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INTRODUCTION 
 

Renal cell carcinoma (RCC) is a diverse group of 

carcinomas including three common histopathological 

subtypes (clear cell, papillary, chromophobe) and 

other rare subtypes, which resulted in 403,300 new 

cases and 175,100 deaths worldwide [1, 2]. Clear cell 

renal cell carcinoma (ccRCC) is the most prevalent 

type (70-75%), and more prone to advanced T stage, 

higher nuclear grade, metastatic lesions and poorer 

prognosis than papillary and chromophobe RCC [3, 

4]. Patient status, tumor stage, nuclear grade, 

coagulative necrosis and proinflammatory markers are 

commonly used prognostic indicators in clinical 

practice [5]. However, precise treatments of ccRCC 

are developing rapidly, thus it is necessary to 
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ABSTRACT 
 

Objectives: To assess the feasibility of predicting molecular characteristics by computed tomography (CT) 
radiomics features, and predicting overall survival (OS) using combination of omics data in clear cell renal cell 
carcinoma (ccRCC). 
Methods: Genetic data of 207 ccRCC patients was retrieved from The Cancer Genome Atlas (TCGA) and 
matched contrast-enhanced CT images were obtained from The Cancer Imaging Archive (TCIA). Another cohort 
of 175 ccRCC patients from West China Hospital was used as external validation. We first applied radiomics 
features and machine learning algorithms to predict genetic mutations and mRNA-based molecular subtypes. 
Next, we established predictive models for OS based on single omics, combined omics (radiomics+genomics, 
radiomics+transcriptomics, radiomics+proteomics) and all features (multi-omics). 
Results: Using radiomics features, random forest algorithm showed good capacity to identify the mutations VHL 
(AUC=0.971), BAP1 (AUC=0.955), PBRM1 (AUC=0.972), SETD2 (AUC=0.949), and molecular subtypes m1 
(AUC=0.973), m2 (AUC=0.968), m3 (AUC=0.961), m4 (AUC=0.953). The TCGA cohort was divided into training 
(n=104) and validation (n=103) sets. The radiomics model had promising prognostic value for OS in validation 
set (5-year AUC=0.775) and external validation set (5-year AUC=0.755). In the validation set, the 
radiomics+omics models enhanced predictive accuracy than single-omics models, and the multi-omics model 
made further improvement (5-year AUC=0.846). High-risk group of validation set predicted by multi-omics 
model showed significantly poorer OS (HR=6.20, 95%CI: 3.19-8.44, p<0.0001). 
Conclusions: CT radiomics might be a feasible approach to predict genetic mutations, molecular subtypes and 
OS in ccRCC patients. Integrative analysis of radiogenomics may improve the survival prediction of ccRCC 
patients. 
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continuously evaluate the emerging prognostic factors 

to enable clinicians to individually risk-stratify and 

select the optimal therapeutic strategy for patients.  

 

Recent advances in genetics performed extensive 

genomics and transcriptomics profiling to reveal the 

underlying molecular mechanism of ccRCC [6]. The 

characteristic of ccRCC is the loss of chromosome 3p, 

including mutations of genes encoding von Hippel-

Lindau tumor suppressor (VHL), polybromo-1 

(PBRM1), BRCA1-associated protein 1 (BAP1) and SET 

domain containing 2 (SETD2) [6]. The VHL pathway is 

essential for adaptation to hypoxia. Loss of VHL 

function and dysregulated hypoxia lead to the activation 

of downstream pathways associated with angiogenesis 

[7]. Several targeted blockers of vascular endothelial 

growth factor pathway (e.g., sorafenib, axitinib) have 

been approved for treatment of metastatic RCC [8]. 

However, the capability of VHL mutation as a 

prognostic factor was not significant in ccRCC [9]. 

Conversely, PBRM1 mutation was associated with 

shorter survival, early tumor progression, and response 

to immune checkpoint therapies in ccRCC patients [10, 

11]. Patients with BAP1 or SETD2 mutation were also 

more likely to have worse prognosis [12], and BAP1 

mutation was related with poor response to everolimus 

[13]. Furthermore, the four molecular subtypes obtained 

from gene expression pattern analysis showed different 

genetic alterations and survival probabilities [6]. Taken 

together, these molecular features have implications to 

prognosis prediction and treatment strategies for ccRCC 

patients. Given the invasive and high-cost molecular 

assays, developing non-invasive and cost-effective 

biomarkers for these mutations and molecular subtypes 

would be important. 

 

Quantitative image analysis can capture distinct 

imaging phenotypes that cannot be recognized by naked 

eye, and reveal the underlying pathophysiology of 

biomedical images [14]. Radiomics is the practice of 

converting digital images into mineable quantitative 

features, then performing subsequent analyses to 

improve accuracy of differentiating tumor types and 

grade, predicting prognosis and therapeutic response 

[15]. Radiogenomics refers to the investigation of 

connection between radiomics and genomics data, 

which has extended to link radiomics to broader 

biological features such as proteomics and 

metabonomics in recent years [16]. Previous studies 

have used radiomics features to non-invasively identify 

gene expression, mutations, molecular subtypes and 

methylation status within the tumors [17–20]. In 

addition, the integration of radiomics and omics has 
been reported to achieve a more accurate prediction of 

survival in several cancers [21–23]. Therefore, the 

radiogenomics analysis might offer insights into the 

molecular phenotypes of cancer, and provide predictive 

biomarkers for personalized management of cancer 

patients. 

 

In ccRCC, computed tomography (CT) is routinely used 

to capture the physical characteristics of the whole 

tumor volume. Radiomics features extracted from CT 

scans have showed significant ability to predict 

mutation status of VHL, BAP1 and PBRM1 in ccRCC 

[24, 25]. To our knowledge, no study has applied CT 

image features to identify molecular subtypes, and 

performed multi-omics analysis to predict prognosis of 

ccRCC patients. Therefore, we first aimed to 

comprehensively evaluate the potential value of CT 

radiomics features in classifying mutations and 

molecular subtypes of ccRCC, with the use of multiple 

machine learning algorithms. Next, the present study 

established and validated various predictive models 

(radiomics, genomics, transcriptomics, proteomics, 

multi-omics) to enhance the prediction of overall 

survival in patients with ccRCC.  

 

RESULTS 
 

Predicting mutations and molecular subtypes from 

radiomics features 

 

In this study, we included 207 ccRCC patients from 

TCGA dataset (Table 1). To present the clinical utility 

of radiomics features in ccRCC, we first estimated the 

power of radiomics features to predict four commonly 

mutated genes (VHL, BAP1, PBRM1 and SETD2) of 

137 patients and four molecular subtypes (m1-m4) 

reflected by mRNA patterns of 180 patients (Table 1). 

We used four algorithms (GBDT, LASSO, RF, 

XGBoost) for feature selection, and eight algorithms 

(RF, GBDT, AdaBoost, LR, DT, SVM, NB, KNN) as 

classifiers. Among the 32 combinations of two 

algorithms, the RF achieved the best performances on 

the test set no matter which feature selection method 

was adopted (Figure 1A). The radiomics models based 

on RF were able to distinguish the mutations VHL 

(AUC=0.971), BAP1 (AUC=0.955), PBRM1 

(AUC=0.972), SETD2 (AUC=0.949), and subtypes m1 

(AUC=0.973), m2 (AUC=0.968), m3 (AUC=0.961), m4 

(AUC=0.953) in the test set (Supplementary Table 1). 

The models built by GBDT and AdaBoost also obtained 

comparable accuracy to that of RF model, suggesting 

that radiomics features were capable of identifying 

somatic mutations and molecular subtypes of ccRCC 

through machine learning.  

 

Prognostic value assessment of radiomics features 

 

According to median value of radiomics features, the 

patients were divided into two groups (higher than 
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Table 1. Demographic and clinical characteristics of patients. 

Characteristic 
TCGA 

p value1 
External 

validation set 
p value2 

Total Training set Validation set 

No. of patients 207 104 103 - 175 - 

Age: mean ± SD 59.8 ± 12.2 60.1 ± 12.6 59.5 ± 11.9 0.695 56.3 ± 12.6 0.007 

Overall survival (mo) 45.5 ± 30.8 46.6 ± 31.4 44.3 ± 30.3 0.597 45.8 ± 30.5 0.923 

Gender       

  Male 135 (65.2%) 64 (61.5%) 71 (68.9%)  108 (61.7%)  

  Female 72 (34.8%) 40 (38.5%) 32 (31.1%) 0.264 67 (38.3%) 0.478 

TNM stage       

  I 107 (51.7%) 54 (51.9%) 53 (51.5%)  104 (59.4%)  

  II 18 (8.7%) 13 (12.5%) 5 (4.9%)  24 (13.7%)  

  III 51 (24.6%) 20 (19.2%) 31 (30.1%)  29 (16.6%)  

  IV 31 (15.0%) 17 (16.3%) 14 (13.6%) 0.101 18 (10.3%) 0.051 

Tumor grade       

  G1-G2   82 (39.6%) 39 (37.5%) 43 (41.7%)  124 (70.9%)  

  G3-G4 125 (60.4%) 65 (62.5%) 60 (58.3%) 0.532 51 (29.1%) <0.001 

VHL mutation       

  No 64 (46.7%) 29 (40.8%) 35 (53.0%)  NA  

  Yes  73 (53.3%) 42 (59.2%) 31 (47.0%) 0.153  - 

BAP1 mutation       

  No 123 (89.8%) 66 (93.0%) 57 (86.4%)  NA  

  Yes  14 (10.2%) 5 (7.0%) 9 (13.6%) 0.203  - 

PBRM1 mutation       

  No 81 (59.1%) 41 (57.7%) 40 (60.6%)  NA  

  Yes  56 (40.9%) 30 (42.3%) 26 (39.4%) 0.835  - 

SETD2 mutation       

  No 127 (92.7%) 66 (93.0%) 61 (92.4%)  NA  

  Yes  10 (7.3%) 5 (7.0%) 5 (7.6%) 0.734  - 

Molecular subtypes       

  m1 58 (32.2%) 31 (34.1%) 27 (30.3%)  NA  

  m2 41 (22.8%) 25 (27.5%) 16 (18.0%)    

  m3 48 (26.7%) 16 (17.6%) 32 (36.0%)    

  m4 33 (18.3%) 19 (20.9%) 14 (15.7%) 0.040  - 

1P value for comparison between training set and test set.  
2P value for comparison between TCGA total and external validation set.  

median vs. lower than median). Univariate Cox 

analyses showed that 24 features were significantly 

associated with overall survival (OS) (Supplementary 

Table 2), most of which were adverse prognostic factors 

(p<0.05, Figure 1B). Moreover, we performed 

multivariate LASSO-Cox regression analysis, and 

selected four features with non-zero coefficients, 

including sphericity, surface-to-volume ratio, 

GLCM_correlation and GLDM_gray-level non-

uniformity (GLNU). Kaplan-Meier curves showed the 

survival differences between groups with high-value or 

low-value features (Supplementary Figure 1). Except 

surface-to-volume ratio, other three features were 

significantly predictive of OS. Taken together, it 

indicated that individual radiomics features had the 

potential to predict OS of ccRCC patients.  

 

Integrating radiomics with genomics features to 

predict survival 

 

Previous studies have found that mutation status has 

an important impact on the prognosis of cancer 

patients. Therefore, we compared the prognostic role 

of radiomics and genomics features, and combined 

two omics, hoping to provide more accurate 

stratification of patients’ prognosis. We randomly 
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divided the TCGA cohort into training (n=104) or 

validation (n=103) sets (Table 1). The 100 most 

common somatic mutations of training set were used 

for models (Supplementary Table 3 and Figure 2A). 

In the training set, we established models to predict 

OS based on 107 radiomics features and 100 

mutations. Time-dependent ROC is more suitable for 

time-to-event results than classical ROC, thus we used 

it to obtain dynamic AUC values throughout these 

models in the validation set [26].  

 

In the validation set, the AUC of radiomics model (R) 

were significantly higher than genomics model (G) at 5-

year (0.775 vs. 0.684, p=0.030) time point (Figure 2B 

and Supplementary Table 4). Integrative model of 

radiomics and genomics (RG) achieved better predictive 

performance, the 1-year, 3-year and 5-year AUCs of 

which were 0.807, 0.814 and 0.784. The increase in 

AUC was obvious compared with radiomics and 

genomics models (all p<0.05; Figure 2B). We then 

defined high-risk and low-risk groups by median risk 

score calculated from each model and drew the Kaplan-

Meier curves (Figure 2C). The high-risk groups in 

radiomics model (HR=3.62, 95%CI: 2.04-6.73, 

p=0.002) and radiomics+genomics model (HR=3.93, 

95%CI: 2.27-12.12, p=0.017) were significantly related 

with poorer survival.  

Integrating radiomics with transcriptomics features 

to predict survival 

 

Similarly, we selected a part of whole expressed genes 

to reduce the dimensionality. Patients of training set 

were assigned into short-term (deceased, 12 

months≥OS≥1 month) and long-term (OS≥60 months) 

survivors. We used the GSEA to reveal enriched KEGG 

pathways in the short-term survival group (Figure 3A). 

NOD-like receptors (NLRs) are closely related to 

autoimmune and inflammatory responses, and chronic 

inflammation caused by abnormal NLR signaling can 

promote tumorigenesis and progression, especially in 

gastric and colorectal cancers [27]. However, the role of 

NLR pathway in renal cancer remains unclear and needs 

further investigation.  

 

The 100 most significant DEGs were included in 

models (Supplementary Table 5). Using the validation 

set, transcriptomics model (RNA) showed good 

discrimination ability for OS (1-year AUC=0.818, 3-

year AUC=0.775 and 5-year AUC=0.731), which were 

about equal to the radiomics model (all p>0.05; Figure 

3B). Next, the radiomics+transcriptomics model 

(RRNA) enhanced 1-year AUC to 0.835, 3-year AUC to 

0.822 and 5-year AUC to 0.794. Kaplan-Meier analyses 

demonstrated significantly different survival results

 

 
 

Figure 1. (A) The predictive performance of radiomics features for somatic mutations and molecular subtypes in test set. Four algorithms 
(GBDT, LASSO, RF, XGBoost) were used for feature selection, and eight algorithms (RF, GBDT, AdaBoost, LR, DT, SVM, NB, KNN) were utilized 
for classification. (B) Univariate survival analysis of radiomics features. Patients were divided into two groups based on the median value of 
each feature. 
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between high-risk and low-risk patients (Figure 3C), 

especially in the integrative model (HR=4.98, 95%CI: 

3.48-9.02, p<0.0001). 

 

Integrating radiomics with proteomics features to 

predict survival 

 

The protein expression data was also considered in this 

study, expecting to improve prognosis prediction. We 

performed the reverse phase protein array (RPPA) 

analysis, and included all 131 proteins in the models 

(Supplementary Table 6). In the validation set, the 

prediction accuracy of proteomics model (P) was 

similar to that of radiomics model (all p>0.05; Figure 

4A–4C), with 1-year, 3-year and 5-year AUCs of 0.794, 

0.795 and 0.797, respectively. Combination of 

radiomics and proteomics features (RP) yielded highest 

1-year AUC of 0.820, 3-year AUC of 0.822 and 5-year 

AUC of 0.816 (Figure 4A–4C). Furthermore, survival 

analyses showed that the radiomics+proteomics model 

outperformed than single-omics models in predicting 

survival (HR=4.48, 95%CI: 2.86-10.42, p=0.0003; 

Figure 4D).  

External validation of radiomics model to predict 

survival 

 

We additionally included 175 ccRCC patients from 

West China Hospital to verify the prognostic 

performance of radiomics model. The age of onset was 

younger and the rate of high-grade tumor was lower in 

the external validation set (Table 1). However, the 

radiomics model also successfully predicted patient 

survival in external validation set, which reached AUCs 

of 0.726, 0.781, 0.755 for 1-year, 3-year and 5-year OS, 

respectively (Figure 4E). In Kaplan-Meier survival 

curves, the high-risk group predicted by radiomics 

model showed significantly shorter survival time 

(HR=2.08, 95%CI: 1.09-3.96, p=0.026; Figure 4F).  

 

Integrating multi-omics features to predict survival 

 

Previous results suggested the feasibility of integrating 

radiomics with genomics, transcriptomics or proteomics 

to improve survival prediction. Finally, we investigated 

whether incorporation of all features (radiomics, 

genomics, transcriptomics and proteomics) could make

 

 
 

Figure 2. Predictive models of survival integrating radiomics with genomics features. (A) The waterfall plot of 20 most common 
somatic mutations in training set. (B) The 1-year, 3-year and 5-year area under the ROC of radiomics model (R), genomics model (G) and 
radiomics+genomics model (RG) in validation set. (C) Kaplan-Meier curves showed survival differences between high-risk and low-risk 
patients of validation set. 
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further improvement on the prognostic model. Tested 

by the validation set, the 1-year, 3-year and 5-year AUC 

of the multi-omics model were 0.871, 0.873 and 0.846 

(Figure 5A), which were significantly increased 

compared to the models formed by single omics 

(Supplementary Table 4). We also found a significant 

difference between high-risk and low-risk groups’ 

survival (HR=6.20, 95%CI: 3.19-8.44, p<0.0001; 

Figure 5B). In addition, DCA curves demonstrated that 

the multi-omics model added more net benefit than 

radiomics and other single-omics models when used to 

predict survival (Figure 5C).  

 

DISCUSSION 
 

Radiomics analysis offers quantitative image features 

that can be correlated with clinical or molecular 

characteristics of cancer [28]. In this study, we mined 

radiomics features from contrast-enhanced CT, and 

built various machine learning classifiers based on 

radiomics features to predict different somatic 

mutations and molecular subtypes of ccRCC. In 

addition, we presented a comprehensive framework to 

evaluate the prognostic value of individual radiomics 

features and omics-based predictive models. The results 

demonstrated that the mutations, molecular subtypes 

and prognosis of ccRCC patients could be predicted 

from CT radiomics features. Furthermore, the 

integrative models combining radiomics with gene 

mutation, gene expression and protein expression 

features improved the predictive power of overall 

survival than models constructed by any omics alone. 

The median risk scores generated by models were 

feasible to separate patients into high-risk and low-risk 

groups with significantly different survival outcomes. 

 

As a hallmark of cancer, genetic instability and 

mutations can lead to uncontrolled cell proliferation 

[29]. Genomics profiles are widely used as biomarkers 

to predict survival and therapeutic response, helping to 

make medical decision, especially the targeted therapy 

selection [30]. Considering the invasive procedures of

 

 
 

Figure 3. Predictive models of survival integrating radiomics with transcriptomics features. (A) Gene Set Enrichment Analyses 

showed three representative pathways enriched in short-term survivors of training set. (B) Predictive power of models using radiomics (R), 
transcriptomics (RNA) or integration of radiomics and transcriptomics (RRNA) in validation set. (C) Kaplan-Meier curves of validation set 
stratified by these models. 
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genomics testing, radiomics is rapidly emerging as a 

translational approach to non-invasively identifying 

mutations and expression patterns [28]. In this context, 

many efforts have been made to improve radiogenomics 

analysis in ccRCC [16]. For example, random forest 

classifier of CT radiomics features correctly identified 

mutations in PBRM1 (AUC=0.987) and BAP1 

(AUC=0.897) of ccRCC [31, 32]. In this study, we 

presented a more comprehensive assessment including 

four common mutations and 32 combinations of

 

 
 

Figure 4. Predictive models of survival integrating radiomics with proteomics features. (A–C) Area under the ROC of radiomics 
features (R), protein expression (P) and combination of radiomics and proteomics (RP) for predicting survival in validation set. (D) Kaplan-
Meier curves of the validation set that predicted patients’ survival by above models. (E) Predictive ability of radiomics model in external 
validation set. (F) Kaplan-Meier curves of external validation set analyzed with the radiomics model. 

 

 
 

Figure 5. Predictive model of survival integrating multiple omics features. (A) Time-dependent ROC, and (B) Kaplan-Meier curves 
analyzed by multi-omics model in validation set. (C) Comparison of decision curves of each model. The gray oblique line represented the net 
benefit of intervention for all patients, while horizontal line represented the net benefit of no intervention. The multi-omics model reached 
higher net benefit than single-omics models across the major range of threshold probability. 
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machine learning algorithms. Meanwhile, we applied 

radiomics features to predict mRNA-based molecular 

subtypes (m1-m4) of ccRCC, which has not been 

reported before. Clustering of mRNA expression 

provides a molecular classification of individual tumors, 

which facilitates the understanding of underlying tumor 

heterogeneity [33]. For instance, m1 subtype tumors 

had significant survival advantages and more frequent 

PBRM1 mutation than m2 and m3, while m3 subtype 

was enriched for CDKN2A deletion and PTEN mutation 

[6]. The m4 subtype was related with higher mutation 

frequency of BAP1 and mTOR [6]. Our results showed 

that CT radiomics features could be used to develop a 

non-invasive, convenient and effective tool to predict 

mutations and molecular subtypes of ccRCC, and 

random forest algorithm performed best among the 

eight classifiers.  

 

Timely and accurate identification of patients with high-

risk of developing worse outcomes is crucial for their 

clinical decision-making. For renal cancer, radiomics has 

been widely applied to predict patient survival and cancer 

progression [34]. In this study, several radiomics features 

had prognostic value for OS, including sphericity, 

GLCM_correlation and GLDM_GLNU. Sphericity 

(regularity of shape) is a shape-based feature, 

GLCM_correlation reflects the linear dependency of gray-

levels, and GLDM_GLNU describes the non-uniformity 

of gray-levels of texture [35]. Previous studies also 

reported that sphericity and GLCM_correlation were 

associated with survival outcomes in cancer patients [36, 

37]. However, evaluation of individual radiomics features 

was not enough to reflect the whole tumor properties. 

Therefore, we imputed all radiomics features into the 

random forest classifier to build a radiomics model, which 

obtained good predictive capability for OS in both internal 

validation (5-year AUC=0.775) and external validation 

sets (5-year AUC=0.755). 

 

Furthermore, we comprehensively estimated the 

predictive models integrating radiomics with genomics, 

transcriptomics and proteomics in ccRCC. The results 

demonstrated that the predictive accuracy of models 

using two omics was higher than that of single-omics 

models, and the multi-omics model reached highest 

accuracy and clinical net benefit. Study for glioblastoma 

also showed the enhanced predictive capacity of models 

combining genomics and radiomics features [21]. 

Radiomics offers important strengths for tumor 

assessment, such as large data sources because 

radiologic images are available in almost all cancer 

patients, measurement of heterogeneity of entire tumor, 

and longitudinal use in treatment monitoring [14, 38]. In 
our results, radiomics features were not correlated with 

genomics data especially in Kaplan-Meier survival 

curves, indicating that radiomics may provide additional 

information on cancer characterization that are different 

from genomics. The integration of radiomics and 

genomics data could be valuable and enable more 

precise survival prediction. However, the prognostic 

role of radiomics and other omics features is still 

controversial, for example, few studies demonstrated 

that VHL mutation could predict patient survival [9], 

and many genes and pathways still lack related 

evidence. Moreover, the correlation between radiomics 

and other omics features is complex. Therefore, further 

investigation to reveal the causal relationship between 

these features is needed.  

 

There were several limitations in this study, including the 

retrospective study design and limited sample size. We 

randomly divided TCGA patients into training and 

validation sets to verify the robustness of predictive 

models in validation set. However, the quality of images 

from public dataset showed great differences, which may 

influence the radiomics analysis. Thus, we further 

estimated the generalizability and reliability of radiomics 

model on an external validation set. However, the 

genomics, transcriptomics and proteomics data were 

lacked in external validation set. It was necessary to assess 

our integrative models in other datasets and populations. 

In addition, small patient populations with BAP1 or 

SETD2 mutations might cause potential bias, which was a 

common problem in other radiogenomics studies. 

Therefore, before clinical application, the findings based 

on the limited dataset need to be prospectively validated 

on multi-center and large-scale studies. 

 

CONCLUSIONS 
 

Radiomics features of contrast-enhanced CT had 

promising potential in predicting mutation status, 

molecular subtypes and overall survival of patients with 

ccRCC. Moreover, integrative models of radiomics, 

genomics, transcriptomics and proteomics could 

improve prognostic prediction compared with radiomics 

or other omics alone, which may help clinicians to 

perform better risk stratification and decision-making 

for ccRCC patients. 

 

MATERIALS AND METHODS 
 

Study design and data sources 
 

In this retrospective study, radiomics features were 

applied to predict somatic mutations and molecular 

subtypes, and to form integrative models for survival 

prediction in ccRCC patients (Figure 6). One cohort of 

ccRCC patients with available CT images was 

downloaded from The Cancer Imaging Archive (TCIA) 

data portal (http://www.cancerimagingarchive.net/). The 

matched clinical data, genomics, transcriptomics and 

http://www.cancerimagingarchive.net/
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proteomics profiles were obtained from The Cancer 

Genome Atlas (TCGA) (https://portal.gdc.cancer 

.gov/) and The Cancer Proteome Atlas (TCPA) 

(http://tcpaportal.org/tcpa/). The inclusion criteria 

were pathologically confirmed ccRCC patients with 

preoperative contrast-enhanced CT for better tumor 

visualization. Patients without preoperative CT (n=16) 

or without contrast-enhanced CT (n=14) were 

excluded, thus 207 patients were eligible for 

radiomics analysis.  

Another ccRCC cohort was diagnosed in the West 

China Hospital from January 2011 to December 2018. 

We excluded the patients without preoperative contrast-

enhanced CT (n=33) or lost to follow-up (n=21). 

Finally, a total of 175 patients with ccRCC were 

enrolled in this study. All these patients were followed 

up until death or last follow-up of December 2020. The 

Ethics committee of West China Hospital approved this 

study. All personal information was de-identified, thus 

the patient informed consents were waived. 

 

 
 

Figure 6. The flowchart of radiomics analysis and omics integration. (1) Manual delineation of tumor region of interest (ROI) of 

contrast-enhanced CT. Shape-based, first-order and second-order radiomics features of ROIs were then calculated. (2) Prediction of somatic 
mutations and molecular subtypes using radiomics features and multiple machine learning algorithms in independent training/test sets. (3) 
Radiomics, genomics, transcriptomics and proteomics were integrated to build predictive models for overall survival in training set, and their 
prognostic values were estimated using validation set. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://tcpaportal.org/tcpa/
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Image labeling and feature extraction 

 

Before feature extraction, an expert oncologist (X.M., 

10 years of experience) that blinded to patients’ 

information manually draw the region of interest 

(ROI) of the whole tumor. We used the 3D Slicer 

software 4.10.2 (http://www.slicer.org) for both ROI 

labeling and feature extraction. Radiomics features 

can be divided into shape-based, first-order, second-

order and higher-order statistical metrics. Shape-based 

features measure the three-dimensional shape and size 

of tumor, including surface area, volume, sphericity 

and others. First-order features are generally based on 

histogram-related methods, which represent the value 

distribution of individual voxels without considering 

the spatial relationship. For example, skewness 

describes the degree of asymmetry of histogram 

distribution, and kurtosis refers to the peakedness of 

histogram. Second-order features evaluate the spatial 

relationship between voxels with similar contrast 

levels to reveal the intratumoral heterogeneity, 

including gray-level co-occurrence matrix (GLCM), 

gray-level dependence matrix (GLDM), gray-level run 

length matrix (GLRLM), gray-level size zone matrix 

(GLSZM), neighborhood gray tone difference matrix 

(NGTDM) and so on. Finally, there were 107 

quantitative features for each patient, which contained 

14 shape-based features, 18 histogram-based features, 

24 GLCM features, 14 GLDM features, 16 GLRLM 

features, 16 GLSZM features and 5 NGTDM features.  

 

Statistical analysis 

 

1. Prediction of mutations and subtypes: We divided the 

TCGA cohort into training and test sets with the ratio of 

7:3. Considering the risk of over-fitting due to data 

complexity, we reduced the dimensionality of radiomics 

features by machine learning algorithms including 

gradient boosting decision tree (GBDT) [39], least 

absolute shrinkage and selection operator (LASSO) [40], 

random forest (RF) [41] and extreme gradient boosting 

(XGBoost) [42]. Afterwards, eight machine learning 

algorithms, namely RF, GBDT, adaptive boosting 

(AdaBoost) [43], logistic regression (LR) [43], decision 

tree (DT) [44], support vector machine (SVM) [45], naive 

Bayesian (NB) [46] and K-nearest neighbor (KNN) [47] 

were utilized to establish binary classifiers on remained 

radiomics features to predict somatic mutations (VHL, 

BAP1, PBRM1 and SETD2) and mRNA-based molecular 

subtypes (m1-m4). The reason for using multiple 

algorithms was to indicate the feasibility of this method in 

different algorithms. The 5-fold cross-validation was used 

to assess classifiers in the training set. Finally, the 
performances of trained classifiers were independently 

validated by the area under the receiver operating 

characteristic (ROC) curve (AUC) in the test set.  

2. Survival analysis: According to median value of 

radiomics features, TCGA patients were divided into 

high-value and low-value groups. Compared with 

progression-free survival, the evaluation of overall 

survival (OS) is more objective and less affected by 

artificial factors. We chose the OS as the endpoint to 

better explore the prognostic performance of features. 

Univariate Cox regression analysis calculated the 

hazard ratio (HR) and 95% confidence interval (CI) for 

OS between two groups. Then we used the multivariate 

Cox regression with LASSO to shrink the regression 

coefficients of uncorrelated features to zero, and 

obtained features with non-zero coefficients. Kaplan-

Meier survival curve and log-rank test were analyzed. 

The p<0.05 was considered as statistically significant.  

 

3. Model features pre-selection: To comprehensively 

present the prognostic value of each omics, we estimated 

prognostic models based on one omics data (radiomics, 

genomics, transcriptomics, proteomics) and combinations 

(radiomics+genomics, radiomics+transcriptomics, 

radiomics+proteomics, multi-omics). The TCGA cohort 

was randomly divided into training (n=104) or validation 

(n=103) sets. To reduce the dimensionality of genomics 

data, 100 most common mutations of training set were 

used for building models. For transcriptomics, we first 

assigned the training set into short-term (deceased, 12 

months≥OS≥1 month) and long-term (OS≥60 months) 

survivors. Differently expressed genes (DEGs) between 

two groups were further involved in models. In addition, 

we applied the Gene Set Enrichment Analysis (GSEA) to 

show enriched Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways. Gene sets were significant if 

the p<0.05 or false discovery rate (FDR)<0.25. 

 

4. Prognostic model construction and validation: In the 

training set, random forest (RF) was used to establish 

prognostic models, because of its excellent performance 

of handling numerous inputs and selecting relevant 

features. The 1000 decision trees of RF and 5-fold 

cross-validation were used. In the validation set, we 

verified the robustness of these models using the time-

dependent ROC curve and compared AUC values 

through the built-in comparison function of timeROC 

package. Patients in validation set were then separated 

into high-risk and low-risk groups according to median 

value of risk score estimated by models. In addition, 

decision curve analysis (DCA) was applied to compare 

the net benefits on threshold probabilities of models 

[48]. Statistical analyses were conducted using R 

version 3.6.1. 
 

Abbreviations 
 

ccRCC: clear cell renal cell carcinoma; GLCM: gray-

level co-occurrence matrix; GLDM: gray-level 
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dependence matrix; GLRLM: gray-level run length 

matrix; GLSZM: gray-level size zone matrix; NGTDM: 

neighborhood gray tone difference matrix; GBDT: 

gradient boosting decision tree; LASSO: least absolute 

shrinkage and selection operator; RF: random forest; 

XGBoost: extreme gradient boosting; AdaBoost: 

adaptive boosting; LR: logistic regression; DT: decision 

tree; SVM: support vector machine; NB: naive 

Bayesian; KNN: K-nearest neighbor; DEGs: differently 

expressed genes. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 

Supplementary Figure 1. Kaplan-Meier curves of groups with high-value and low-value “sphericity”, “surface-to-volume 
ratio”, “GLCM_correlation” and “GLDM_gray-level non-uniformity”. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3, 5, 6. 

 

Supplementary Table 1. Performance of machine learning algorithms in predicting somatic mutations and 
molecular subtypes. 

Algorithm 
Somatic mutation  Molecular subtype 

VHL BAP1 PBRM1 SETD2  m1 m2 m3 m4 

GBDT RF 0.977 0.967 0.976 0.941  0.975 0.968 0.960 0.955 
 GBDT 0.936 0.955 0.907 0.945  0.911 0.915 0.884 0.914 
 AdaBoost 0.929 0.897 0.903 0.899  0.913 0.906 0.899 0.896 

 LR 0.765 0.858 0.714 0.871  0.717 0.782 0.712 0.700 

 DT 0.768 0.557 0.719 0.554  0.724 0.681 0.703 0.639 

 SVM 0.744 0.535 0.648 0.538  0.576 0.527 0.562 0.544 
 NB 0.646 0.617 0.560 0.688  0.578 0.655 0.564 0.514 
 KNN 0.537 0.552 0.530 0.526  0.516 0.608 0.504 0.517 
LASSO RF 0.972 0.926 0.970 0.961  0.973 0.947 0.941 0.940 

 AdaBoost 0.908 0.909 0.895 0.894  0.924 0.909 0.895 0.900 

 GBDT 0.905 0.836 0.834 0.919  0.879 0.825 0.764 0.803 

 LR 0.827 0.520 0.733 0.684  0.669 0.589 0.532 0.626 

 DT 0.772 0.500 0.726 0.534  0.728 0.653 0.639 0.607 
 NB 0.642 0.550 0.604 0.560  0.611 0.500 0.495 0.505 
 SVM 0.789 0.500 0.647 0.500  0.500 0.500 0.500 0.500 

 KNN 0.523 0.582 0.504 0.574  0.502 0.518 0.486 0.577 

RF RF 0.971 0.955 0.972 0.949  0.973 0.968 0.961 0.953 

 GBDT 0.910 0.907 0.894 0.936  0.898 0.909 0.887 0.915 
 AdaBoost 0.925 0.898 0.900 0.899  0.912 0.908 0.902 0.898 

 LR 0.722 0.835 0.710 0.932  0.704 0.803 0.712 0.700 
 DT 0.764 0.556 0.734 0.554  0.726 0.681 0.712 0.639 

 NB 0.655 0.579 0.594 0.642  0.597 0.683 0.564 0.514 

 SVM 0.676 0.540 0.658 0.578  0.568 0.528 0.562 0.544 

 KNN 0.536 0.551 0.496 0.544  0.519 0.496 0.507 0.546 

XGBoost RF 0.975 0.970 0.970 0.927  0.974 0.965 0.967 0.955 

 AdaBoost 0.922 0.904 0.893 0.900  0.926 0.897 0.904 0.896 

 GBDT 0.917 0.944 0.880 0.915  0.900 0.891 0.873 0.914 

 LR 0.737 0.862 0.724 0.872  0.714 0.760 0.693 0.700 

 DT 0.746 0.623 0.733 0.554  0.758 0.690 0.709 0.654 

 NB 0.643 0.657 0.596 0.681  0.590 0.621 0.567 0.514 
 SVM 0.688 0.528 0.648 0.568  0.579 0.502 0.511 0.544 
 KNN 0.532 0.495 0.539 0.526  0.512 0.529 0.498 0.548 

Abbreviations: GBDT: gradient boosting decision tree; LASSO: least absolute shrinkage and selection operator; RF: random 
forest; XGBoost: extreme gradient boosting; AdaBoost: adaptive boosting; LR: logistic regression; DT: decision tree; SVM: 
support vector machine; NB: naive Bayesian; KNN: K-nearest neighbor.  
 

Supplementary Table 2. Univariate cox analysis of radiomics features. 

Supplementary Table 3. Included mutant genes. 
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Supplementary Table 4. Comparison of prognostic performance of models according 
to AUC. 

p value Radiomics 
Radiomics+

genomics 

Radiomics+tr

anscriptomics 

Radiomics+

proteomics 
Multi-omics 

Radiomics      

   1-year AUC - 0.012 0.008 0.003 1.04×10-5 

   2-year AUC - 0.026 0.0007 0.009 0.003 

   3-year AUC - 0.016 0.002 0.062 0.005 

Genomics      

   1-year AUC 0.247 0.026 - - 0.0002 

   2-year AUC 0.069 0.005 - - 3.40×10-5 

   3-year AUC 0.030 0.008 -  0.0002 

Transcriptomics      

   1-year AUC 0.159 - 0.007  0.001 

   2-year AUC 0.246 - 0.011 - 0.001 

   3-year AUC 0.674 - 0.003 - 0.007 

Proteomics      

   1-year AUC 0.053 - - 0.006 0.008 

   2-year AUC 0.293 - - 0.011 0.002 

   3-year AUC 0.868 - - 0.029 0.009 

 
Supplementary Table 5. Differently expressed genes. 

Supplementary Table 6. Included protein profile. 

 


