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INTRODUCTION 
 

Hypoxia is a common microenvironmental feature of 

solid tumors including hepatocellular carcinoma (HCC). 

It leads to HCC cell proliferation activation, apoptosis 

inhibition, metabolic reorganization, immune escape, 

genetic instability, drug resistance, and angiogenesis  

[1, 2]. Hypoxia exposure of HCC tissues is related to the 

poor prognosis of patients [3]. Tumor tissue hypoxia 

caused by treatments such as transhepatic arterial 

chemotherapy and embolization may aggravate the 

malignant phenotype of HCC cells and impede the 
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ABSTRACT 
 

The present study was designed to update the knowledge about hypoxia-related multi-omic molecular 
landscape in hepatocellular carcinoma (HCC) tissues. Large-size HCC datasets from multiple centers were 
collected. The hypoxia exposure of tumor tissue from patients in 10 HCC cohorts was estimated using a 
novel HCC-specific hypoxia score system constructed in our previous study. A comprehensive 
bioinformatical analysis was conducted to compare hypoxia-associated multi-omic molecular features in 
patients with a high hypoxia score to a low hypoxia score. We found that patients with different exposure 
to hypoxia differed significantly in transcriptomic, genomic, epigenomic, and proteomic alterations, 
including differences in mRNA, microRNA (miR), and long non-coding RNA (lncRNA) expression, differences 
in copy number alterations (CNAs), differences in DNA methylation levels, differences in RNA alternative 
splicing events, and differences in protein levels. HCC survival- associated molecular events were identified. 
The potential correlation between molecular features related to hypoxia has also been explored, and 
various networks have been constructed. We revealed a particularly comprehensive hypoxia-related 
molecular landscape in tumor tissues that provided novel evidence and perspectives to explain the role of 
hypoxia in HCC. Clinically, the data obtained from the present study may enable the development of 
individualized treatment or management strategies for HCC patients with different levels of hypoxia 
exposure. 

mailto:li.mingyue@szhospital.com
mailto:liu.liping@szhospital.com
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 6526 AGING 

therapeutic effect [4, 5]. Before formulating treatment 

measures for hypoxia, revealing the molecular 

mechanism is necessary. Studies have revealed  

the molecular mechanism by which hypoxia plays a role 

in tumors [6]. However, most of this evidence was 

obtained from in vitro cell studies and animal models, 

while little was obtained from the tissues of HCC 

patients because it is not convenient to evaluate the 

hypoxia exposure of the tissues of the patients [7]. The 

molecular landscape present in hypoxia-exposed HCC 

tissues still lacks a comprehensive description. In order 

to benefit patients, especially for the development of 

precision medicine and individualized medicine, a large 

amount of tissue-level evidence is urgently needed. 

Bhandari reported on molecular landmarks of tumor 

hypoxia across 19 cancer types [8]. Based on TCGA 

data, Ye et al revealed hypoxia-associated molecular 

features to aid hypoxia-targeted therapy [9]. These 

studies mentioned some data about HCC, but the 

signature they used to assess the degree of HCC tissue 

hypoxia was not HCC specific, and the description of the 

molecular feature caused by hypoxia in HCC was not 

comprehensive enough. In our previous works, a novel 

HCC-specific hypoxia signature containing 21 stable 

hypoxia-related genes was constructed using mRNA 

expression data. Based on the 21-gene signature, we 

grouped patients from 10 HCC cohorts into high 

hypoxia exposure and low hypoxia exposure groups. 

Next, we comprehensively compared changes in 

hypoxia-related molecular features in two groups from 

genomic, epigenomic, transcriptomic, and proteomic 

perspectives to deduce the hypoxia induced molecular 

landscape. We believe that the molecular landscapes 

revealed in the present study will provide useful 

information for developing therapy strategies of HCC. 

 

RESULTS 
 

Transcriptomic alterations in HCC patients with 

different hypoxia scores 
 

In the previous studies, we established a hypoxia score 

system based on a novel HCC-specific 21-gene hypoxia 

signature that could be used to effectively estimate the 

hypoxia exposure in HCC tissues. In the 10 GEO 

datasets and the TCGA dataset, hypoxia scores of each 

tumor tissue samples were calculated. Patients were 

significantly grouped as high hypoxia exposure group 

and low hypoxia exposure group according to the 

hypoxia score (Supplementary Figure 1). First, we 

analyzed the differences in mRNA expression between 

HCC patients with high hypoxia scores (greater than the 

upper quartile) and those with low hypoxia scores (less 

than the lower quartile) cross the 11 HCC datasets. Here, 

mRNA with log2FC > 0.58 or log2FC <-0.58 and 

adjusted P < 0.05 were defined as differentially 

expressed mRNA (DE-mRNA). In these cohorts, the 

proportion of DE-mRNA in the total mRNA measured 

was positively correlated with the interquartile range 

(IQR) of the liver cancer tissue hypoxia scores in this 

cohort (Figure 1A), suggesting that the difference in 

mRNAs was to some extent caused by the difference in 

hypoxia scores. We counted the frequency of each 

mRNA identified as a DE-mRNA in all cohorts and 

included DE-mRNAs with a frequency equal to or 

greater than 5 in the high frequency/DE-mRNA 

(HF/DE-mRNA) list. The mRNA changes in this list 

were relatively consistent among the 10 cohorts. A total 

of 371 mRNAs were selected, including 192 upregulated 

DE-mRNAs and 179 down-regulated DE-mRNAs. For a 

complete HF/DE-mRNA list, see Additional File 1: 

Supplementary Table 2. Based on the clinical data from 

the TCGA-LIHC and GSE14520 datasets, we performed 

survival analysis on 371 HF/DE-mRNAs (logrank test, 

cut-off = median expression level of candidate mRNA). 

Through Venny analysis, we integrated the survival data 

from the TCGA-LIHC and GSE14520 datasets and 

obtained 129 HF/DE-mRNAs related to HCC survival 

(logrank PTCGA-LIHC & logrank PGSE14520 < 0.05), which 

included 59 risk factors (HRTCGA-LIHC & HRGE14520 > 1) 

and 70 protective factors (HRTCGA-LIHC & HRGE14520 <1). 

There were 51 HF/DE-mRNAs that met the logrank P < 

0.01 and HR < 0.7 or > 1.3 requirements in both of 

TCGA-LIHC and GSE14520 (Figure 1B). The results of 

the HF/DE-mRNA survival analysis (logrank test) are 

shown in Additional File 1: Supplementary Table 3. 

 

Hypoxia-inducible factor 1-alpha (HIF-1A) plays a core 

role in hypoxia. 2450 potential transcription targets 

genes of the HIF1A transcription factor predicted using 

the known transcription factor binding site motifs from 

the TRANSFAC Predicted Transcription Factor Targets 

database. 10%-15% of the upregulated DE-mRNAs in 

each cohort may be potential transcription targets of 

HIF-1A (Figure 1C). Among these potential HIF-1A 

transcription targets, DE-mRNAs with a frequency 

higher than 5 among ten cohorts are shown in Figure 

1D; most are risk factors for survival. Besides, although 

HIF-1A protein levels are known to be regulated after 

translation under hypoxic conditions, 10 HCC datasets 

indicated that the mRNA level of HIF-1A significantly 

increased in the high hypoxia score group and showed a 

significantly positive correlation with the hypoxia score 

(Figure 1E, 1F). 

 

To further reveal the functions of HF/DE-mRNAs, the 

enrichments of biological processes and pathways 

involving HF/DE-mRNA were analyzed using data from 

different sources, such as Gene Ontology (GO) 
biological processes, Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways, Reactome Gene Sets,  

and Canonical Pathways (Figure 2A). In addition to the 
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Figure 1. The mRNA alterations in hepatocellular carcinoma (HCC) patients with high hypoxia scores and low hypoxia scores. 
(A) Hypoxia scores were calculated based on the 21-gene hypoxia signature. According to the upper quartile and the lower quartile, patients 
were divided into a high hypoxia score group and a low hypoxia score group. In the 11 HCC cohorts, the percentage of differentially 
expressed (DE)-mRNAs among all mRNAs measured was positively proportional to the interquartile range (IQR) of the hypoxia scores. (B) A 
total of 51 high frequency/DE-mRNAs (HF/DE-mRNAs) are correlated to HCC patient survival in both TCGA-LIHC and GSE14520. The heat map 
shows the difference in the expression of these mRNAs between the high hypoxia score group and the low hypoxia score group in the 10 HCC 
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cohorts, that is, the log2 (fold change) between the two groups. The forest plot indicates the hazard ratios (HRs) of these mRNAs for OS in the 
survival analysis (all logrank P < 0.01, HR < 0.7 or > 1.3, cut-off value = median expression level). (C) The percentage of transcription targets 
with differentially expressed hypoxia-inducible factor 1-alpha (HIF-1A) in a dataset for all DE-mRNAs in the dataset. (D) Thirty-six mRNAs may 
function as transcription targets of HIF-1A, and the upregulation trends are consistent in the 10 HCC datasets. The heat map shows the 
difference in the expression of these mRNAs between the high hypoxia score group and the low hypoxia score group. The forest plot 
indicates the HRs of these mRNAs for OS in the survival analysis (cut-off = median expression level). (E) The differences in HIF-1A mRNA 
expression levels between the high hypoxia score group and the low hypoxia score group in 10 HCC datasets. (F) Correlations between HIF-1A 
mRNA expression levels and hypoxia scores for the 10 HCC datasets. 

 

response to hypoxia, HF/DE-mRNAs are mainly 

involved in biological processes related to metabolism, 

including glucose metabolism, lipid metabolism, and 

amino acid metabolism. As expected, pathway 

enrichment analysis results for data from multiple 

sources all showed significant enrichment of the HIF-1 

pathway and glucose metabolism pathways; other 

enriched pathways were mainly related to various 

metabolic pathways. Besides, some classical tumor-

related pathways, such as the PI3K-AKT signaling 

pathway and activated protein kinase (AMPK) signaling 

pathway, were also significantly enriched (Additional 

File 1: Supplementary Table 4). The pathways related to 

the regulation of the extracellular matrix were also 

associated with HF/DE-mRNAs. Therefore, we 

hypothesized that hypoxia exposure might affect the 

extracellular matrix, which determines tumor invasion 

and metastasis. To find the connection between terms in 

the enrichment analysis of biological processes and 

pathways, we clustered the terms and constructed a 

network (Figure 2B). The name of each cluster was the 

name of the most representative term, and the node size 

was the number of genes in the term. The names of all 

nodes can be found in Additional File 2. For the HF/DE-

mRNA translation products, protein-protein interaction 

(PPI) enrichment analysis was carried out with the 

following databases: BioGrid6, InWeb_IM7, and 

OmniPath8. We constructed a PPI enrichment network 

of physical interactions using molecular complex 

detection (MCODE) (Figure 2C). The names of all 

nodes are listed in Additional File 3. The annotation of 

each MCODE is shown in Additional File 1: 

Supplementary Table 5. In addition to focusing on 

HF/DE-mRNAs, we used gene set enrichment analysis 

(GSEA) to reveal differences between hallmark gene 

sets between the high hypoxia score group and the low 

hypoxia score group based on all mRNA differences 

between the two groups (Figure 2D). The hypoxia gene 

set was upregulated in all cohorts with high hypoxia 

scores. The genes composing the glycolysis gene set was 

upregulated in the high hypoxia score groups of 9 

cohorts. Other upregulated gene sets with high 

consistency in the 10 cohorts included the P53 pathway, 

PI3K/AKT/mammalian target of rapamycin (mTOR) 

signaling, TNFA signaling via NFKB, unfolded protein 

response, TGF-beta signaling, and MTORC1 signaling. 

Although the fatty acid metabolism pathway was 

downregulated in the high hypoxia score groups in the 

TCGA-LIHC and GSE14520 cohorts, downregulation 

was not consistent among the other pathways. After 

applying a bimodality filter and weighted gene 

correlation network-based clustering, Hoadley's team 

identified 22 nonredundant gene programs related to the 

biological behaviors of tumors [10]. We found 15 gene 

programs that were significantly different between the 

high hypoxia score group and the low hypoxia score 

group (Figure 2E), and the single-sample GSEA z-scores 

for some cancer-promoting gene programs increased in 

patients with high hypoxia scores. 

 

We used TCGA-LIHC data to analyze the differences in 

microRNAs (miRs) in HCC tissues with high hypoxia 

scores and low hypoxia scores. The miRs with log2FC > 

0.58 or log2FC < -0.58 and adjusted P < 0.05 were 

defined as differentially expressed miRs (DE-miRs). We 

found a total of 63 DE-miRs, including 39 upregulated 

DE-miRs and 24 downregulated DE-miRs. Survival 

analysis showed that some DE-miRs were related to the 

OS rate (logrank test, cut-off = median expression level) 

of HCC patients (Figure 3A and Additional File 1: 

Supplementary Table 6). In our study, miR-210-3p had 

the smallest adjusted P value among the upregulated 

DE-miRs (log2FC = 2.41). Survival analysis using the 

median expression level as the cut-off showed that miR-

210-3p had the largest HR (logrank P < 0.05) and that 

high miR-210-3p expression indicated a poor prognosis. 

Additionally, the passenger strand of miR-210 (miR-

210-5p) was significantly upregulated in HCC tissues 

with high hypoxia scores, and high miR-210-5p 

expression also indicated a poor prognosis. Among the 

downregulated DE-miRs, miR-139-5p had the smallest 

adjusted P value (log2FC = -0.68). The response of miR-

139-5p to hypoxia has not been reported. We found that 

low miR-139-5p expression indicates poor outcomes of 

HCC patients. Next, we predicted target mRNAs of  

DE-miRs. Combined with the HF/DE-mRNAs list,  

we obtained 2 independent DE-miRs-HF/DE-mRNAs 

networks, including upregulated DE-miRs/downregulated 

DE-mRNAs and downregulated DE-miRs/upregulated 

DE-mRNAs (Supplementary Figure 2). HIF-1A mRNA 

has a targeted relationship with some downregulated 

miRs, such as miR-101-3p and miR-194-3p. These miRs 

can explain the increase in HIF-1A mRNA expression  

in the high hypoxia score groups of the 10 cohorts. 
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Figure 2. Biological processes and pathway functional enrichment analysis of 371 high frequency/DE-mRNAs (HF/DE-mRNAs) 
extracted from 10 hepatocellular carcinomas (HCC) datasets. (A) The top 20 (sorted by P-value) from each enrichment analysis result 

for GO biological processes of HF/DE-mRNAs and the pathway enrichment analysis results for 3 data sources. (B) A clustering network formed 
by correlated terms from the functional enrichment analysis. (C) Protein-protein interaction (PPI) enrichment network of HF/DE-mRNA 
translation products constructed based on the molecular complex detection (MCODE) algorithm. (D) Gene set enrichment analysis (GSEA) of 
HF/DE-mRNAs in 10 datasets, showing the pathways with P < 0.05 and false detection rate (FDR) <0.25. The reference gene sets are the 
hallmark gene sets. In the TCGA-LIHC dataset, (E) the differences between the high hypoxia score group and the low hypoxia score group in 
15 gene programs related to biological behaviors of tumors. These gene programs were identified by Hoadley's team, and the upregulation 
and downregulation trends were calculated as single-sample GSEA z-scores. 
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A survival-related refined network was obtained by 

combining the survival analysis results (Figure 3B). In 

this refined DE-miR/DE-mRNA network, all nodes were 

associated with the survival rate of HCC patients 

(logrank P < 0.05), and a negative correlation between 

nodes was indicated (r < -0.4 and P < 0.05). For 

example, miR-194-5p showed low expression in the 

high hypoxia score group, which was a protective factor 

for the survival rate. Its potential target genes, SOX4, 

HK2, MARCKS, and LHFPL2, showed high expression 

in the high hypoxia score group and were risk factors for 

the OS rate. The expression of miR-194-5p was 

significantly negatively correlated with the mRNA 

expression of SOX4, HK2, MARCKS, and LHFPL2. 

The elements in the refined DE-miR/DE-mRNA 

network should receive more attention. We performed 

KEGG pathway enrichment analysis on all target genes 

of DE-miRs. The enrichment results of the top 20 

(according to the P-value) were shown in Figure 3C. 

Some important classical pathways related to tumor 

development, such as the Hippo pathway, TGF-beta 

pathway, Ras signaling pathway, mTOR pathway, PI3K-

AKT pathway, Wnt pathway, and AMPK pathway, were 

involved. This result further suggests that these DE-

miRs may have an unignorable role in HCC tissues with 

high hypoxia scores. Besides, more than 80% (54/63) of 

the DE-miRs had at least one target gene enriched in the 

HIF-1 signaling pathway. This confirms that DE-miRs 

identified by the 21-gene hypoxia signature is indeed 

hypoxic-related. 

 

Through the 21-gene signature, we revealed the presence 

of long non-coding RNAs (lncRNAs) that respond to 

and influence hypoxia exposure. In HCC tissues of 

patients with high hypoxia scores and low hypoxia 

scores, we found 719 differentially expressed lncRNAs 

(DE-lncRNAs), including 499 upregulated DE-lncRNAs 

and 220 downregulated DE-lncRNAs. The top-50  

DE-lncRNAs (sorted by adjusted P) and survival 

analysis results (logrank test, cut-off = median 

expression level) are shown in Figure 3D. The complete 

lists of DE-lncRNAs and survival analysis results can be 

found in Additional File 1: Supplementary Tables 7, 8, 

respectively. miR210HG exhibited the most significant 

change (log2FC = 2.21) among the upregulated DE-

lncRNAs. Higher miR210HG suggested poorer survival 

(HR = 1.82, logrank P < 0.05). Similarly, lncRNAs 

AC124798 and AC061992 were also upregulated in the 

high hypoxia score group and suggested poor prognosis. 

In addition, lncRNAs LNC00671 and FAM99A were 

downregulated in the high hypoxia score group, which 

might be protective factors for prognosis. Based on 

competing endogenous RNA (ceRNA) theory and 
expression changes, we constructed a DE-lncRNA-DE-

microRNA-HF/DE-mRNA network (Figure 3E). The 

relationship between each node and the survival rate for 

HCC patients was identified, and a negative correlation 

between nodes was also indicated. The miR-lncRNA 

relationship in the network was supported by 

experimental evidence (provided by DIANA-LncBase). 

Taking lncRNA-SNHG12 as an example, it exhibits 

high expression in the high hypoxia score group and is a 

risk factor for the survival of HCC patients. lncRNA-

SNHG12 and miR-194-3p may have sequence 

complementarity. miR-194-3p was low in the high 

hypoxia score group and thus is a protective factor for 

HCC patient survival. The target mRNAs of miR-194-3p 

were TM4SF1 and HIF-1A. TM4SF1 and HIF-1A 

showed high expression in the high hypoxia score group 

and thus were risk factors for HCC patient survival. 

TM4SF1, HIF-1A, and SNHG12 showed a significantly 

negative correlation with miR-194-3p. Therefore,  

a hypoxia-responsive lncRNA-SNHG12/miR-194-3p/ 

TM4SF1 or HIF-1A ceRNA network is likely to present 

in the cancer tissues of HCC patients, and the ceRNA 

network is involved in tumor development and is related 

to patient prognosis. Leaving out sequence 

complementarity, we constructed the co-expression 

networks of all HF/DE-mRNAs, DE-miRs, and DE-

lncRNAs (|Pearson r| > 0.8 and P < 0.05), including a 

positive co-network (Supplementary Figure 3A, Pearson 

r > 0.8 for all nodes) and a negative co-expression 

network (Supplementary Figure 3B, Pearson r < -0.8 for 

all nodes); the hub genes in the 2 networks were 

SERPINC1 and PKM, respectively. SERPINC1 was 

significantly downregulated in the high hypoxia score 

groups of 6 cohorts while PKM was significantly 

upregulated in the high hypoxia score groups of 10 

cohorts (Supplementary Figure 3C). Compared with 

those in normal tissues, SERPINC1 was significantly 

lower and PKM was significantly higher in HCC tissues 

(Supplementary Figure 3D). Combined with the survival 

analysis results (Supplementary Figure 3E), we 

speculated that SERPINC1 and PKM play important 

roles, namely, cancer-suppressing and cancer-promoting 

functions, respectively, under hypoxia exposure. 

Supplementary Figure 4 displays all mRNAs and 

lncRNAs related to HIF-1A mRNA levels (|Pearson r|> 

0.4 and P < 0.05), and the relationship between nodes 

and survival was indicated. Among miRs, only 

microRNA-194-3p and microRNA-194-5p had a 

significantly negative correlation with HIF-1A. These 

data may help to explain the differences in HIF-1A 

mRNA between groups with high hypoxia scores and 

reflect the core role of HIF-1A mRNA. 

 

Genomic alterations in HCC patients with different 

hypoxia scores 

 
TCGA-LIHC data were used to reveal somatic copy 

number aberrations (CNAs) and somatic single-

nucleotide variants (SNVs) in HCC patients with 



 

www.aging-us.com 6531 AGING 

 
 

Figure 3. miRNA and long non-coding RNA (lncRNA) alterations in HCC patients with high hypoxia scores and low hypoxia 
scores. (A) A total of 63 DE-miRNAs were significantly upregulated or downregulated in the high hypoxia score group. The forest plot 

indicates the hazard ratios (HRs) of these miRNAs for overall survival (OS) in the survival analysis (logrank test). (B) Some DE-miRNAs and 
HF/DE-mRNAs constitute a survival-related target interaction network. All nodes in the network are correlated with HCC patient survival in 
TCGA-LIHC (logrank P < 0.05, cut-off = median expression level). The correlations between the nodes were calculated using Pearson 
correlation analysis. (C) Top 20 (sorted by P-value) KEGG pathway enrichment analysis results from 633 DE-miRNA target genes. (D) Top 50 
(sorted by adjusted P-value) DE-lncRNAs that were significantly upregulated or downregulated in the high hypoxia score group. The forest 
plot indicates the hazard ratios (HRs) of these lncRNAs for OS in the survival analysis (logrank test). (E) The refined DE-lncRNA–DE-miRNA–
HF/DE-mRNA ceRNA network. The correlations between nodes were calculated by Pearson correlation analysis. The survival data were from 
TCGA-LIHC. The cut-off is the median expression level. 
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different hypoxia scores. First, from the overall 

differences in gene-level CNAs in patients with high 

hypoxia scores (greater than the upper quartile) and low 

hypoxia scores (less than the lower quartile), we found 

that CNAs of approximately 13.7% (3396/24769) of the 

genes were concentrated in the high hypoxia score 

group (Supplementary Figure 5A and Additional File 1: 

Supplementary Table 9). CNA events in 71 cancer 

genes (according to the definition of the Precision 

Oncology Knowledge Base (OncoKB) cancer gene list) 

were significantly differentially distributed between the 

two groups (Figure 4A). The copy number gain to copy 

number loss ratios for most genes were significantly 

increased in the high hypoxia score group. The roles 

and CNA tendencies (according to the proportions of 

homozygous deletions, single copy deletions, low-level 

copy number amplification, and high-level copy number 

amplification) of these 71 cancer genes were provided. 

 

For example, CDK4 is an oncogene, and its CNAs in 

the high hypoxia score group are mostly copy number 

gains. IRF1 is a tumor suppressor gene, and its CNAs in 

the high hypoxia score group were mostly copy number 

losses. The occurrence frequency of CNAs of some 

cancer genes was high in patients in the TCGA-LIHC 

cohort. Next, we analyzed the difference in gene-level 

SNVs between the two groups of patients. 

Unfortunately, we did not obtain much evidence that 

indicated a strong connection between SNVs and 

hypoxia score. Only 4 genes were significantly different 

in the incidence of SNVs between the two groups 

(Figure 4B). Among them, the proportion of non-silent 

mutations only increased in ADAMTS19 in the high 

hypoxia score group. Besides, we found that SNVs in 

172 genes tended to be concentrated in the low hypoxia 

score group or the high hypoxia score group 

(Supplementary Figure 5B). However, because the 

overall mutation frequency of these genes was not high, 

there was no statistically significant difference in the 

distribution of SNVs between the two groups. 

 

Epigenetic alterations in HCC patients with different 

hypoxia scores 

 

We found that there were significant differences in the 

methylation levels at 464 gene loci between patients 

with high hypoxia scores and patients with low hypoxia 

scores and that the methylation levels at most loci were 

significantly reduced in the high hypoxia score group 

(Supplementary Figure 5C and Additional File 1: 

Supplementary Table 10). The methylation level 

increased at only a few loci in the high hypoxia score 

group. We jointly analyzed methylation levels and 
mRNA expression levels and found a significant 

increase in mRNA expression levels of 30 genes in the 

high hypoxia score group (data from TCGA-LIHC) and 

a simultaneous decrease in their methylation levels 

(Figure 4C). The mRNA expression levels of these 

genes showed a significantly negative correlation with 

their methylation levels, and the high mRNA expression 

of most of these genes is a risk factor for HCC patient 

survival. The methylation loci corresponding to these 30 

genes and their distance from the transcription start site 

(TSS) are shown in Additional File 1: Supplementary 

Table 11. Notably, the degree of methylation of HIF-1A 

was also reduced in the high hypoxia score group, 

which provides another explanation for the increase in 

HIF-1A mRNA expression in the high hypoxia score 

group. From the comparison of DNA methylation levels 

of the 30 genes in normal tissues and HCC tissues, the 

DNA methylation levels of some genes in normal 

tissues were not different from those in HCC tissues 

with low hypoxia scores but were higher than those in 

HCC tissues with high hypoxia scores (such as RGS2), 

and the DNA methylation levels of some other genes 

were highest in normal tissues, followed by those in 

HCC tissues with low hypoxia scores, and lowest in 

HCC tissues with high hypoxia scores (such as CLIC1). 

 

Chromosome instability occurs throughout the 

development and progression of tumors. The increase in 

chromosome instability will lead to HCC cell growth 

and enhanced invasiveness [11]. The 70-gene 

chromosome instability (CIN70) signature constructed 

by Carter et al. can effectively assess the chromosome 

instability of tumor cells [12]. We compared the CIN70 

scores between patients with high hypoxia scores and 

patients with low hypoxia scores. The data showed that 

in 9 datasets, the CIN70 scores were significantly 

increased in the high hypoxia score groups (Figure 4D), 

suggesting that hypoxia exposure may cause chromo-

some instability in HCC cells. 

 

Alternative splicing (AS) is an epigenetic feature that 

plays an important role in tumorigenesis and 

development [13]. Based on the TCGA-LIHC data, we 

found that the occurrences of 713 AS events (involving 

681 mRNAs) differed significantly between the two 

groups and that most of these events were alternative 

terminator (AT), exon skipping (ES), and alternative 

promoter (AP) events (Figure 4E). In the high hypoxia 

score group, the percent spliced in (PSI) value of 

retained intron (RI) events of EPHB2 mRNA had the 

maximum reduction (adjusted P value < 0.001), and the 

AT events of GULP1 mRNA had the most increased 

PSI (adjusted P value < 0.01). The Cox analysis results 

suggested that the AS events with differences in 

occurrence between the two groups were related to 

HCC patient survival. Detailed information on these 
differentials AS events is provided in Additional File 1: 

Supplementary Table 12. The 681 mRNAs involved in 

differential AS events were subjected to functional 
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Figure 4. Differences in genomic and epigenetic alterations between groups with high hypoxia scores and low hypoxia 
scores. (A) The difference in the incidence of copy-number aberrations (CNAs) in 71 cancer genes between the high hypoxia score group and 

the low hypoxia score group. (B) The proportions of single-nucleotide variants (SNVs) in 4 genes are significantly different between the high 
hypoxia score group and the low hypoxia score group. (C) Reductions in the methylation levels of 30 genes are accompanied by significant 
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increases in the corresponding mRNA levels in the high hypoxia score group. The correlation between DNA methylation and corresponding 
mRNA expression was obtained through Pearson correlation analysis based on TCGA-LIHC data. The hazard ratios (HR) of the corresponding 
mRNAs for overall survival (OS) were calculated by the logrank test for TCGA-LIHC data, and the cut-off was the median expression level. (D) 
70-gene chromosome instability (CIN70) was used to assess chromosome instability in tumor tissues from 10 hepatocellular carcinomas 
(HCC) datasets. The CIN70 scores are significantly different between tumor tissues with high hypoxia scores and low hypoxia scores. (E) The 
occurrences of 713 AS events are significantly different between the high hypoxia score group and the low hypoxia score group. Some of the 
AS events are associated with the OS of HCC patients. (F) The expression of 30 splicing factors in the high hypoxia score group and the low 
hypoxia score group are different, and their expression trends are consistent in 10 datasets. These splicing factors and the AS events with 
different occurrences between the two groups form a network. The correlations between the nodes of the network were calculated by 
Pearson correlation analysis based on TCGA-LIHC data. The relationship between the nodes and the OS of HCC patients was obtained through 
univariate cox survival analysis. 

 

enrichment analysis of biological processes and 

pathways. In addition to the HIF1 pathway and sugar 

and lipid metabolism pathways (indicating their 

relations to hypoxia exposure), these mRNAs are also 

involved in various classical pathways of tumorigenesis 

and development (Supplementary Figure 6A). The PPI 

network of these mRNA translation products is shown 

in Supplementary Figure 6B. In addition, we analyzed 

the differences in expression of 404 splicing factors 

(SFs) between the high hypoxia score group and the low 

hypoxia score group. The differences in expression of 

30 SFs were relatively consistent in 10 datasets (the 

condition of adjusted P < 0.05 was met in 5 or more 

datasets). Except for NRIP2, other SFs were 

upregulated in the high hypoxia score group 

(Supplementary Figure 7A). Next, correlations among 

these SFs and 713 AS events were analyzed. When 

constructing the correlation network, we only set the 

thresholds at |Person r |> 0.6 and P < 0.05 and did not 

perform other node screening. Notably, in the obtained 

correlation network, each node reached logical harmony 

in variation trend and prognostic value (Figure 4F). For 

example, KHDRBS1 is an SF with elevated expression 

in the high hypoxia score group and is a risk factor for 

HCC patient survival. The occurrences of 7 AS events 

that were negatively correlated with KHDRBS1 were 

reduced in the high hypoxia score group, and these 7 

AS events were protective factors for HCC patient 

survival. In contrast, 5 AS events that were positively 

correlated with KHDRBS1 increased in the high 

hypoxia score group, and these AS events were risk 

factors for HCC patient survival. Based on the evidence, 

we believe that AS events may be a response to hypoxia 

in HCC cells. Some hypoxia-induced changes in cell 

functions and behaviors may be achieved through the 

SF-AS network. The difference in AS between the high 

hypoxia score group and the low hypoxia score group 

may explain the prognosis difference between the two 

groups. 

 

RNA N6-methyladenosine (m6A) modification is 

another important epigenetic feature of RNA [14]. The 

expression differences in 21 m6A regulators between 

the high hypoxia score group and the low hypoxia score 

group were analyzed. In the 10 HCC datasets, most 

m6A regulators showed no significant difference 

between the two groups (Supplementary Figure 7B), but 

1 m6A writer (WTAP), 1 m6A eraser (ALKBH5), and 1 

m6A reader (YTHDF2) significantly increased in the 

high hypoxia score groups of 4 or more datasets. 

 

Changes in functional proteomics in HCC patients 

with different hypoxia scores 

 

Based on the reverse phase protein array (RPPA) data 

of the TCGA-LIHC cohort, we analyzed the differences 

in the abundance of 218 proteins between the high 

hypoxia score group and the low hypoxia score group. 

A total of 50 proteins exhibited differences in 

abundance between the two groups (Figure 5A). 

Increases in LKB1 and mTOR activity inhibition are 

hallmark events of hypoxia exposure, which once again 

confirmed the efficacy of our 21-gene signature in 

indicating hypoxia exposure. Approximately half of the 

protein changes were inconsistent with the changes in 

their mRNA levels, suggesting that the regulation of 

posttranslational levels by hypoxia cannot be ignored. 

The differentially expressed proteins were mainly 

concentrated in AKT/mTOR and its related pathways. 

The reduction in the AKT level and its phosphorylation 

level seems to be a core event. The change trends for 

some proteins were opposite to those reported by the 

relevant literature on AKT (Figure 5B), which suggests 

that in addition to the regulation of AKT, there may be a 

complex regulatory network that has not been 

discovered. Survival analysis (cut-off = median value, 

Figure 5C) showed that a low abundance of AKT, 

AKT-pT308 and AKT_pS473 indicated worse OS 

(except for AKT_pS473, logrank P < 0.05). Hypoxia 

may induce some functions by inhibiting AKT in HCC. 

Overall, the changes in the proteins between the two 

groups reflected the dynamic balance of autophagy/ 

apoptosis and the response to hypoxic stress to some 

extent. These proteins may affect the viability of the 

cells under hypoxia and their tolerance to hypoxia. 

Moreover, the altered protein abundance between the 

two groups may be related to the different drug 

sensitivities of HCC patients in the two groups. The 
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correlation between some proteins differentially 

expressed in the two groups and drug sensitivity is 

shown in Supplementary Figure 8 (based on data from 

the MD Anderson Cell Lines Project and the Genomics 

of Drug Sensitivity in Cancer database). For example, 

the reduction in AKT_pS473 may cause the sensitivity 

of cells to sorafenib to decrease. Therefore, when 

formulating a treatment plan, it may be necessary to 

evaluate the hypoxic condition of the lesions. 

 

DISCUSSION 
 

The molecular changes in cancer cells caused by hypoxia 

have been widely reported in studies in vitro [15, 16].

 

 
 

Figure 5. Changes in functional proteomics between hepatocellular carcinoma (HCC) patients with high hypoxia scores and 
low hypoxia scores. (A) Fifty proteins with significant differences in abundance between HCC patients with high hypoxia scores and low 

hypoxia scores. (B) A schematic diagram of some proteins with significant differences in abundance in the AKT/mTOR pathway. (C) The low 
abundance of AKT, AKT-pT308, and AKT_pS473 proteins in TCGA-LIHC indicates poor overall survival. 
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However, the molecular changes caused by hypoxia in 

tissues may be different from the data obtained in vitro 

[17]. If it is necessary for patients to truly benefit from 

anti-hypoxic treatment strategies, only the data obtained 

from the cellular hypoxia model is far from enough. 

Polarographic electrodes can accurately measure the 

degree of hypoxia exposure in cancer tissues, but this 

method does not have enough practicality [18]. Hypoxia 

can change the gene expression level in tumor cells. 

Therefore, the detection of the levels of specific genes 

can indirectly reflect hypoxia exposure in tissues [19]. 

In the past decade, different hypoxia gene signatures 

have been reported, and some excellent signatures, such 

as Buffa's 15-gene hypoxia signature, have proven to 

have the ability to indicate hypoxia in a variety of 

tumors [20]. Sorensen reported a group of hypoxia gene 

markers indicating the hypoxia in human squamous cell 

carcinomas [21]. Inspired by these studies we have 

identified a novel 21-gene hypoxia signature that has 

excellent robustness in the assessment of hypoxia 

exposure. This provides a basis for us to explore the 

hypoxia-induced molecular landscape in HCC. After 

calculating hypoxia scores using the 21-gene hypoxia 

signature, we found that the hypoxia scores in the  

tumor tissues of HCC patients in 11 datasets were 

grouped into 2 clusters with different hypoxia exposure 

levels. Because the number of probes in the GSE10141 

dataset was small, this dataset was excluded in 

subsequent studies. Considering the numerical 

distribution of hypoxia scores in tissues, we selected the 

upper quartile and the lower quartile to divide high 

hypoxia scores and low hypoxia scores. In this way, 

more differential changes may be obtained, creating a 

situation that is more in line with clinical practice. 

Because hypoxic conditions and molecular changes in 

tumor tissues are nonlinearly correlated, mild hypoxia 

exposure may not cause many molecular events. After 

comprehensive analysis in the present study, the 

patients in the high hypoxia score group and the patients 

in the low hypoxia score group were found to have 

many transcriptomic, genomic, epigenomic, and 

proteomic differences. 

 

Among HF/DE-mRNAs, all risk factors for OS were 

significantly upregulated in the high hypoxia score 

group while the protective factors were downregulated; 

this phenomenon occurred in almost all cohorts. For 

example, ANXA5 and SPP1 were both risk factors for 

OS in the TCGA-LIHC and GSE14520 datasets and 

were significantly overexpressed in the high hypoxia 

score group in 9 cohorts. The results of pathway 

enrichment analysis indicated the P53 pathway, 

PI3K/AKT, (mTOR) signaling, and TGF-beta signaling 
upregulated in the high hypoxia group. The activation 

of these pathways is critical to the onset of the 

progression of tumors and can be used to explain the 

poor prognosis of patients in the high hypoxia score 

group. In addition, many drugs target these pathways, 

suggesting that the degree of hypoxia exposure needs to 

be considered in the selection of medications for 

patients with HCC. Among DE-miRs, miR-210 is a 

frequently reported master hypoxia-responsive miR, and 

its high expression has been observed in a variety of 

hypoxia-treated tumor cells [22, 23]. The presence of 

miR-210 in the DE-miR list means that our 21-gene 

hypoxia signature can reflect hypoxia exposure in HCC. 

We also obtained DE-miRs-HF/DE-mRNAs networks. 

These networks suggested that the changes in some DE-

mRNAs in HCC tissue under hypoxic conditions might 

be caused by the targeted regulation of DE-miRs. For 

example, miR-216b-5p is the miR with the highest 

degree of reduced expression in the high hypoxia score 

group (log2FC = -2.61, adjusted P < 0.001), and it is 

complementary to the 3' untranslated region (3'-UTR) of 

HK2. The prediction was supported by argonaute-

crosslinking immunoprecipitation sequencing (AGO-

CLIP-seq) data [24, 25]. HK2 is a definite hypoxia-

inducible gene [26]. The above results suggest that the 

high expression of HK2 in hypoxia may be associated 

with the reduction in miR-216b-5p. These 2 networks 

provide additional explanations for hypoxia-induced 

transcriptome changes in HCC tissues in addition to the 

HIF-1A-related mechanism. Attention needs to be paid 

to miRs with high connectivity in the network, such as 

miR-1224-5p, miR-877-5p, let-7a-2-3p, and miR-378c. 

DE-lncRNA was also analyzed as well as mRNAs and 

miRs. Moreover, we constructed a DE-lncRNA-DE-

microRNA-HF/DE-mRNA network. There were 

differences in the expression of mRNAs, miRs, and 

lncRNAs between the high hypoxia score and low 

hypoxia score groups. Many cancer-promoting RNA 

molecules were upregulated in the high hypoxia score 

group while cancer-suppressing RNA molecules were 

downregulated in the high hypoxia score group. Some 

DE-mRNAs and/or DE-lncRNAs and DE-mRNAs may 

form regulatory networks that participate in the 

development of HCC and affect the prognosis of HCC 

patients. 

 

In genomic alterations analysis, CNAs changes 

suggested that the genomic instability of HCC patients 

may be related to hypoxia exposure. Few genes were 

significantly different in the incidence of SNVs between 

the high hypoxia and low hypoxia score groups. Hence, 

we believed that hypoxia has a limited ability to induce 

SNVs, and important SNVs likely occur before the 

onset of hypoxia. Epigenetic alterations suggested that 

hypoxia exposure may promote the hypomethylation of 

some genes related to the onset and progression of  
HCC and that the hypomethylation of some other genes 

may be a characteristic feature of hypoxia exposure. 

Moreover, RNA alternative splicing and m6A 
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modification were another important epigenetic feature 

under hypoxia which expanded our understanding of the 

role of hypoxia in HCC. 

 

Some differential molecular events identified in the 

present study are closely related to the prognosis of 

patients and are molecular mechanisms that explain the 

cancer-promoting effect of hypoxia. Therefore, these 

differential events can help screen HCC diagnostic and 

treatment targets. The results at multi-omic levels had 

some consistency, such as the simultaneous presence of 

high mRNA expression and decreased methylation of 

the corresponding DNA in the high hypoxia score 

group. However, some results were contradictory. For 

example, the GSEA results for the AKT/mTOR 

pathway based on the mRNA level were not consistent 

with the proteomic results for the AKT/mTOR pathway. 

Therefore, it is necessary to investigate the molecular 

changes caused by hypoxia using multi-omics 

approaches. Based on the available data, we analyzed 

the relationships between differential events and patient 

prognosis and extracted useful data for translational 

medicine. In the Supplementary Files, we provided 

reference data with details, such as the lists of DE-

mRNAs, DE-miRNAs, and DE-lncRNAs, the list of 

genes with CNAs, the list of genes with aberrant 

methylation loci, and the list of hypoxia-related RNA 

alternative splicing events. We hope that these data can 

inspire and help other researchers, improve research 

efficiency, and narrow the scope of research. 

 

It should be emphasized that we found that the HIF-1A 

mRNA levels significantly increased in the high 

hypoxia score groups in the 10 datasets and showed a 

significantly positive correlation with the hypoxia score. 

The reason why this point is emphasized is that most 

previous studies have focused on the posttranslational 

regulation of HIF-1A at the protein level, and some 

researchers even deliberately ignore changes in HIF-1A 

mRNA [27]. Our data suggest that the regulation of 

HIF-1A mRNA levels cannot be ignored in hypoxia 

exposure, meaning that in treatment regimens targeting 

HIF-1A, not only HIF-1A protein but also HIF-1A 

mRNA should be targeted. In addition, our data showed 

that during hypoxia exposure, the level of HIF-1A 

might be regulated by a multilevel positive feedback 

network and that an mRNA/lncRNA network and 

methylation regulation might be part of this network. 

 

In summary, the present study provided tissue-level 

evidence for throwing light on the mechanism by which 

hypoxia may perform its function in HCC. An 

unprecedented comprehensive panorama of hypoxia 
associated multi-omics molecular features was 

systematically described. Networks between molecular 

features were tried to establish such as DE-lncRNA-

DE-microRNA-HF/DE-mRNA networks. Clinically, 

the data obtained from this study may facilitate 

developing possible treatment or diagnostic novel 

targets under the perspective of personalized medicine. 

 

MATERIALS AND METHODS 
 

Public datasets in GEO 

 

We retrieved three independent mRNA microarray 

datasets (GSE18494, GSE55214, and GSE57613) based 

on hypoxia treated HCC cells from the Gene Expression 

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). 

Datasets and available clinical information of ten HCC 

cohorts (GSE14520, GSE22058, GSE25097, GSE36376, 

GSE45436, GSE64041, GSE76297, GSE76427, 

GSE10141 and GSE9843) were downloaded from GEO. 

All gene symbols in GEO datasets were converted to the 

latest HGNC (HUGO Gene Nomenclature Committee) 

symbols. 

 

Multi-omic data and clinical data of TCGA-LIHC 

 

mRNA expression, microRNA expression, lncRNA 

expression, CNAs, SNVs, DNA methylation data of the 

Cancer Genome Atlas Liver Hepatocellular Carcinoma 

(TCGA-LIHC) were downloaded from the TCGA data 

portal (https://portal.gdc.cancer.gov/). The RNA 

alternative splicing data of TCGA-LIHC were obtained 

from TCGA SpliceSeq (http://projects.insilico.us.com/ 

TCGASpliceSeq/). The reverse phase protein array 

(RPPA) data of TCGA-LIHC were downloaded from 

the cancer proteome atlas (https://www.tcpaportal.org/ 

tcpa/index.html). 

 

Hypoxia scores calculation 

 

In our previous study, a novel 21-gene hypoxia 

signature was built using robust rank aggregation 

(RRA) algorithm from the microarray data of hypoxia 

treated HUH7, SNU-182, and HLF cells. Hypoxia score 

was calculated using gene set variation analysis 

(GSVA) based on the 21 genes. The gene lists of 21-

gene signature were shown in Additional File 1: 
Supplementary Table 1. 

 

Biological process and pathway enrichment assay 

 

The biological process and pathway enrichment assay 

of candidate genes were performed using online tools 

provided by Metascape (http://metascape.org/gp/ 

index.html). The enrichment analysis has been carried 

out with the following ontology sources: the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

Pathway, Gene Ontology (GO) biological processes, 

Reactome Gene Sets, and Canonical Pathways All 

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
http://projects.insilico.us.com/TCGASpliceSeq/
http://projects.insilico.us.com/TCGASpliceSeq/
https://www.tcpaportal.org/tcpa/index.html
https://www.tcpaportal.org/tcpa/index.html
http://metascape.org/gp/index.html
http://metascape.org/gp/index.html
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genes in the genome have been used as the enrichment 

background. To establish the network based on the 

relationships between the terms, a subset of enriched 

terms with a similarity > 0.3 were connected by edges. 

20 clusters were obtained and the terms with the best  

p-values were selected (for more details see the website 

of Metascape). The network was visualized using 

Cytoscape (version 3.7.2). 

 

Protein-protein interaction enrichment analysis 

 

We used online tools provided by Metascape to perform 

protein-protein interaction enrichment analysis for the 

production of candidate genes. According to data from 

BioGrid, InWeb, and OmniPath, a resultant network 

contains the subset of proteins that form physical 

interactions with at least one other member was built 

using Molecular Complex Detection (MCODE) 

algorithm [28]. Then pathway and process enrichment 

analysis has been applied to each MCODE component 

(for more details see the website of Metascape). The 

network was visualized using Cytoscape (version 3.7.2). 

 

Gene set enrichment analysis (GSEA) 

 

GSEA was performed for candidate mRNAs across 

HCC cohorts using GSEA tools (version 4.0.3) 

provided by the Molecular Signatures Database 

(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/ 

index.jsp). The hallmark gene was set as the reference 

genes. The significantly activated or suppressed 

pathways were identified as pathways with P 
value<0.05 and FDR<0.25. 

 

Interactions analysis for mRNA/microRNA/lncRNA 

 

miRNA-target interactions were presented by intersecting 

the predicting target sites of miRNAs with binding sites 

of Ago protein using the Encyclopedia of RNA 

Interactomes (ENCORI, http://starbase.sysu.edu.cn/ 

index.php) and miRwalk 3.0 (http://zmf.umm.uni-

heidelberg.de/apps/zmf/mirwalk/). The miRNA-lncRNA 

interactions were presented using LncBase v.2 

experimental module tools (http://diana.imis.athena-

innovation.gr/DianaTools/index.php). Interactions of 

mRNA/microRNA/lncRNA were visualized using 

Cytoscape (version 3.7.2). 

 

Statistical analysis 

 

Statistical analyzes were performed using R software 

(version 3.6.1) with relevant packages. In brief, the 

differential expressed mRNAs were extracted from 
microarray datasets using the Limma package. The 

differential expressed mRNAs, microRNA, and lncRNA 

of TCGA-LIHC were identified using Linnorm packages. 

The difference between the two groups was compared 

using the independent t-test or Wilcox test. The adjusted 

P value was obtained using the false discovery rate 

(FDR) method. Coefficients were calculated using 

Pearson or Spearman’s correlation analysis. A chi-

squared test was used to determine the significant 

difference between the frequencies. Survival analysis was 

performed using Univariate Cox/multivariate analysis 

hazard analysis or Kaplan-Meier survival estimate using 

the survival package. The forest-plot R package was 

employed to visualize the hazard rate obtained from 

survival analysis. The Kaplan-Meier survival curves were 

created using the survminer package with the logrank 

test. In the present study, statistical significance was set 

at a probability value of P < 0.05. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. The distribution of hypoxia scores calculated based on the 21-gene hypoxia signature in the cancer 
tissues of 11 HCC cohorts. 
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Supplementary Figure 2. DE-miRNAs and HF/DE-mRNAs form a target interaction network. Target interactions were determined 

by intersecting the predicted target sites of miRNAs with binding sites of Argonaute protein using the online tools ENCORI and miRwalk 3.0. 
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Supplementary Figure 3. A co-expression network formed by HF/DE-mRNAs, DE-miRs, and DE-lncRNAs. (A, B) The correlations 

among HF/DE-mRNAs, DE-miRs, and DE-lncRNAs were obtained using Pearson correlation analysis. The nodes with |Pearson r| > 0.8 and  
P < 0.05 constitute positive and negative co-expression networks. (C) In the positive and negative co-expression networks, the 2 genes with 
the highest connectivity are SERPINC1 and PKM. Their differences among 10 hepatocellular carcinomas (HCC) datasets are shown in the heat 
map. (D) Differences in the expression of SERPINC1 and PKM between normal tissues and cancer tissues of HCC patients in TCGA-LIHC.  
(E) SERPINC1 and PKM are associated with patient survival in TCGA-LIHC and GSE14520. 
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Supplementary Figure 4. DE-mRNAs and DE-lncRNAs correlated with hypoxia-inducible factor 1-alpha (HIF-1A) mRNA. The 
correlations were calculated by Pearson correlation analysis using TCGA-LIHC data. (A) DE-mRNAs correlated with HIF-1A mRNA. (B) DE-
lncRNAs correlated with HIF-1A mRNA. 
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Supplementary Figure 5. Overview of genomic alterations and DNA methylation changes in groups with high hypoxia scores 
and low hypoxia scores. (A) Difference in the proportions of copy-number aberrations (CNAs) between the high hypoxia score group and 

the low hypoxia score group. (B) Proportions of single-nucleotide variants (SNVs) in 172 genes distributed in the low hypoxia score group and 
the high hypoxia score group. (C) A total of 464 loci with different methylation levels in the high hypoxia score group and the low hypoxia 
score group. 
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Supplementary Figure 6. Functional enrichment analysis of biological processes and pathways for 681 mRNAs involving 
differential AS events. (A) A total of 681 mRNAs are involved in AS events with differences in occurrences between the high hypoxia score 

group and the low hypoxia score group. The top 20 (sorted by P-value) enrichment analysis results for GO biological processes and 
enrichment analysis results for pathways from 3 different data sources are displayed. (B) The protein-protein interaction (PPI) enrichment 
network of the translation products of the 681 mRNAs were constructed using the MCODE algorithm. 
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Supplementary Figure 7. The expression of 30 splicing factors and 21 N6-methyladenosine (m6A) regulators in the high 
hypoxia score group and the low hypoxia score group. (A) Differences in the expression of 30 splicing factors between the high 

hypoxia score groups and the low hypoxia score groups in 10 HCC datasets. (B) Differences in the expression of 21 m6A regulators between 
the high hypoxia score groups and the low hypoxia score groups in 10 HCC datasets. 
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Supplementary Figure 8. Spearman’s correlation coefficients for proteins with significantly different expression in the high 
hypoxia score group and the low hypoxia score group and commonly used anticancer drugs. The data were obtained from the 
MD Anderson Cell Lines Project and the Genomics of Drug Sensitivity in Cancer database. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–4, 7–10, 12. 

 

Supplementary Table 1. The information for elements of 21-gene hypoxia signature. 

Gene 

symbol 
Description Gene Location Protein Function (Protein Atlas) Refseq 

CA9 carbonic anhydrase 9 chr9:35673928-35681157 Enzymes/ENZYME 

proteins/Lyases 

NM_001216 

PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 4 

chr3:48517684-48556803;chr3:48517684-

48561129 

Enzymes/ENZYME 

proteins/{Hydrolases,Transferases} 

NM_00131713

4 

HILPDA hypoxia inducible lipid droplet 

associated 

chr7:128455878-128458418;chr7:128455830-

128458418 

N/A NM_00109878

6 

BNIP3L BCL2 interacting protein 3 like chr8:26390413-26413127;chr8:26383054-

26413127 

Transporters/Transporter channels 

and pores 

NM_004331 

SLC2A3 solute carrier family 2 member 3 chr12:7919230-7936187 Transporters/Electrochemical 

Potential-driven transporters 

NM_006931 

PLIN2 perilipin 2 chr9:19115761-19127606;chr9:19115761-

19127492 

N/A NM_001122 

KDM3A lysine demethylase 3A chr2:86441461-86492716;chr2:86441371-

86492716 

N/A NM_00114668

8 

INSIG2 insulin induced gene 2 chr2:118088418-118110031;chr2:118088550-

118110031;chr2:118088471-118110997 

N/A NM_00132132

9 

EGLN3 egl-9 family hypoxia inducible factor 3 chr14:33924227-33951074 Enzymes/ENZYME 

proteins/Oxidoreductases 

NM_022073 

GDF15 growth differentiation factor 15 chr19:18386158-18389176 N/A NM_004864 

PTPRH protein tyrosine phosphatase receptor 

type H 

chr19:55181247-55209501 Enzymes/ENZYME 

proteins/Hydrolases 

NM_002842 

HCAR3 hydroxycarboxylic acid receptor 3 chr12:122714756-122716811 G-protein coupled 

receptors/GPCRs excl olfactory 

receptors 

NM_006018 

SPAG4 sperm associated antigen 4 chr20:35615884-35621094;chr20:35615829-

35621094 

N/A NM_00131793

1 

WSB1 WD repeat and SOCS box containing 1 chr17:27294114-27315926 N/A NM_00134835

0 

TMEM45A transmembrane protein 45A chr3:100492619-100577444 N/A NM_018004 

ADM adrenomedullin chr11:10305073-10307397 N/A NM_001124 

BNIP3 BCL2 interacting protein 3 chr10:131967683-131982013 Transporters/Transporter channels 

and pores 

NM_004052 

JUN Jun proto-oncogene, AP-1 

transcription factor subunit 

chr1:58780791-58784047 Transcription factors/Basic 

domains 

NM_002228 

SMAD3 SMAD family member 3 chr15:67065602-67195167;chr15:67166155-

67195195;chr15:67138021-

67195195;chr15:67125716-67195195 

Transcription factors NM_005902 

HK2 hexokinase 2 chr2:74834127-74893358;chr2:74835170-

74893358 

Enzymes/ENZYME 

proteins/Transferases 

NM_000189 

GYS1 glycogen synthase 1 chr19:48968130-48993309 Enzymes/ENZYME 

proteins/Transferases 

NM_002103 
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Supplementary Table 2. High frequency DE-mRNA list extracted from 10 HCC cohorts. 

Supplementary Table 3. Survival analysis for high frequency DE-mRNAs in TCGA-LIHC and GSE14520. 

Supplementary Table 4. Biological Processes and pathway functional enrichment analysis for high frequency DE-
mRNAs. 

Supplementary Table 5. Annotation for MCODE of protein-protein interaction enrichment network for high 
frequency DE-mRNAs. 

Network Annotation 

Input ID GO:0032787|monocarboxylic acid metabolic process|-

24.6;GO:0009611|response to wounding|-23.6;hsa04610|Complement 

and coagulation cascades|-22.6 

Input ID_MCODE_ALL GO:0032787|monocarboxylic acid metabolic process|-

16.6;hsa01230|Biosynthesis of amino acids|-16.0;GO:0044282|small 

molecule catabolic process|-15.0 

Input ID_SUB2_MCODE_1 R-HSA-211897|Cytochrome P450 - arranged by substrate type|-23.3;R-

HSA-211945|Phase I - Functionalization of compounds|-21.4;R-HSA-

211859|Biological oxidations|-18.4 

Input ID_SUB1_MCODE_2 R-HSA-381426|Regulation of Insulin-like Growth Factor (IGF) transport 

and uptake by Insulin-like Growth Factor Bi|-5.1;R-HSA-

71387|Metabolism of carbohydrates|-4.0;GO:0031589|cell-substrate 

adhesion|-3.8 

Input ID_SUB1_MCODE_3 R-HSA-375276|Peptide ligand-binding receptors|-14.6;R-HSA-

373076|Class A/1 (Rhodopsin-like receptors)|-13.0;R-HSA-418594|G 

alpha (i) signalling events|-12.4 

Input ID_SUB1_MCODE_4 hsa01230|Biosynthesis of amino acids|-8.5;GO:0044282|small molecule 

catabolic process|-7.4;hsa00270|Cysteine and methionine metabolism|-

6.7 

Input ID_SUB1_MCODE_5 GO:0046364|monosaccharide biosynthetic process|-

14.4;hsa01200|Carbon metabolism|-14.0;GO:0016051|carbohydrate 

biosynthetic process|-12.3 

Input ID_SUB1_MCODE_6 R-HSA-5686938|Regulation of TLR by endogenous ligand|-

8.8;M264|PID TOLL ENDOGENOUS PATHWAY|-8.4;R-HSA-

6803157|Antimicrobial peptides|-6.6 

Input ID_SUB1_MCODE_7 M166|PID ATF2 PATHWAY|-7.9;GO:0009991|response to extracellular 

stimulus|-5.0;R-HSA-2262752|Cellular responses to stress|-4.8 

 

  



 

www.aging-us.com 6551 AGING 

Supplementary Table 6. Survival analysis for Differential expressed miRNAs in TCGA-LIHC. 

ID log-rank P value factor HR up95 low95 

hsa-miR-101-3p 0.002255 protect 0.578932 0.820239 0.408615 

hsa-miR-139-5p 2.43E-07 protect 0.394906 0.56083 0.278072 

hsa-miR-511-5p 0.391565 protect 1.163998 1.648429 0.821928 

hsa-let-7c-3p 0.509074 protect 0.88955 1.259684 0.628172 

hsa-miR-125b-2-3p 0.061228 protect 0.718071 1.017179 0.506917 

hsa-miR-34c-5p 0.52498 risk 1.11925 1.584939 0.79039 

hsa-miR-378c 0.277779 protect 0.82486 1.168134 0.582463 

hsa-miR-5589-5p 0.229327 protect 0.809008 1.14691 0.570659 

hsa-miR-99a-5p 0.008725 protect 0.627161 0.888743 0.442571 

hsa-miR-34c-3p 0.978891 protect 1.004682 1.422972 0.709351 

hsa-miR-5589-3p 0.420898 protect 0.867101 1.228034 0.61225 

hsa-miR-877-5p 0.016982 risk 1.529861 2.167074 1.080017 

hsa-miR-671-5p 0.295045 risk 1.202313 1.702882 0.848888 

hsa-miR-378a-3p 0.196099 risk 1.257156 1.781223 0.887279 

hsa-miR-301a-3p 0.008197 risk 1.595768 2.262316 1.125605 

hsa-miR-187-3p 0.538865 risk 1.11492 1.579794 0.786841 

hsa-miR-138-5p 0.650067 risk 0.921018 1.311126 0.646981 

hsa-miR-4524a-3p 0.399592 protect 0.861413 1.219765 0.60834 

hsa-miR-223-3p 0.951984 risk 1.010698 1.431194 0.713747 

hsa-let-7a-2-3p 0.679079 protect 0.929348 1.315997 0.656299 

hsa-miR-375-3p 0.456514 protect 0.876533 1.2419 0.618658 

hsa-miR-223-5p 0.742728 protect 0.943599 1.336783 0.666061 

hsa-miR-5588-3p 0.012826 protect 0.640822 0.907489 0.452515 

hsa-miR-3189-3p 0.023056 risk 1.490708 2.122278 1.047088 

hsa-miR-3680-3p 0.127824 risk 1.30919 1.855126 0.923915 

hsa-miR-17-3p 0.083783 risk 0.733445 1.038702 0.517898 

hsa-miR-194-3p 0.165805 protect 0.782338 1.108308 0.55224 

hsa-miR-135b-5p 0.072067 risk 1.376916 1.949932 0.972289 

hsa-miR-7112-3p 0.515253 risk 1.123438 1.602959 0.787365 

hsa-miR-205-5p 0.171105 risk 1.272456 1.804744 0.89716 

hsa-miR-100-5p 0.003693 protect 0.598643 0.849333 0.421947 

hsa-miR-146a-5p 0.745306 protect 1.059352 1.500225 0.748039 

hsa-miR-24-2-5p 0.081881 risk 1.362826 1.9299 0.962379 

hsa-miR-885-5p 0.169666 protect 0.784611 1.112856 0.553184 

hsa-miR-885-3p 0.603559 protect 1.09687 1.554033 0.774195 

hsa-miR-1262 0.014415 risk 1.539902 2.184093 1.085713 

hsa-miR-582-5p 0.388832 risk 1.164231 1.650574 0.821189 

hsa-miR-582-3p 0.022381 risk 1.493008 2.120278 1.051312 

hsa-miR-210-5p 0.024344 risk 1.491626 2.113712 1.052627 

hsa-miR-217-5p 0.826759 protect 1.039643 1.472817 0.733871 

hsa-miR-625-3p 0.578341 protect 1.103574 1.562673 0.779354 

hsa-miR-29b-1-5p 0.870187 risk 1.029333 1.457906 0.726746 

hsa-miR-21-3p 0.060608 risk 1.393654 1.97479 0.983533 

hsa-miR-561-5p 0.0075 risk 1.62099 2.40279 1.093566 

hsa-miR-541-3p 0.568232 protect 1.106522 1.566843 0.781438 

hsa-miR-216b-3p 0.46815 risk 1.150479 1.701683 0.77782 

hsa-miR-1224-5p 0.886944 risk 1.025507 1.452126 0.724225 

hsa-miR-5588-5p 0.089422 protect 0.739409 1.047195 0.522086 

hsa-miR-2355-3p 0.008464 risk 1.595746 2.261333 1.126063 

hsa-miR-216a-3p 0.335209 risk 1.186604 1.680295 0.837965 

hsa-miR-4449 0.844205 protect 1.035457 1.466219 0.731249 

hsa-miR-653-5p 0.577505 protect 1.103923 1.563284 0.779543 
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hsa-miR-194-5p 0.004083 protect 0.601321 0.851918 0.424439 

hsa-miR-548v 0.174238 risk 1.271901 1.802342 0.897572 

hsa-miR-141-3p 0.535513 risk 1.115914 1.580405 0.787941 

hsa-miR-216a-5p 0.342731 protect 1.18372 1.676152 0.835959 

hsa-miR-155-5p 0.45926 risk 1.140173 1.614518 0.805191 

hsa-miR-216b-5p 0.131044 protect 1.308972 1.853506 0.924414 

hsa-miR-155-3p 0.832344 risk 1.038098 1.470129 0.733029 

hsa-miR-210-3p 0.000975 risk 1.791011 2.541255 1.262258 

hsa-miR-629-5p 0.040936 protect 1.442479 2.042647 1.018651 

hsa-miR-642a-5p 0.690464 risk 1.073046 1.519633 0.757701 

hsa-miR-200c-3p 0.038228 risk 1.443662 2.045728 1.018786 

 

Supplementary Table 7. Differential expressed lncRNAs between high hypoxia score and low hypoxia score groups in 
TCGA-LIHC. 

Supplementary Table 8. Survival analysis for differential expressed lncRNAs in TCGA-LIHC. 

Supplementary Table 9. Significant difference in CNAs events between high hypoxia score and low hypoxia score 
groups in TCGA-LIHC. 

Supplementary Table 10. Significant difference in DNA methylation level between high hypoxia score and low 
hypoxia score groups in TCGA-LIHC. 
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Supplementary Table 11. DNA methylation changes of 30 up-regulated genes in high hypoxia score groups. 

site Gene 
DNA methylation 

level 
Position_to_TSS 

cg23174662 HIF1A reduced 3587;3824;3824;1742;3851;469;3851;1742 

cg04293307 AXIN2 reduced 4185;1267;2864;4185;83571 

cg06075789 ZFP36 reduced . 

cg17382541 MYADM reduced 1523;1227;-299;-299;1361;-299;-299 

cg09442403 TM4SF1 reduced 6355;4202;6182;6232 

cg03707168 PPP1R15A reduced 3477;1551 

cg04797170 TMSB10 reduced 252;252 

cg12232146 PHLDA1 reduced 29859 

cg12457415 CLIC1 reduced 1488;2234;1483;4679;1461 

cg26403843 RNF145 reduced 750;2475;2977;997;2715;558;1056;2522 

cg05374271 RGS2 reduced 718;717;720;616 

cg27270412 NRP1 reduced 2859;1119;1119;1239;979;1502;1233;1502;1675 

cg16643088 CSRNP1 reduced 6324;7311 

cg13275603 ENC1 reduced 9763;601;9763;8988;9763 

cg22502206 ANXA2 reduced -641;-640;-640;-583;4257;-640;-640;-653;-640;-638;-652;-640;-

593;-662;-640;-640;-648;-638;-625;-652;116;-642;-658;-1288;-

640;-640;-638;-640;-640;-640;-640 

cg09055236 TTYH3 reduced 1611;1406 

cg05132999 TTC39A reduced -1141;32;-752;-1112;13802;-367;13802;-750;13802;1660 

cg10523105 PNMA1 reduced 2100 

cg15460348 SPP1 reduced 89;42;68;42;-1124;39;42;42;41;42;106 

cg03359362 SLC1A5 reduced -1462;-1462;989;2241;-1448 

cg05117638 MARCKS reduced 18616;1056 

cg11230435 MAP3K8 reduced 1507;1200;779;1303;1423 

cg27505627 BAIAP2L2 reduced 64;89 

cg00937742 LYPD1 reduced -146 

cg22679626 TMSB4X reduced . 

cg19913563 IER3 reduced . 

cg22249612 CD63 reduced 1520;950;1960;200;-1344;-641;-592;2007;1300;115;947;-

572;1277;782;649;-1404 

cg04860291 TKT reduced 3379;3388;3366;3388;3397;3340;3353;3418 

cg12586150 SERPINB1 reduced 1449;1305;1291;1402 

cg24147596 ARL14 reduced 472 

 

Supplementary Table 12. Significant difference in RNA alternative splicing events between high hypoxia score and 
low hypoxia score groups in TCGA-LIHC. 


