann-Whitney U tests 

(Bonferroni corrected) across all comparisons between 

genes overexpressed with age, underexpressed with age 

and unchanged with age. 

 

Data availability 

 

The data that supports the findings of this study are 

available in the supplementary material of this article, 

which are available on the Integrative Genomics of 

Ageing Group AgeingSignatures2020_supplementary 

GitHub repository (https://github.com/maglab/Ageing 
Signatures2020_supplementary). These data were 

derived from the resources listed in Supplementary 

Table 1. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Summary of the meta-analysis method. 

 

 
 

Supplementary Figure 2. Distribution of τ tissue specificity scores in the whole GTEx expression dataset. A τ specificity index of 

0 indicates complete nonspecific expression while an index of 1 indicates completely specific expression. 
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Supplementary Figure 3. Interaction networks showing the locations of the overexpressed (red) and underexpressed (blue) genes in the 

(A) BioGRID PPI network and the (B) GeneFriends coexpression network. 
 

 
 

Supplementary Figure 4. Distributions of degree (normalised by dividing by the maximum degree of a graph n‐1, where n is the number of 

nodes in graph G) (A), betweenness (B) and closeness (C) centrality measures in a genome‐wide PPI network for overexpressed, 
underexpressed and unchanged genes from the global analysis 
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Supplementary Figure 5. Distributions of degree (normalised by dividing by the maximum degree of a graph n-1, where n is the number of 
nodes in graph G) (A), betweenness (B) and closeness (C) centrality measures in a genome-wide PPI network for overexpressed, 
underexpressed and unchanged genes from the brain analysis. 

 

 
 

Supplementary Figure 6. Distributions of degree (normalised by dividing by the maximum degree of a graph n‐1, where n is the number of 
nodes in graph G) (A), betweenness (B) and closeness (C) centrality measures in a genome‐wide PPI network for overexpressed, 
underexpressed and unchanged genes from the heart analysis. 
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Supplementary Figure 7. Distributions of degree (normalised by dividing by the maximum degree of a graph n‐1, where n is the number of 

nodes in graph G) (A), betweenness (B) and closeness (C) centrality measures in a genome‐wide PPI network for overexpressed, 
underexpressed and unchanged genes from the muscle analysis. 

 

 
 

Supplementary Figure 8. Median degree (normalised by dividing by the maximum degree of a graph n‐1, where n is the 
number of nodes in graph G) values in a genome‐wide PPI network for overexpressed, underexpressed and unchanged 
genes from each analysis. * indicates significance tested by a Mann‐Whitney U test (Bonferroni corrected). 
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Supplementary Figure 9. Median betweenness values in a genome-wide PPI network for overexpressed, underexpressed 
and unchanged genes from each analysis. * indicates significance tested by a Mann-Whitney U test (Bonferroni corrected). 

 

 
 

Supplementary Figure 10. Median closeness values in a genome-wide PPI network for overexpressed, underexpressed and 
unchanged genes from each analysis. * indicates significance tested by a Mann-Whitney U test (Bonferroni corrected). 
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Supplementary Figure 11. Distributions of degree (normalised by dividing by the maximum degree of a graph n-1, where n is the number 
of nodes in graph G) (A), betweenness (B) and closeness (C) centrality measures in an unweighted co-expression network extracted from 
GeneFriends for overexpressed, underexpressed and unchanged genes from the global analysis. 

 

 
 

Supplementary Figure 12. Distributions of degree (normalised by dividing by the maximum degree of a graph n-1, where n is the number 
of nodes in graph G) (A), betweenness (B) and closeness (C) centrality measures in an unweighted co-expression network extracted from 
GeneFriends for overexpressed, underexpressed and unchanged genes from the brain analysis. 
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Supplementary Figure 13. Distributions of degree (normalised by dividing by the maximum degree of a graph n-1, where n is the number 
of nodes in graph G) (A), betweenness (B) and closeness (C) centrality measures in an unweighted co-expression network extracted from 
GeneFriends for overexpressed, underexpressed and unchanged genes from the heart analysis. 

 

 
 

Supplementary Figure 14. Distributions of degree (normalised by dividing by the maximum degree of a graph n-1, where n is the number 
of nodes in graph G) (A), betweenness (B) and closeness (C) centrality measures in an unweighted co-expression network extracted from 
GeneFriends for overexpressed, underexpressed and unchanged genes from the muscle analysis. 
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Supplementary Figure 15. Median degree (normalised by dividing by the maximum degree of a graph n-1, where n is the 
number of nodes in graph G) values in an unweighted co-expression network extracted from GeneFriends for 
overexpressed, underexpressed and unchanged genes from each analysis. * indicates significance tested by a Mann-Whitney U test 

(Bonferroni corrected). 
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Supplementary Figure 16. Median betweenness values in an unweighted co-expression network extracted from GeneFriends 
for overexpressed, underexpressed and unchanged genes from each analysis. * indicates significance tested by a Mann-Whitney U 
test (Bonferroni corrected). 
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Supplementary Figure 17. Median closeness values in an unweighted co-expression network extracted from GeneFriends for 
overexpressed, underexpressed and unchanged genes from each analysis. * indicates significance tested by a Mann-Whitney U test 

(Bonferroni corrected). 
 

 
 

Supplementary Figure 18. Distribution of human-mouse dNdS scores for the different gene classifications (not differentially 
expressed, overexpressed and underexpressed). 
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Supplementary Figure 19. Distribution of human-rat dNdS scores for the different gene classifications (not differentially 
expressed, overexpressed and underexpressed). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 to 27. 

 

Supplementary Table 1. List of all datasets used in the meta-analysis. 

Supplementary Table 2. Tau scores for the GTEx dataset and their association results with this meta-analysis. 

Supplementary Table 3. Genes significantly overexpressed with age across all tissues. 

Supplementary Table 4. Genes significantly overexpressed with age in the brain. 

Supplementary Table 5. Genes significantly overexpressed with age in the heart. 

Supplementary Table 6. Genes significantly overexpressed with age in muscle. 

Supplementary Table 7. Genes significantly underexpressed with age across all tissues. 

Supplementary Table 8. Genes significantly underexpressed with age in the brain. 

Supplementary Table 9. Genes significantly underexpressed with age in the heart. 

Supplementary Table 10. Genes significantly underexpressed with age in muscle. 

Supplementary Table 11. Enrichment analysis results for the overexpressed genes from the global analysis. 

Supplementary Table 12. Enrichment analysis results for the underexpressed genes from the global analysis. 

Supplementary Table 13. Enrichment analysis results for the overexpressed genes from the brain analysis. 

Supplementary Table 14. Enrichment analysis results for the underexpressed genes from the brain analysis. 

Supplementary Table 15. Enrichment analysis results for the overexpressed genes from the heart analysis. 

Supplementary Table 16. Enrichment analysis results for the underexpressed genes from the heart analysis. 

Supplementary Table 17. Enrichment analysis results for the overexpressed genes from the muscle analysis. 

Supplementary Table 18. Enrichment analysis results for the underexpressed genes from the muscle analysis. 

Supplementary Table 19. Random Forest results ranking GO terms by their ability to predict a gene being classified 
as overexpressed in the global analysis. 

Supplementary Table 20. Random Forest results ranking GO terms by their ability to predict a gene being classified 
as underexpressed in the global analysis. 

Supplementary Table 21. Random Forest results ranking GO terms by their ability to predict a gene being classified 
as overexpressed in the brain analysis. 

Supplementary Table 22. Random Forest results ranking GO terms by their ability to predict a gene being classified 
as underexpressed in the brain analysis. 

Supplementary Table 23. Random Forest results ranking GO terms by their ability to predict a gene being classified 
as overexpressed in the heart analysis. 

Supplementary Table 24. Random Forest results ranking GO terms by their ability to predict a gene being classified 
as underexpressed in the heart analysis. 



 

www.aging-us.com 3340 AGING 

Supplementary Table 25. Random Forest results ranking GO terms by their ability to predict a gene being classified 
as overexpressed in the muscle analysis. 

Supplementary Table 26. Random Forest results ranking GO terms by their ability to predict a gene being classified 
as underexpressed in the muscle analysis. 

Supplementary Table 27. Gene lists at the intersections of the tissue specific analyses. 
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Supplementary Datasets 
 

Please browse Full Text version to see the data of Supplementary Datasets 1, 2 in 

(https://github.com/maglab/AgeingSignatures2020_supplementary). 

 

Supplementary Dataset 1. The processed expression matrices ready for differential expression analysis. 

Supplementary Dataset 2. The differential expression analysis results of the matrices in Dataset 1. 

 

https://github.com/maglab/AgeingSignatures2020_supplementary

