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INTRODUCTION 
 

While bone loss is likely to occur during the early 

stages of gastric cancer, it has largely remained 

undetected and has therefore not caused much concern. 
The occurrence of cancer-associated bone disease may 

be due to the direct or systemic action of the gastric 

cancer itself during the treatment of the primary tumor. 

Bone loss is associated with localized effects of 

metastatic deposits in the bone and/or systemic bone 

loss caused by bone resorption hormones or cytokines 

released into the systemic circulation by the gastric 

cancer [1]. Frequently, mesenchymal and hematopoietic 

progenitors are associated with the action of parathyroid 

hormone-related protein (PTHrP), a well-known 
regulator of tumour-associated bone destruction [1], as 

well as with the hypercalcemia seen in many types of 

cancer [2]. Once bone metastases occur, gastric cancer-
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ABSTRACT 
 

Cancer-associated bone disease is a frequent occurrence in cancer patients and is associated with pain, bone 
fragility, loss, and fractures. However, whether primary or non-bone metastatic gastric cancer induces bone 
loss remains unclear. Here, we collected clinical evidence of bone loss by analyzing serum and X-rays of 25 non-
bone metastatic gastric cancer patients. In addition, C57BL mice were injected with the human gastric cancer 
cell line HGC27 and its effect on bone mass was analyzed by Micro-CT, immunoblotting, and 
immunohistochemistry. Furthermore, the degree of the proliferation and osteogenic differentiation of 
mesenchymal stem cells (MSCs) co-cultured with HGC-27 or SGC-7901 cells was analyzed by colony-formation 
assay, alizarin red staining, immunofluorescence, qPCR, immunoblotting, and alkaline phosphatase activity 
assay. These indicated that gastric cancer could damage bone tissue before the occurrence of bone metastases. 
We also found that cilia formation of MSCs was increased in the presence of HGC27 cells, which was associated 
with abnormal activation of the Wnt/β-catenin pathway. Expression of DKK1 inhibited the Wnt/β-catenin 
signaling pathway and partially rescued osteogenic differentiation of MSCs. In summary, our results suggest 
that gastric cancer cells might cause bone damage prior to the occurrence of bone metastasis via cilia-
dependent activation of the Wnt/β-catenin signaling pathway. 
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induced osteoclast activation and bone resorption can 

proceed at a dangerously high rate resulting in the 

development of bone lesions that cause considerable 

pain and morbidity in patients [3]. However, the 

phenomenon of bone loss caused by gastric cancer has 

not received enough clinical attention, and its molecular 

mechanism and optimal treatment strategy are still 

unknown. In this study we focus on bone loss during the 

early stages of gastric cancer development before the 

occurrence of bone metastasis.  

 

Low bone mass and strength lead to fragility and 

fractures, for example in elderly individuals affected by 

osteoporosis or children suffering from osteogenesis 

imperfecta [4]. A decade ago, rare human mutations 

were identified that either negatively (osteoporosis 

pseudoglioma syndrome) or positively (high-bone mass 

phenotype, sclerosteosis and Van Buchem disease) 

affect bone formation. All of these mutations were 

associated with components of the canonical Wnt 

signaling machinery [4].  

 

Historically, wingless-INT (Wnt) signaling has been 

subdivided into three major branches: the Wnt/β-catenin 

pathway, also termed the canonical Wnt pathway [5], 

the noncanonical Wnt/planar cell polarity [6] pathway 

and the Wnt/calcium (Wnt/Ca2+) pathway [7]. The fact 

that the canonical pathway emerged as the predominant 

component of Wnt signaling affecting bone cells has 

allowed the field to put together a relatively clear 

picture of the mechanisms by which Wnt affects the 

skeleton [5]. Wnt signaling pathways exert distinct 

effects during different phases of bone development, 

including chondrogenesis, osteoblastogenesis, and 

osteoclastogenesis [8–12]. Wnt/β-catenin signaling is 

initiated upon binding of canonical Wnt ligands to a 

dual receptor complex comprising the Wnt co-receptors 

LRP5 or LRP6 (LRP5/6) and one of the seven 

transmembrane receptors of the FZD family [5]. Axin is 

located to the LRP5/6 tail at the membrane through its 

interaction with dishevelled (DVL, also called DSH), 

which is recruited by FZD [5]. This forms a complex 

that also includes FRAT1 and GSK3β, which prevents 

phosphorylation of β-catenin and its proteosomal 

degradation [5]. Then, β-catenin accumulates in the 

cytoplasm and translocates into the nucleus, where it 

associates with members of the TCF/LEF transcription 

factors while displacing Groucho to control target gene 

transcription [5].  

 

Primary cilia are found in almost every mammalian cell 

type [13], and act as the "antennae" of cells that can 

sense and transduce signals from the microenvironment, 
especially through Wnt signaling [14], and have 

emerged as a major regulator of Wnt signaling [15]. 

Intraflagellar transport 80 (Ift80) regulates the growth 

of fibril hairs and is responsible for transmitting 

signaling substances from the bottom to the top of the 

cilia. In recent years, skeletal abnormalities have been 

found in human cilia-related diseases [16–19] and IFT-

related mouse gene knockout studies [20–22] have 

indicated a functional importance of cilia for bone 

development. A number of studies have shown that 

primary cilia regulate the skeletal development of adult 

embryos [20, 23–26] and mechanically regulate the 

formation of adult bones [27, 28]. The important role of 

cilia in skeletal development and formation is well 

documented [27, 28], but it was not until recently that 

the role of cilia in cancer development has begun to 

receive attention. It has been reported that in the case of 

pancreatitis [29], cilia are sharply reduced during the 

formation of pancreatic ductal adenocarcinoma [30]. 

Similarly, in prostate cancer loss of cilia is associated 

with increased Wnt/β-catenin activity and increased 

malignant characteristics. Importantly, some cancers 

depend on retaining rather than losing cilia. There are 

different fibrotic patterns in fibroblastoma and basal cell 

carcinoma that affect their ability to respond to 

additional cellular signals with ciliary receptors [31, 

32]. However, the function and mechanism of cilia in 

gastric cancer-induced bone loss is unclear. 

 

In this study, we collected 25 clinical specimens of 

early gastric cancer patients and non-bone metastatic 

gastric cancer patients. We found that some of these 25 

patients had low serum calcium and phosphorus 

concentrations, unstable alkaline phosphate (ALP) 

concentrations, and apparent bone loss in computed 

tomography (CT) films. Using in vitro and in vivo 

experiments we demonstrated that the Wnt/β-catenin 

signaling pathway was the main pathway for gastric 

cancer-induced bone loss. Our results showed that 

gastric cancer cells stimulated cilia formation in bone 

cells leading to nuclear translocation of β-catenin, 

which further activated the Wnt signaling pathway. As a 

result, gastric cancer ultimately affected the degree of 

osteogenic differentiation, resulting in impaired bone 

formation and eventually in the occurrence of bone loss. 

In agreement with these results, DKK1, a specific 

Wnt/β-catenin inhibitor, significantly promoted osteo-

blast differentiation and induced bone formation.  

 

RESULTS 
 

Clinical samples reveal that primary gastric cancer 

induces bone loss prior to the occurrence of bone 

metastasis 

 

The concentration of Ca2+, inorganic phosphate (Pi), and 

ALP in the serum of 25 gastric cancer patients with non-

bone metastases who met the study inclusion criteria, 

and representative CT films of bone loss were collected. 
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Data showed that 11 of 25 patients had an abnormal 

serum Ca2+ index, 6 patients had an abnormal serum Pi 

index and 5 patients had an abnormal ALP index. Serum 

levels of Ca2+ and Pi rapidly decreased (Figure 1A, 1B) 

compared with the normal value. However, levels of 

ALP had dramatically increased compared with the 

normal value (Figure 1C). ALP is a membrane-bound 

enzyme required to provide the cells with the necessary 

source of inorganic Pi by hydrolyzing pyrophosphate. 

Since humans are made up of complex systems, this 

suggested that the increase in ALP was caused by the 

destruction of bone. These data demonstrated that the 

bones of these gastric cancer patients were damaged 

before the occurrence of bone metastases. Next, we set 

out to obtain the CT myelograms of our cohort of gastric 

cancer patients. Since physicians typically pay little 

attention to the possible impact of early gastric cancer on 

bone health, it was not possible to obtain myelographies 

from all 25 patients. However, we managed to obtain 

myelographies from 3 patients and from these we could 

deduce that distinct bone loss had occurred. Compared 

with healthy controls, a slight circular high-density 

shadow was visible in the vertebral body in the first 

myelography (white arrow pointing to the red circle in 

Figure 1E); a small area of low-density shadow was seen 

in the second myelography, but the shadow density was 

slightly higher (Figure 1F); In the third myelography, a 

small, low-density shadow was visible in the vertebral 

body (Figure 1G). These results confirmed that gastric 

cancer induced bone loss before bone metastasis had 

occurred.  

 

C57BL mice injected with HGC27 in vivo confirms 

that gastric cancer induces bone loss 

 

To investigate whether non-bone metastasis of gastric 

cancer may induce bone loss, we investigated the effect 

of HGC27 cells on in vivo tumor growth using a mouse 

xenograft model. We subcutaneously injected 2x109 

HGC27 cells into the flank of C57BL mice and 

monitored tumor growth for 90 days. In Figure 2A, the 

white arrow points to gastric cancer tissue in mice that 

were injected with HGC27 while no tumors developed 

in the control mice that were injected with phosphate-

buffered saline (PBS). Bone tissues from both groups 

were dissected for histological H&E staining. We found 

that the HGC27-injected group showed obvious 

vacuoles and osteoporosis, but no signs of bone 

metastasis (Figure 2B and Supplementary Figure 1). 

Next, we tested the mice for the presence of the 

osteoblast differentiation marker osteopontin (OPN), 

and found a significant decrease in OPN-positive areas 

in the HGC27-injected group compared with control 
group (Figure 2C). Mean optical density analysis 

confirmed that the OPN-positive region was 

significantly reduced in the HGC27-injected group 

compared with the control group (Figure 2D). 

Peripheral blood sample measurements showed a 

significant decrease in Pi, Ca2+, and ALP concentrations 

in the HGC27-injected group compared with the control 

group (Figure 2E). Micro-computed tomography 

(Micro-CT) of femurs of HGC27-injected C57BL mice 

at day 90 showed an apparent bone loss in both 

trabecular and cortical bone (Figure 2F) compared with 

controls. Bone volume (BV), total bone mass (TV), 

ratio of bone volume to total bone mass (BV/TV), 

trabecular thickness (Tb.Th*), and trabecular number 

(Tb.Sp*) in HGC27 injected mice were 0.54, 0.70, 0.77, 

0.71, 0.71 fold, respectively, of that of the control. 

Although the trabecular number (Tb.N*) of the HGC27-

treated group was almost 1.44 fold of that of the control 

group (Figure 2G), the HGC27 group had significantly 

lower bone mineral density and a 30% reduction in 

osteophyte tolerance (Figure 2H–2J). Meanwhile, 

cancellous bone resistance was reduced by 60% 

compared to the control group (Figure 2I–2K). These in 

vivo results indicated that injection of HGC27 induced 

bone loss and significantly reduced bone stress 

tolerance, consistent with our clinical results.  

 

Osteoblasts co-cultured with HGC27 or SGC-7901 in 

vitro confirm that gastric cancer inhibit the 

proliferation and osteoblast differentiation 

 

To further determine the existence of gastric cancer-

induced bone loss, we used a colony formation assay to 

analyze the effect of HGC27 cells on the proliferation 

of MSCs. Our results showed that the presence of 

HGC27 caused the inhibition of the proliferation of 

MSCs (Figure 3A). Assessment of Ki67 and PCNA 

confirmed that the proliferation ability of MSCs co-

cultured with HGC27 had decreased compared with the 

control group (Figure 3B–3E). Moreover, three kinds of 

osteoblast cells (MC3T3, MSC, and OPC) were grown 

in the presence of HGC27 cells for transwell co-culture 

experiments. Subsequent alizarin red staining indicated 

that the differentiation of osteoblasts was significantly 

reduced upon co-culture with HGC27 compared with 

controls, with an almost complete absence of calcium 

ion deposition (Figure 3F). After quantitative analysis, 

the calcium nodules in the experimental groups were 

reduced by 82% (MC3T3), 61% (MSC), and 81% 

(OPC), respectively, compared with the control group 

(Figure 3G). The use of MSCs in co-culture models 

allowed us to study the process of osteogenesis. 

Western blotting revealed that the expression of marker 

proteins of osteogenic differentiation, including ALP 

and OPN, in MSCs co-cultured with SGC-7901 was 

significantly lower than in the control (P<0.001; Figure 
3H, 3I). Therefore, we used MSCs as cell model for co-

culture in the following experiments. RNA was 

extracted for qRT-PCR analysis at day 3 with HGC27 
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co-cultured. The levels of osteogenic marker genes ALP 

and OCN had both significantly decreased compared to 

control group (P<0.01 and P<0.5, respectively; Figure 

3J). In addition, we performed immunofluorescence 

experiments at day 3 of the HGC27 co-culture 

experiments and found that the protein expression of 

OCN was significantly reduced compared to control 

(Figure 3K, 3L). These data were consistent with the

 

 
 

Figure 1. Clinical samples reveal that primary gastric cancer induces bone loss before bone metastasis occurs. (A–C) The 

concentration of serum Ca2+, Pi, and ALP in 25 non-bone metastatic gastric cancer patient compared to healthy volunteers. (D) Healthy 
control’s pyramidal computed tomography (CT). (E–G) Bone sections of three individual patients with non-bone metastatic gastric cancer. 
The insets are showing a high-power image of bone loss. The blue circle indicates normal bone and the white arrow pointing to the red circle 
indicates damaged bone. Data are shown as mean±SEM. Statistical differences are obtained using a Student's t-test, *, p<0.05, **, p<0.01, 
***, p<0.001. 
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Figure 2. Injection of C57BL mice with HGC27 cells in vivo confirms that gastric cancer induces bone loss. (A) C57BL mice 
were injected with HGC27 cells or PBS (control). Mice were observed for 90 days following the injection. The white arrow indicates the 
localization of the gastric tumor. (B) H&E staining of isolated femurs from the control group and the experimental group. Scale bar, 
100μm. (C) Immunohistochemical staining of osteopontin (OPN) from representative normal and damaged femoral tissues. The brown 
color indicates OPN-positive cells. Scale bar, 100 μm. (D) Comparison of IOD SUM of OPN-positive cells in (C). (E) Peripheral blood of 
C57BL mice injected with PBS or HGC27 cells was collected 90 days post-injection for determination of serum phosphorus (Pi), calcium 
(Ca2+) and alkaline phosphatase (ALP) respectively. (F) Micro-CT showing the transverse section and longitudinal section of the femur. (G) 
Quantitative analysis of the percentage of total bone mass (TV), bone mass (BV), bone volume to total bone volume (BV/TV), trabecular 
number (Tb.N*), trabecular thickness (Tb.Th*) and trabecular spacing (Tb.Sp*) in femurs from the two groups at day 90. (H) Micro-CT 
showing a comparison of the stress levels of the femoral cortical bone. (I) Quantitative analysis of the ability of the femoral cortex to 
withstand stress. (J) Micro-CT showing a comparison of the stress tolerance of the femoral trabecular cancellous bone. (K) Quantitative 
analysis of the femoral trabecular cancellous bone portion subjected to stress. Data are shown as mean±SEM. Statistical differences were 
obtained using a Student's t-test, *, p<0.05, **, p<0.01, ***, p<0.001. n=3 per-group. 
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Figure 3. Co-culturing of osteoblasts with HGC27 or SGC-7901 cells in vitro confirms that gastric cancer cells inhibit the 
proliferation and differentiation of osteoblasts. (A) Colony formation assay showing that the proliferation ability of MSC cells was 

impaired upon co-culture with HGC27 cells. (B) Immunofluorescence staining of MSCs at day 3 of OS medium induction with or without co-
cultured HGC27. Shown is Ki67 expression (green). Nuclei were stained with DAPI (blue). Scale bar, 100 μm. (C) Quantitative analysis of the 
fluorescence intensity in (B). (D) Immunofluorescence staining of PCNA (red) in MSCs at day 3 of OS induction with or without co-cultured 
HGC27 and Nuclei were stained with DAPI. (blue) states. Scale bar, 100 μm. (E) Quantitative analysis of the fluorescence intensity in (D). (F) 
Alizarin Red staining analysis of MC3T3, MSC, and OPC cells at days 16 of OS induction with or without HGC27 cells co-cultured. (G) 
Quantitative mineralization level based on (F). (H) Western blot analysis of OPN and ALP expression in MSCs with or without co-cultured SGC-
7901. (I) Quantitative analysis of OPN and ALP protein levels from the immunoblots in (H). OPN and ALP protein levels were normalized to 
GAPDH (n=3). (J) qRT-PCR results showing ALP and OCN genes transcription levels in MSCs at day 3 of OS induction with or without co-
culturing of HGC27. Expression levels of ALP and OCN were normalized to GAPDH expression. (K) Immunofluorescence staining of MSCs at 
day 3 of OS induction with or without co-cultured HGC27 to test OCN (green). Nuclei were stained with DAPI (blue) states. Scale bar, 100 μm. 
(L) Quantitative analysis of the fluorescence intensity in (K). Data are shown as mean±SEM. Statistical differences were obtained using 
Student's t-test, *, p<0.05, **, p<0.01, ***, p<0.001. n=3 per-group. OPC, oligodendrocyte progenitor cells; OPN, osteopontin; ALP, alkaline 
phosphatase; MSC, mesenchymal stem cells. 
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bone loss observed in the in vivo model, highlighting 

that gastric cancer reduced osteoblast differentiation. 

 

Co-culture with HGC27 cells but not GES-1 cells 

increased cilia formation of MSCs 

 

Then, we set out to assess whether gastric cancer cells 

could affect osteoblastic cilia. We performed cellular 

immunofluorescence assays on MSCs, MSCs co-

cultured with GES-1 cells, and MSCs co-cultured with 

HGC27 cells and double stained basal bodies (using 

anti-γ-tubulin) and axons (using anti-acetylated α-

tubulin) to visualize cilia (Figure 4A). MSC co-cultured 

with GES-1 cells displayed almost the same cilia 

expression as control MSCs. In contrast, MSC co-

cultured with HGC27 cells showed abnormally 

increased cilia expression (Figure 4A, 4B). About 35% 

of the cells in the control MSC group had normal cilia 

structure, whereas the number of cilia in the MSCs co-

cultured with HGC27 cells was as high as 78% (Figure 

4C). Moreover, staining with anti-acetylated α-tubulin 

revealed a significant increase in the cilia length of 

MSCs co-cultured with HGC27 cells (10.15±1.35μm) 

compared to control MSCs (5.98±0.5μm) (Figure 4D 

and 4E). In addition, some MSCs also had 3-5 cilia. 

Staining with anti-γ-tubulin antibodies revealed a 

number of red dots that were distributed on the 

endoplasmic reticulum or the nucleus of the cell (Figure 

6A). Western blot results confirmed that the expression 

of acetylated α-tubulin and γ-tubulin proteins was 

higher in MSCs co-cultured with HGC27 cells than in 

the control group (Figure 4F, 4G). These results were 

verified by subsequent animal experiments injecting 

mice with HGC27 cells. Bone tissues from the control 

mice and from HGC27-injected mice were subjected to 

immunofluorescence staining. The basal body (anti-γ-

tubulin) and axoneme (anti-acetylated α-tubulin) were 

double-stained to detect cilia (Figure 4H). Quantitative 

analysis of immunofluorescence results using image J 

software showed that the expression levels of γ-tubulin 

and acetylated α-tubulin increased significantly in the 

HGC27-injected group compared with the control group 

(Figure 4I). In summary, HGC27 cells but not GES-1 

cells promote the formation of cilia.  

 

Gastric cancer cells activate the canonical Wnt/β-

catenin signaling pathway in bone 

 
It is well known that the Wnt/β-catenin pathway 

regulates the production of cartilage, osteogenic cells 

and osteoclasts. It plays a key role in limb formation 

and bone development. Here we explored whether the 

Wnt/β-catenin signaling pathway also plays a role in 

gastric cancer-induced bone loss. We therefore 

performed immunofluorescence co-staining assays for 

β-catenin and acetylated α-tubulin (ciliary axon 

protein) on bone tissue of normal C57BL mice. 

Surprisingly, the expression sites of these two proteins 

overlapped highly (Figure 5A). These data 

demonstrated that β-catenin is already strongly 

associated with cilia under normal conditions. Next, 

we used immunofluorescence staining to determine the 

expression of β-catenin in MSCs that were co-cultured 

with or without HGC27 at day 3 of osteogenic (OS) 

medium induction. The results indicated (Figure 5B) 

that β-catenin (shown in red) expression was low 

under normal conditions and mostly distributed in the 

cytoplasm. However, accumulation of β-catenin in the 

cytoplasm and progressive translocation to the nucleus 

was observed at day 3 in MSCs co-cultured with 

HGC27 (Figure 5B). Similarly, we used immuno-

blotting to detect Wnt3a protein. The results showed 

that the expression of Wnt3a was 2.11-fold higher in 

MSCs co-cultured with HGC27 than in control MSCs, 

suggesting the abnormal activation of Wnt3a 

expression in MSCs by gastric cancer cells (Figure 5C, 

5D). In vivo we collected femurs at day 90 from 

C57BL mice injected with HGC27 or PBS as control 

for β-catenin staining. Similar to the in vitro results, β-

catenin expression was significantly increased in the 

HGC27 group, i.e., 12.1-fold higher than in the control 

group (Figure 5E, 5F). Meanwhile, immuno-

histochemical assays showed that the protein 

expression level of P-β-catenin (inactive state) in the 

HGC27 group was reduced by 84% compared with the 

control group (Figure 5G, 5H). Taken together, these 

data suggested that gastric cancer cells activate the 

expression of Wnt/β-catenin pathway during the 

process of osteoblast differentiation in bone.  

 

Abnormal overexpression of cilia caused by gastric 

cancer elevates the Wnt/β-catenin signaling pathway 

in MSCs  

 

Our previous experiments had shown that gastric cancer 

up-regulated cilia expression in osteoblasts. Here, we 

further set out to characterize the relationship between 

cilia and Wnt/β-catenin pathway in gastric cancer 

leading to bone loss. Chloral hydrate causes degradation 

of the junction of the cilia and the matrix, and 

chemically blocks the formation of cilia. Dkk1 is a 

classical inhibitor of the Wnt/β-catenin signaling 

pathway that can block the expression of the entire 

signaling pathway. Therefore, we used both chloral 

hydrate and Dkk1 treatment to assess the relationship 

between cilia and the Wnt/β-catenin signaling pathway 

in MSCs. We subjected four groups, MSCs only 

(MSC), MSCs co-cultured with HGC27 

(MSC+HGC27), DKK1-treated MSCs co-cultured with 
HGC27 (MSC+HGC27+DKK1) and chloral hydrate-

treated MSCs co-cultured with HGC27 

(MSC+HGC27+chloral hydrate), to OS induction. We 
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Figure 4. HGC27 but not the GES-1 increased the cilia formation of MSCs. (A) Immunofluorescence analysis of primary cilia in MSC, 

MSC+GES-1, MSC+HGC27. Primary cilia were stained with acetylated α-tubulin (axoneme, green) and γ-tubulin (basal body, red) antibody. 
Scale bars, 100 μm. (B) Quantitative analysis of the fluorescence intensity of immunofluorescence in (A). (C) Quantitative evaluated the 
number of cilia on an equal area (n=3, at least 200 cells). (D) Representative images of primary cilia in MSCs. The inset shows a high-power 
image of the basal body and axoneme. Primary cilia are stained with acetylated α-tubulin (axoneme, green) and γ-tubulin (basal body, red) 
antibodies. DAPI staining is used as nuclear counterstaining (blue). Scale bars, 20 μm. (E) Graphical representation of cilia length in the MSC, 
MSC+GES-1, and MSC+HGC27 groups (n=10). (F) Western blot analysis of acetylated α-tubulin and γ-tubulin expression in MSCs with or 
without co-cultured HGC27. (G) Quantitative analysis of acetylated α-tubulin and γ-tubulin protein levels from immunoblots in (F). Acetylated 
α-tubulin and γ-tubulin protein levels were normalized to GAPDH (n=3). (H) Femur tissues of C57BL mice injected with PBS or HGC27 cells at 
90 days post-injection are stained for γ-tubulin (red), acetylated α-tubulin (green), and nuclei (blue). Scale bar, 100 μm. (I) Quantitative 
analysis of the fluorescence intensity in (H). Data are shown as mean±SEM. Statistical differences were obtained using Student's t-test, *, 
p<0.05, **, p<0.01, ***p<0.001. 
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Figure 5. Gastric cancer activates the canonical Wnt/β-catenin signaling pathway in bone. (A) Immunofluorescence analysis of 

acetylated α-tubulin (ciliary axonin, green) and β-catenin (red) in femur from PBS injected C57BL mice. DAPI (nuclear marker, blue) 
staining was used as counterstain. Scale bars, 100 μm. (B) Immunofluorescence staining of MSCs with or without co-cultured HGC27 to 
visualize β-catenin (red) and nuclei (DAPI, blue) states. Scale bar, 20 μm. (C) Immunofluorescence staining of MSCs with or without co-
cultured HGC27 showing Wnt3a (red) and nuclei (blue). Scale bar, 100 μm. (D) Quantification of immunofluorescence intensity in (C). (E) 
Representative femoral tissues from C57BL mice injected with PBS or HGC27 were analyzed for β-catenin expression by 
immunofluorescence staining at day 90. Scale bar, 50 μm. (F) Quantification of immunofluorescence intensity in (E). (G) 
Immunohistochemical staining for phosphorylated-β-catenin (p-β-catenin) in femurs of PBS or HGC27-injected groups. Scale bar, 100 μm. 
(H) IOD SUM of positive cells from (G) were compared between the HGC27 group and control femurs. Data are shown as mean±SEM. 
Statistical differences were obtained using Student's t-test, **, p<0.01, ***, p<0.001. n=3 per-group. 
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found that treatment with DKK1(10 nM) did not 

significantly prevent the formation of cilia, with some 

cells still retaining as many as 3-5 cilia. Furthermore, γ-

tubulin was expressed in high density in both the 

cytoplasm and the nucleus (Figure 6A). As shown in 

Figure 6B, 6C, Western blot results also showed that 

DKK1 had no significant inhibitory effect on the 

increased expression of acetylated α-tubulin and γ-

tubulin in the presence of HCG-27 cells. Meanwhile, 

immunofluorescence results showed that the enrichment 

of β-catenin in the nucleus was significantly reduced 

(Figure 6D), and the fluorescence intensity of Wnt3a 

was also significantly attenuated by the addition of 

DKK1 (Figure 6E, 6F). Immunoblotting experiments 

showed that β-catenin protein expression was highly 

increased, however, Naked1 and Axin1 proteins were 

greatly decreased in the group of HGC27+MSC 

compared with MSC group. DKK1(10 nM) rescued 

these effects of HGC27 in MSCs (Figure 6G, 6H). The 

addition of chloral hydrate (10mM) blocked the 

formation of cilia, which in turn inhibited the 

conduction of the Wnt/ β-catenin signaling pathway 

(Figure 6A, 6I, 6J). qRT-PCR analysis also showed that 

the mRNA levels of Wnt3a and β-catenin were 

increased. However, the mRNA levels of TCF1 and 

GSK-3β were decreased in the HGC27+MSC group 

compared with the MSC group, while addition of 

DKK1 (10 nM) rescued the effects of HGC27 in MSCs 

(Figure 6K). These results provided evidence that the 

abnormal overexpression of cilia caused by gastric 

cancer activates the Wnt/β-catenin signaling pathway in 

MSCs.  

 

Dkk1 partially rescues gastric cancer-induced bone 

loss due to gastric cancer 

 

We further investigated whether suppression of the 

Wnt/β-catenin pathway could salvage osteogenic 

differentiation. Alizarin red staining showed a 

significant reduction in osteoblast differentiation with 

little calcium deposition upon co-culture with HGC27, 

and this effect was partially rescued by DKK1 (Figure 

7A, 7B). Immunofluorescence showed that DKK1 

rescued the impaired OCN protein expression caused by 

HGC27 (Figure 7C, 7D). Similarly, DKK1 partially 

restored osteogenesis in MSCs, as evidenced by 

restored expression of OPN and ALP (Figure 7E, 7F), 

ALP activity (Figure 7G), and mRNA levels of ALP 

and OCN (Figure 7H). These results demonstrated that 

the osteogenic capacity of MSCs was significantly 

reduced by abnormal activation of cilia under the 

influence of gastric cancer cells and that DKK1 restored 

the osteogenic capacity of some MSCs with little 
change in cilia length and number. This suggested that 

gastric cancer cells activated the Wnt/β-catenin 

signaling pathway through abnormal activation of cilia, 

thereby attenuating osteoblast differentiation which 

further led to bone loss. 

 

DISCUSSION 
 

Once a tumor has metastasized to the bone, it is 

extremely painful and causes uncontrolled bone 

remodeling, which is usually incurable [33]. The 

devastating consequences of bone metastases include 

pathological fractures, pain, hypercalcemia, and spinal 

cord and nerve compression syndrome [34]. 

Understanding the crucial factors of the gastric cancer 

that influence bone osteogenesis, along with the 

important proteins and key mechanisms that regulate 

osteogenic differentiation, is central to the patho-

physiology of bone invasion by tumor cells. 

Surprisingly, based on the clinical samples collected, 

we found that some patients had slight changes in Ca2+, 

Pi and ALP concentrations and some CT scans showed 

slight bone cavities before the bone metastasis of the 

primary gastric cancer had occurred. These data 

suggested that the gastric cancer might reduce 

osteoblast differentiation prior to bone metastasis. 

Therefore, in this study, we investigated the effect of 

gastric cancer cells on bone tissue by injecting mice 

with HGC27 gastric cancer cells in vivo and by co-

culturing osteoblast cells with HGC27 or SGC-7901 

in vitro. Our results confirmed that osteoblast 

differentiation was attenuated in the presence of gastric 

cancer cells. A series of functional tests showed that 

gastric cancer cells impaired osteoblast proliferation and 

differentiation, which was associated with an increase in 

the levels of acetylated α-tubulin and γ-tubulin and with 

abnormal length and number of cilia. We showed that 

the abnormal overexpression of cilia caused by gastric 

cancer cells activated the Wnt/β-catenin signaling 

pathway in MSCs. Treatment with DKK1 could rescue 

osteoblast differentiation that was partially inhibited by 

gastric cancer cells. These findings suggested that 

gastric cancer regulated osteoblast differentiation and 

mineralization through the Wnt/β-catenin signaling 

pathway, which acted downstream of the cilia. This 

report demonstrates for the first time that gastric cancer 

directly affects osteoblast differentiation through the 

cilia/Wnt/β-catenin signaling pathway.  

 

In this study, we used a colony-forming assay and 

immunofluorescence to show that the proliferation 

ability of MSCs co-cultured with HGC27 was 

significantly inhibited compared with untreated MSCs. 

We also used OS medium to culture MSCs and observe 

their osteogenic ability. Alizarin red staining, Western 

blotting, quantitative PCR and immunofluorescence 

showed that HGC27 and SGC-7901 had a strong 

inhibitory effect on the osteogenic differentiation of 

MSCs. We observed that gastric cancer cells could 
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Figure 6. Abnormal overexpression of cilia caused by gastric cancer activates the Wnt/β-catenin signaling pathway in MSCs. (A) 
Analysis of primary cilia in MSC, MSC+HGC27, MSC+ HGC27+DKK1 and MSC+HGC27+chloral hydrate by immunofluorescence. Primary cilia were 
stained with anti-acetylated α-tubulin (axoneme, green) and anti-γ-tubulin (basal body, red) antibodies. Nuclei were stained with DAPI (blue). 
White arrows indicate cilia. Scale bars, 20 μm. (B) Western blot analysis of acetylated α-tubulin and γ-tubulin expression in MSC, MSC+HGC27 and 
MSC+HGC27+DKK1. (C) Quantitative analysis of protein levels in (B). Protein levels were normalized to GAPDH. (D) Analysis of β-catenin (red) 
expression by immunofluorescence in MSC, MSC+HGC27, and MSC+HGC27+DKK1 groups. Nuclei were stained with DAPI (blue). Scale bars, 20 
μm. (E) MSC, or MSC co-cultured with HGC27 with or without DKK1 treatment were analyzed for Wnt3a (red) expression. Nuclei were stained 
with DAPI (blue). Scale bar, 100 μm. (F) Quantitative analysis of the fluorescence intensity in (E). (G) Western blot analysis comparing Naked1, 
Axin1, or β-catenin expression in the MSC, MSC+HGC27, and MSC+HGC27+DKK1 groups. (H) Quantitative analysis of protein levels in (G). The 
protein levels were normalized to GAPDH. (I) Western blot analysis comparing Naked1, Axin1, or β-catenin expression in the MSC, MSC+HGC27 
and MSC+HGC27+chloral hydrate groups. (J) Quantitative analysis of protein levels in (I). The protein levels were normalized to GAPDH. (K) qRT-
PCR results showing Wnt3a, β-catenin, TCF-1, and GSK-3β transcription levels in MSC, MSC+HGC27, MSC+HGC27+DKK1 on day 3 following OS 
induction. The gene expression levels were normalized to GAPDH expression. Data are shown as mean ± SEM. Statistical differences were 
obtained using One-way ANOVA with post-hoc testing, *, p<0.05, **, p<0.01, ***, p<0.001. NS, not statistically significant, n=3, per-group. Ace-
tubulin, acetylated α-tubulin. 
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abnormally activate the cilia and regulate osteogenic 

proliferation and differentiation. Kuehn et al. have 

reported that the inhibition of cilia is the driving 

carcinogenic lesion of most clear cell renal cell 

carcinomas, showing that ciliary body absorption could 

promote its role in carcinogenesis by stimulating 

proliferation [35]. Kim et al. showed that when cells 

lacked Nde1 longer cilia were formed. They showed a 

delay in the cell cycle from G1 to S, which was rescued 

in cells lacking cilia [36]. Interestingly, a natural

 

 
 

Figure 7. Dkk1 partially rescued bone loss due to gastric cancer. (A) Bone mineralization levels in the MSC, MSC+HGC27, and 

MSC+HGC27+DKK1 groups were analyzed by alizarin red staining at day 16 post-OS induction. (B) Quantitative mineralization levels 
based on (A). (C) Immunofluorescence staining of MSC, MSC+HGC27, and MSC+HGC27+DKK1 to visualize OCN (green) and nuclei 
(blue). Scale bars, 100 μm. (D) Quantitative analysis of the fluorescence intensity in (C). (E) Western blot analysis of OPN and ALP 
expression in MSC, MSC+HGC27, and MSC+HGC27+DKK1 groups. (F) Quantitative analysis of protein levels in (E). (G) ALP activity in 
the MSC, MSC+HGC27, and MSC+HGC27+DKK1 groups at day 3 post-OS induction. (H) qRT-PCR results comparing ALP and OCN 
transcription levels in the MSC, MSC+HGC27, and MSC+HGC27+DKK1 groups on day 3 post-OS induction. Data are shown as 
mean±SEM. Statistical differences were obtained using One-way ANOVA with post-hoc testing, *, p<0.05, **, p<0.01, ***, p<0.001. 
NS, not statistically significant, n=3, per-group. (I) Schematic diagram of the role of the Wnt/β-catenin pathway under normal and 
gastric cancer conditions. 
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mutation of Nde1 has recently been described in patients 

with severe microcephaly [37, 38] and defects have also 

been observed in mice lacking Nde1 [39]. The data of 

Kim et al. proposed another model in which the 

microcephaly of patients with Nde1 mutations might be 

due to the formation of abnormally long cilia, leading to 

the extended G1 phase and premature cell cycle exit of 

neuronal progenitor cells [36]. This assumption was 

consistent with the data of Li et al. [36, 40]. This was 

sufficient to show that the destruction of cilia stimulates 

the cell cycle progression [41]. Therefore, inhibition of 

primary cilia leads to downstream carcinogenic events, 

but its enhancement results in delayed cell cycle and 

bone dysplasia. These seemingly contradictory results 

can be explained by the cell cycle effects of primary cilia. 

Similarly, for bone tissues affected by gastric cancer, the 

increase in cilia length led to a prolonged cell cycle, 

which affected bone formation through a series of actions 

on bone. However, it is important to note that these in 
vivo and in vitro experiments cannot reproduce the 

complexities of gastric cancer and bone interactions in 

humans. Gastric cancer does not directly affect bones 

through primary cilia. The primary cilia of bone cells 

may interact with certain extracellular proteins., Further 

research is needed to explore the relationship between 

gastric cancer, cilia, and bone tissue.  

 

We further found that gastric cancer affected osteoblast 

differentiation by prolonging the cilia of osteoblasts by 

abnormally activating the classical Wnt/β-catenin 

signaling. We unexpectedly found that β-catenin was 

co-stained with acetylated α-tubulin in femurs of 

C57BL mice, which demonstrated that β-catenin was 

located in cilia. Recent studies have also reported cilia 

regulation of the Wnt/β-catenin signaling pathway [42]. 

Several members of the Dvl, β-catenin and β-catenin 

destruction complexes have been shown to be located at 

the base of the ciliary body, and existing evidence 

suggests that they can be regulated by components of 

the TZ protein complex MKS and NPHP modules, 

which form the eyelashes. The protruding part of the 

phyllodes regulates the protein entering and leaving the 

cilia [43]. Many studies have reported on the location of 

several core components of Wnt in primary cilia [44–

48]. Although multiple lines of evidence from gene 

knockout studies indicate that cilia play a role in 

regulating Wnt signaling, the literature in this field is 

still controversial. Regarding the Wnt signaling 

pathway, we observed that β-catenin accumulated in the 

cytoplasm and underwent nuclear translocation in 

MSCs co-cultured with HGC27, ultimately reducing the 

expression of the osteogenic marker genes including 

OCN, OPN, and ALP. Moreover, the addition of chloral 
hydrate blocked cilia formation, which in turn reduced 

Wnt signaling. The addition of DKK1, an inhibitor of 

the Wnt/β-catenin signal pathway, had little effect on 

the expression of cilia, but rescued the osteogenic 

defects caused by gastric cancer cells. This suggested 

that cilia might act upstream of the Wnt/β-catenin 

signaling pathway that regulated osteogenesis. 

Consistent with this view, Zhou et al. found that 

sinusoidal electromagnetic fields (SEMFs) increased the 

peak bone mass of growing rats by promoting 

osteogenic differentiation/maturation of osteoblasts. 

This was mediated by Wnt10b of primary cilia that 

elongated with SEMFs of different intensities, and 

subsequently activates Wnt/β-catenin signaling [49]. 

Qiu et al. observed that the expression of Axin2, a direct 

downstream gene of Wnt/β-catenin signaling in the 

bones and osteoblasts of conditional Kif3aOC-CKO null 

mice, was significantly reduced compared to Kif3aflox/+ 

control mice [50]. In addition, Wnt3a induced cytosolic 

β-catenin accumulation and β-catenin transcriptional 

activity were significantly reduced in osteoblasts from 

conditionally Kif3aOC-CKO null mice [50]. However, 

there are also many studies that have shown that cilia 

restrict nuclear entry by isolating β-catenin in the ciliary 

body cavity, thereby inhibiting classical Wnt signaling 

[51]. The loss of cilia enhances the canonical Wnt 

response [51]. Thus, despite intense investigation, the 

exact function of the primary cilia in fine-tuning Wnt 

signaling remains unclear [52]. 

 

Here, we found that in MSCs co-cultured with HGC27 

the expression of β-catenin and Wnt3a increased, 

while the expression of Naked1 and Axin1 as well as 

the mRNA levels of TCF1 and GSK-3 decreased 

significantly, which suggested that gastric cancer cells 

activated the Wnt signaling pathway. Most studies 

have shown that the Wnt signaling pathway has 

positive effects on bone tissue. However, we found 

that the Wnt signaling pathway in bone tissue under 

the influence of gastric cancer cells negatively 

regulated osteogenic differentiation. This can be 

explained by the results of Chen et al. who proved that 

high levels of Wnt1 and β-catenin expression were 

associated with advanced, metastatic, hormone 

refractory prostate carcinoma [53]. De Toni et al. 

concluded that the Wnt/β-catenin pathway contributed 

to carcinogenesis and the survival of colorectal tumors 

by driving the expression of OPG, contributing to cell 

invasion and metastasis [54]. Abnormal activation of 

the Wnt/β-catenin pathway has been described in a 

wide variety of human cancers, such as colon [55], 

prostate [56] and cutaneous cancer [57], chronic 

myeloid leukemia [58], and hepatic carcinoma [59]. In 

addition, some studies have reported that the abnormal 

activation of the Wnt pathway inhibited osteogenic 

differentiation. Nemoto et al. suggested that Wnt 
signaling inhibited cementoblast differentiation and 

promoted cell proliferation [60]. Jiang et al. suggested 

that Wnt16 is involved in intramembranous 
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ossification and suppressed osteoblast differentiation 

through the Wnt/β-catenin pathway [61]. Thus, it was 

reasonable to assume that the abnormally activated 

Wnt pathway of gastric cancer also affects the 

osteoblast Wnt signal pathway, leading to down-

regulation of OCN, ALP, and OPN protein expression 

and ultimately leading to inhibition of osteogenic 

differentiation.  

 

In summary, our data showed that non-bone metastatic 

gastric cancer may induce bone loss. This effect was 

mediated by the Wnt/β-catenin pathway, and osteoblast 

cilia were the upstream effector that controlled this 

pathway. The accumulation and nuclear translocation of 

β-catenin and the increased of Wnt3a expression 

suggested that the Wnt/β-catenin pathway was 

abnormally activated in the presence of gastric cancers. 

This activation could significantly inhibit osteogenic 

differentiation and lead to significant bone loss. 

Therefore, our study revealed a new mechanism of 

osteogenic differentiation in which cilia play a key role. 

This work also suggested that bone loss caused by non-

bone metastasis of gastric cancer might be brought 

about via the cilia/Wnt/β-catenin signaling pathway. 

This provides new ideas for the prevention of bone loss 

induced by gastric cancer. 

 

MATERIALS AND METHODS 
 

Case collection and inclusion criteria 

 

To investigate whether gastric cancer affects bone 

tissue, we collected gastric cancer specimens from 

Chongqing Emergency Medical Center. All clinical 

trials were conducted in strict compliance with the 

Helsinki Declaration and relevant regulations of 

Chinese clinical trials, and approved by the Chongqing 

Emergency Medical Center Hospital Ethics Committee. 

Written informed consent was obtained from all 

participants. Inclusion criteria (patients are required to 

meet each of the following three conditions): 1) Patients 

with gastric cancer but without bone metastasis (gastric 

cancer patients with other, non-bone, metastasis were 

included in the study); 2) Patients younger than 50 years 

old (excluding age-related effects on bone mass); 3) 

Patients without primary bone disease or other diseases 

affecting bones. In total, we collected 25 specimens that 

met those criteria. Among these 25 specimens, there 

were 15 cases of gastric malignant gastric cancer, 5 

cases of gastric cardia malignant gastric cancer, 3 cases 

of malignant gastric cancer of the esophagogastric 

junction and 2 cases of gastric antrum malignant gastric 

cancer. Finally, we determined the Ca2+, inorganic 

phosphate, and ALP concentrations in the serum of 

these 25 patients, and collected patient information that 

were not within the normal range into Table 1.  

Cell culture and reagents 

 

A murine pre-osteoblastic cell line derived from murine 

calvaria (MC3T3-E1 clone 4) [62], gastric epithelial cell 

line GES-1, gastric cancer cell line HGC27 and human 

gastric cancer cell line SGC-7901 [63] were obtained 

from the American Type Culture Collection (ATCC). 

Animal procedures were conducted in accordance with 

the protocol approved by IACUC of the Chongqing 

medical University. Sprague-Dawley (SD) rats, 3-4 days 

old, were immersed in 75% alcohol to death. In a sterile 

hood, the rat femurs and tibias were dissected free from 

the surrounding soft tissue. Metaphysis from both ends 

were resected, and bone marrow cells were collected by 

flushing the diaphysis with phosphate-buffered saline 

(PBS) and separated by Histopaque-1083 (Sigma) density 

gradient centrifugation at 400 g for 20 min. Culturing and 

differentiation of rat primary osteoblast precursor cells 

(OPCs) were performed as follows. Primary OPCs were 

isolated from rat calvarial bone by a serial digestion 

method. Briefly, calvarial bone was dissected and 

subjected to sequential digestions in collagenase type I 

(2mg/ml, EMD, Darmstadt, Germany), Trypsin (0.25%, 

Corning, Manassas, VA, USA) and collagenase type I (2 

mg/ml) for 30 min each. Then the bone chips were 

subjected to collagenase type I (2 mg/ml) again for 10 

min. Cells from this digestion were spun down and plated 

in α-MEM-containing 10% fetal bovine serum (FBS), 100 

U/ml penicillin and 1 mg/ml streptomycin. MC3T3 cells, 

mesenchymal stem cells (MSCs), and OPC cells were 

amplified as previously described [64]. For osteoblast 

differentiation, MC3T3-E1 cells or MSCs were induced 

with osteogenic medium (OS media:α-MEM (Gibco) 

containing 10% FBS, 10 mM b-glycerophosphate (Sigma, 

St Louis, MO, USA), 50 mg/ml ascorbic acid (Sigma) and 

10-8 M dexamethasone (Sigma) [65]).  

 

Mouse xenograft studies 

 

HGC27 cells (1×108/mL) were suspended in PBS, 

sealed, and placed in ice water for later use. Twelve 4-6 

weeks old C57BL mice (both male or female) were 

purchased from the Experimental Animal Center of 

Chongqing Medical University). Mice were injected 

with 0.1 mL of HGC27 cell suspension into the ventral 

side to induced gastric cancer formation and reared in 

separate cages for 90 days post-injection [66].  

 

Immunofluorescence 

 

To visualize cilial structures, immunofluorescence was 

performed using an anti-acetylatedα-tubulin antibody 

(1:1000, T6793, Sigma) and an anti-γ-tubulin antibody 
(1:1000, T3320, Sigma) [67]. Briefly, cells were 

washed with PBS and fixed with 4% paraformaldehyde 

at room temperature. Fixed cells were permeabilized 
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Table 1. Patients' details. 

Patients 
Ca2+ 

(mmol/l) 
Pi (mmol/l) ALP (U/L) hs-CRP (mg/L) 

PCT 

(ug/L) 
Primary diagnosis name 

Patient1 

1.86  26 32  Gastric malignancy 

1.77  31   

1.98   39.4  

Patient2 1.84 1.95   21.097 Gastric malignancy 

Patient3 
1.86  242  1.358 Gastric cardia malignant 

gastric cancer 1.90  496  1.285 

Patient4 

2.01 0.46  19.9 1.122 

Gastric malignancy 

1.86 0.52  62.9 2.909 

1.85 0.61 206 91.2  

 1.94 0.33  45.9 3.652 

 1.88 0.42 219 37.2 2.53 

 1.91 0.31 254 72.8 2.73 

 1.72 0.29  77.2 1.62 

Patient5 

2.00  31 59.0  

Gastric malignancy 1.98  29   

1.99  26 25.2  

Patient6 

1.77 0.39  135.7 2.559 

Gastric malignancy 1.86 0.56  126.8 3.553 

1.98 0.51  119.4 3.52 

Patient7 

1.86 0.58  188.6  

Gastric malignancy 1.8 0.63  120.7  

1.98 0.43  195.4  

Patient8 2.00     Gastric malignancy 

Patient9  0.76    Gastric malignancy 

Patient10   255 39.53 1.01 Gastric malignancy 

Patient11 
2.02     

Gastric malignancy 
2.01     

Patient12 

1.80 0.58  43.3  

Gastric malignancy 1.65 0.43  85.3  

1.81 0.39  127.9  

Patient13 
2.01     

Gastric malignancy 
1.96     

       

Remark:  :Reduce  :Increase   

 

with 0.05% Triton X-100 and then incubated with the 

primary antibodies overnight at 4° C. Alexa Fluor 568-

conjugated anti-rabbit (1:1000, A-11011, Invitrogen) or 

Alexa Fluor 647-conjugated anti-mouse (1:1000, A-

21235, Invitrogen) antibodies were used as secondary 

antibody. Counter staining of nuclei was done with 

DAPI (Sigma) [68]. The experiments were conducted in 

quadruplicate. The same treatment was used for Ki67 

(1:1000, J3009, Santa Cruz Biotechnology, USA), 

PCNA (1:1000, A5324, Selleckchem, USA), β-catenin 

(1:200, A5038, Bimake, USA) staining and Wnt3a 

(1:200, 2721, Cell Signaling Technology, USA) 

staining as well as for Osteocalcin (OCN) (1:1000, 

16157-1-AP, Proteintech, USA) staining. Ki67 was 

visualized using a FITC-conjugated goat anti-rabbit 

(1:1000, 0110119-0100, BBI) antibody.  

 

Colony-forming assay 

 

For the colony-forming assay, 1000 MSCs in 2 mL of 

medium were added to each well of a 6-well plate and 

cultured for 10 days. Subsequently, the cells of the 

treatment group were co-cultured with HGC27 cells. 

After culturing the cells under standard conditions for 
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Table 2. The sequences of PCR primers. 

Gene Sequence(5'-3') 

ALP 

 

Sense: 5'-GCACCTGCCTTACCAACTCT-3' 

Antisense: 5'-GGACCTGAGCGTTGGTGTTA-3' 

Osteocalcin 

 

Sense: 5'-TTCTGCTCACTCTGCTGACC-3' 

Antisense: 5'-GGCGGTCTTCAAGCCATACT-3' 

Wnt3a 

 

Sense: 5'-AGCGAGGACATCGAGTTTGG-3' 

Antisense: 5'-CTTCTCCACCACCATCTCCG-3' 

GSK-3β 

 

β-catenin 

 

TCF-1 

 

GAPDH 

 

Sense: 5'-AACTCCACCAGAGGCAATCG-3' 

Antisense: 5'-AAGCGGCGTTATTGGTCTGT-3' 

Sense: 5'-ATCATTCTGGCCAGTGGTGG-3' 

Antisense: 5'-GACAGCACCTTCAGCACTCT-3' 

Sense: 5'-AGGAGGCGAAGAAGCCAATC-3' 

Antisense: 5'-GATAATGCATGCCACCTGCG-3' 

Sense: 5'-GACCACAGTCCATGCCATCA-3' 

Antisense: 5'-GTCAAAGGTGGAGGAGTGGG-3' 

 

14-18 days, the medium was removed and the cells 

were washed 3 times with PBS. Next, 4% formaldehyde 

was added at 1 mL/well for 15 minutes to fix the cells. 

After discarding the fixation solution, the cells were 

stained with crystal violet dye, and the cells were 

photographed and counted. 

 

Quantitative PCR 

 

Total RNA was extracted from cultured MSCs with 

Trizol reagent (Invitrogen, Carlsbad, CA) following the 

manufacturer’s instructions. cDNA was synthesized 

from 3 mg total RNA by RNA to cDNA EcoDry Premix 

kit (Clontech, Palo Alto, CA, USA). qPCR was 

performed with SYBR Green PCR master Mix 

(Invitrogen). Primers were designed with a primer 

design tool (Integrated DNA Technologies, Beijing, 

China). All reactions were run in triplicate and 

normalized to GAPDH expression. Calculations were 

performed according to the 2-ΔΔCT method [69]. The 

sequence of each primer pair is shown in Table 2. 

 

Histology staining 

 

Mice tibiae were excised, fixed for 24 h in 10% 

natural buffered formalin, and decalcified in 10% 

EDTA for 1–2 weeks at 4 C. The samples were 

embedded in paraffin, sectioned for 5 µm and stained 

with H&E.  

 

Immunohistochemistry staining (IHC) 

 

Deparaffinized slides were stained using antibodies 

against osteopontin (1:200, 225952-1-AP, Proteintech) 

and p-β-catenin (1:200, BS5057, Bioworld Technology, 

Inc.) by immunohistochemistry (with three replicates 

each). Retrieved tissues were fixed, decalcified in 

10% formalin and embedded in paraffin 24 h post-

treatment. After being washed with PBS, tissues were 

incubated with biotin-labeled secondary antibody for 

30 min, followed by incubation with streptavidin-HRP 

conjugate for 20 min at RT. The presence of the 

expected protein was visualized by DAB staining and 

examined under a microscope. Stains with control IgG 

were used as negative controls. 

 

Bone micro-CT analysis 

 

A quantitative analysis of the gross bone morphology 

and microarchitecture was performed with the Micro-

CT system (Skyscan1172) and analyzed using CTAn 

software (Skyscan). Femurs from C57BL mice with or 

without HGC27 treatment were fixed, scanned, and 

reconstituted as three-dimensional images. Cancellous 

bones were evaluated in the distal femur metaphysis. 

About 125 slices (1.5 mm) of bone were measured to 

determine BV/TV (%), Tb.N (mm/1), Tb.Th (mm) and 

trabecular spacing (Tb.Sp, mm). 

 

Alizarin red S staining 

 

Mineralized matrix nodules were stained for calcium 

precipitation by means of Alizarin Red S staining as 

described in [70]. Briefly, the slides were stained with 40 

mmol/L of Alizarin red solution (pH 4.4) for 40 min at 

room temperature and rinsed twice with deionized water. 

The images of stained cells were captured using a phase 

contrast microscope with a digital camera (IM50, Leica, 

Germany). Slides were then destained using 10% 

cetylpyridinium chloride in 10 mM sodium phosphate 

(pH 7.0) and quantified by measuring the optical density 

at 562 nm. The experiment was done in triplicate. 
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Western blot 

 

Cells were lysed with NP40 buffer (1% NP-40, 0.15 M 

NaCl, 50 mM Tris, pH 8.0) containing protease 

inhibitors (Sigma). Protein concentration was measured 

using the bicinchoninic acid (BCA) protein assay 

reagent (Pierce, Rochford, IL, USA). Equal amounts of 

total protein (about 20 μg) were denatured in SDS and 

separated in 10% SDS-PAGE gels. Proteins were 

transferred to polyvinylidene difluoride membranes in 

buffer containing 25 mM Tris, 192 mM glycine and 

20% methanol. The membranes were blocked with 5% 

skim milk, incubated with primary antibody overnight 

at 4° C, and then incubated with horseradish 

peroxidase (HRP)-conjugated goat anti-rabbit IgG 

antibody (1:10,000, A-11034, Novex, CA, USA) or 

horseradish peroxidase (HRP)-conjugated goat anti-

mouse IgG antibody (1:5,000, #7074, Cell Signaling 

technology) at room temperature for 1 h. Visualization 

was performed with Western Bright ECL HRP 

(Advansta). Primary antibodies used were: OPN 

(1:1,000, 22952-1-AP, Proteintech), ALP (1:1,000, 

18507-1-AP, Proteintech), β-catenin (1:1,000, 51067-1-

AP, Proteintech) Wnt3a (1:1,000, C64F2, Cell 

Signaling), Axin1 (1:1,000, C76H11, Cell Signaling), 

Naked1 (1:1,000, C30F10, Cell Signaling). Anti-

GAPDH (1:1,000, YT5052, ImmunoWay) was used as 

the internal control [71].  

 

Alkaline phosphatase enzyme activity 

 

Cells were washed with PBS and lysed with lysis buffer 

(0.2% NP-40, 1 mmol/L MgCl2). Lysates were 

centrifuged and enzyme activity was assayed in the 

supernatant by the addition of 10 mmol/L of p-

nitrophenyl phosphate as a substrate in 0.1 mol/L 

glycine buffer, pH 10.4, containing 1 mmol/L ZnCl2 

and 1 mmol/L MgCl2, followed by incubation at 30° C. 

The quantity of p-nitrophenol product formed was 

recorded by monitoring the absorbance at 405 nm at 

regular time intervals. Protein content was determined 

using the BCA protein assay kit (Sigma, UK). The 

specific activity of alkaline phosphatase (ALP) was 

expressed as nmol/min per milligram of protein.  

 

Statistical analyses 

 
All data are presented as mean ± standard error of the 

mean (SEM) (n=3 or more). Statistical analysis was 

performed using SPSS-17.0 software. Data were 

analyzed using one-way analysis of variance 

(ANOVA), and Tukey’s HSD test was applied as a 

post-hoc test if statistical significance was determined. 

Statistical significance for the two groups was assessed 

using Student’s t-test. Differences were considered 

significant if P<0.05. 
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Supplementary Figure 1. H&E staining of tumor-forming bone tissue sections of nude mice on 90 days. 
 


