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INTRODUCTION 
 

The first and the most studied manipulation shown to 

increase lifespan in mammals is caloric restriction (CR). 

The classic study by McCay et al. showed that one 

could increase the lifespan of rats by dramatically 

reducing their food consumption [1]. Since this initial 

observation, numerous laboratories have confirmed 

these results and have shown that reducing food 

consumption 30 to 50% (without malnutrition) 

consistently increases both the mean and maximum 

lifespans of both laboratory rats and mice [2, 3]. For 

example, Turturro et al. showed that 40% CR increased 

the lifespan of four inbred strains of male and female 
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ABSTRACT 
 

The effect of calorie restriction (CR) on the microbiome, fecal metabolome, and colon transcriptome of adult 
and old male mice was compared. Life-long CR increased microbial diversity and the Bacteroidetes/Firmicutes 
ratio and prevented the age-related changes in the microbiota, shifting it to a younger microbial and fecal 
metabolite profile in both C57BL/6JN and B6D2F1 mice. Old mice fed CR were enriched in the Rikenellaceae, 
S24-7 and Bacteroides families. The changes in the microbiome that occur with age and CR were initiated in the 
cecum and further modified in the colon. Short-term CR in adult mice had a minor effect on the microbiome but 
a major effect on the transcriptome of the colon mucosa. These data suggest that CR has a major impact on the 
physiological status of the gastrointestinal system, maintaining it in a more youthful state, which in turn could 
result in a more diverse and youthful microbiome. 
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laboratory mice and three inbred strains of male and 

female laboratory rats [4]. The effect of CR on 

longevity is not limited to rodents as CR has been 

shown to increase the lifespan of a large number of 

diverse animal models ranging from invertebrates 

(yeast, C. elegans, and Drosophila) to dogs and non-

human primates [5]. Because CR has a broad effect on 

lifespan, it is generally considered that the effect of CR 

on lifespan is universal, i.e., it occurs in all organisms.  

 

Because the gastrointestinal (GI) system is the first 

organ/tissue that encounters the impact of reduced food 

consumption, there have been several studies on the effect 

of CR on the GI-system. Early studies, primarily from 

Peter Holt’s laboratory, showed that CR had a major 

impact on the colon. CR was shown to prevent/delay the 

age-related changes in rat colon, e.g., crypt hyperplasia, 

and expression of mucosal enzymes, reduced cell 

proliferation, and enhance apoptosis [6–9]. As expected 

from these findings, CR has also been shown to reduce 

colorectal cancer in various rodent models [10–12]. With 

the advent of 16S rRNA sequencing and metagenomics, it 

is now possible to interrogate the colon microbiome and 

study the effect of CR. Two groups have reported that 

long-term CR had a significant impact on the microbiome 

of old mice [13, 14]. These studies were conducted with 

aging colonies of mice specific to those particular 

laboratories and for which there were no lifespan data. 

Because the institutional animal husbandry environment 

and the health status of the host can have a major impact 

on the microbiome, we felt it was important to establish 

the effect of CR on the microbiome of well characterized 

mice from the aging colony maintained by National 

Institute on Aging (NIA) [15]. Out data show that life-

long CR had a major impact on the colon microbiome of 

both C57BL/6JN and B6D2F1 mice, resulting in a 

‘younger’ appearing microbiome and these changes 

appear to be the result of the effect of CR on the host 

gastrointestinal system. 

 

RESULTS 
 

Effect of age and caloric restriction on the gut 

microbiome of mice 

 

Using male mice obtained from the aging colony 

maintained by the NIA, we studied the microbiota 

composition of the cecum and colon of 9- and 24-month 

old male C57BL/6JN mice fed AL or CR (started at 14 

weeks of age) by sequencing the V4 region of the 

bacterial 16S rRNA gene. These data are presented in 

Supplementary Tables 1, 2. Because genotype of the host 

can impact the microbiome, we also analyzed the 

microbiome of male B6D2F1 mice obtained from the 

NIA. Adult B6D2F1 were not available from the NIA; 

therefore, we were only able to measure the microbiome 

of the cecum and colon of 24-month-old B6D2F1 mice 

fed either AL or CR (Supplementary Table 3). The data in 

Supplementary Tables 1–3 were analyzed by principal 

component analysis (PCA), and the results are shown in 

Figure 1. For C57BL/6JN mice (Figure 1A, 1B), adult 

mice fed AL or CR and the old mice fed CR grouped 

together for both the cecum and colon. Importantly, old 

AL mice were clearly segregated from the other three 

groups for both the cecum and colon, indicating that CR 

attenuated the effect of age on the microbiome in the old 

mice. In old B6D2F1 mice (Figure 1C, 1D), we observed 

a clear separation in the colon microbiome for mice fed 

AL and CR; however, the microbiome of the cecum of the 

AL and CR groups overlapped primarily because of one 

animal (Figure 1C). Figure 1 also shows that when 

projecting all of the data in the same space, the old mice 

fed AL consistently occurred on the left side of the plots, 

indicating that age and CR have similar metagenomic 

effects in the two strains of mice in both the cecum and 

colon. In Figure 1E, 1F, we directly compared the 

microbiome data for the cecum or colon in old 

C57BL/6JN and B6D2F1 mice. In the cecum, there was 

very little separation between the four groups. In contrast, 

we observed a clear separation between AL and CR mice 

in the colon, suggesting that the effect of CR on the 

microbiome becomes modified as the fecal material 

transits to the colon. Interestingly, the C57BL/6JN and 

B6D2F1 mice grouped together for both AL and CR, 

indicating that diet was a more important variable than 

strain with respect to the effect of age and CR on the 

microbiome.  

 

We next studied the effect of age and CR on the 

diversity of the microbial species present in the 

microbiome because microbiota diversity is often used 

as a measure of the ‘health’ of the microbiome, the 

higher the ratio the ‘healthier’ the microbiome. The data 

in Figure 2A, 2B show the diversity of the microbiota 

from cecum and colon of C57BL/6JN mice using 

Shannon’s diversity index, which equally weights 

richness (number of different taxa) and evenness 

(equitability of taxa frequencies) of the microbiome 

[16]. The diversity of the microbiome in the cecum and 

colon decreased with age in C57BL/6JN mice fed AL; 

however, the decrease was only significant for the 

colon. CR had no effect on the diversity of the 

microbiome in adult mice; however, in old mice, CR 

resulted in a significant increase in the diversity of the 

microbiome in both the cecum and colon, which was 

comparable to the diversity observed in the adult mice. 

Figure 2C shows the diversity of the microbiota of the 

cecum and colon from the old B6D2F1 mice fed AL or 

CR. In B6D2F1 mice, CR had no significant effect on 
the diversity of the microbiota in the cecum; however, 

there was a significant increase in the diversity of the 

microbiota of the colon.  
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Figure 1. PCA plots showing the variance in the microbiome of mice fed AL and CR. The PCA plots are shown for the microbiome 
from the cecum (A) and colon (B) of adult and old C57BL/6JN mice fed AL or CR and from the cecum (C) and colon (D)of old B6D2F1 mice fed 
AL or CR. Panels (E, F) show PCA plots of the microbiome from the cecum and colon, respectively for old C57BL/6JN and B6D2F1 mice fed AL 
and CR. Ellipses are 95% confidence intervals for the group obtained using bootstrapping, and "EV: XX%" in the axis labels is the percentage of 
explained variance of the component. 
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We also measured the ratio of Bacteroidetes to 

Firmicutes in the cecum and colon of the C57BL/6JN 

and B6D2F1 mice because this ratio has been correlated 

with various diseases and has been reported to change 

with age [17–20]. Figure 2D, 2E show that the ratio of 

Bacteroidetes to Firmicutes decreases in both the cecum 

and colon with age in C57BL/6JN mice, and this 

decrease is attenuated by CR in old mice resulting in a 

ratio similar to adult mice fed AL. Although CR 

increased the ratio of Bacteroidetes to Firmicutes in 

adult mice, this increase was not statistically significant. 

In the B6D2F1 mice (Figure 2F), the ratio of

 

 
 

Figure 2. Effect of age and CR on microbiome. The top panel show the Shannon diversity index (Wagner et al., 2018) for the cecum (A) 

and colon (B) of adult and old C57BL/6JN mice and old B6D2F1 mice (C) fed AL (blue bars) or CR (red bars). The bottom panel show the ratio 
of Bacteroidetes to Firmicutes for the cecum (D) and colon (E) of adult and old C57BL/6JN mice and for the cecum and colon of old B6D2F1 
(F) mice fed AL (blue bars) or CR (red bars). The data represent the mean and SEM for 8- 10 mice per group. *p<0.05, **p<01, ***p<0.001, ns 
= non-significant. 
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Bacteroidetes to Firmicutes was significantly higher in 

CR mice compared to mice fed AL especially in the 

colon. 

 

The relative abundance of all the microbes found in the 

cecum and colon of C57BL/6JN and B6D2F1 are 

presented in Supplementary Figures 1, 2 respectively. 

Figures 3, 4 show the abundance of microbes that 

changed significantly with age or diet for the 

C57BL/6JN and B6D2F1 mice, respectively. From 

Figure 3, it is obvious that a major age-related change 

occurs in the microbiota of C57BL/6JN mice at all three 

taxonomical levels, and this difference is apparent in 

both the cecum and colon. The data in Figure 3 also 

show that CR had only a small effect on the microbiota 

in the cecum and colon of adult mice. However, CR in 

the old mice showed a dramatic change in the 

microbiota compared to old AL in both the cecum and 

colon, with the microbiota becoming more like the adult 

C57BL/6JN mice, which is consistent with the PCA 

data in Figure 1. At the family level, the adult AL and 

CR mice and old CR mice had similar microbial 

patterns with a greater increased abundance in the S24-7 

and Rikenellaceae families. In contrast, old AL mice 

showed a higher abundance of the Lachnospiraceae and 

Ruminococcaceae families. At the genus level, the 

microbial pattern was quite different for the cecum and 

colon in contrast to the family and species levels. In the 

cecum, Bacteroides was the prominent genus in the 

adult AL and CR mice and old CR mice while 

Parabacteroides and Lactobacillus predominated in the 

old AL mice. In the colon, Oscillospira was the 

prominent genus in all four groups of mice. At the 

species level, Bacteroides acidifaciens was the most 

abundant microbe (>60%) in adult AL and CR mice and 

old CR mice, whereas Ruminococcus gnavus and 

Muscispirillum schaedleri were more abundant in the 

old AL mice in both the cecum and colon. 

 

Figure 4 shows the relative abundance of the microbes 

that changed with age or diet for old B6D2F1 mice. At 

the family level, the cecum and colon from old AL mice 

showed similar profiles with a greater abundance of 

Lachnospiraceae and Ruminococcaceae as was found in 

C57BL/6JN mice. The cecum of old CR B6D2F1 mice 

showed a greater abundance of S24-7 and 

Rickenellaceae families (which was similar to 

C57BL/6JN mice) whereas the colon of old CR B6D2F1 

mice showed an abundance in the S24-7, 

Lachnospiraceae, Ruminococcaceae and Rickenellaceae 

families. At the genus level, the cecum and colon of the 

old AL B6D2F1 mice showed an increase in the 

abundance of the Parabacteroides, Oscillospira, 
Ruminococcus and Rc4-4 families. The cecum of old 

CR mice showed a greater abundance in Lactobacillus, 

Oscillospira and Bacteroides families whereas the colon 

of old CR mice had an increased abundance of 

Oscillospira (>50%). In the Cecum and colon of old 

B6D2F1 mice fed AL, Akkermansia municiphila was 

the prominent species found. In contrast, Bacteroides 

acidifaciens and Ruminococcus gnavus were the 

predominant species in the cecum and colon of old 

 CR mice. 

 

Of the 35 microbes from different taxonomic levels 

identified in the gut of C57BL/6JN mice (Supplementary 

Tables 1, 2), 15 showed a significant change with age 

that was attenuated by CR in old animals (Table 1). The 

number (8) of microbes that increased with age and were 

reduced by CR is similar to the number (7) of microbes 

that showed a decrease with age and were increased by 

CR. It is interesting to note, that CR significantly altered 

the abundance of 11 of the 35 microbes in the cecum of 

adult mice; 5 of the microbes were significantly altered 

by CR in old mice. In the colon, the abundance of only 

one microbe (Christenellaceae family) was significantly 

altered by CR in adult mice. Thirteen of the 15 microbes 

listed in Table 1 were also detected in B6D2F1 mice, 

and of these 13 microbes, over 75% (10) showed the 

same changes in abundance with CR as was observed in 

the C57BL/6JN mice. However, CR significantly altered 

the abundance of several microbes in the old B6D2F1 

mice that were not observed in old C57BL/6JN mice. 

For example, CR reduced the abundance of Akkermansia 

muciniphila species, the rc4-4 genus, and the 

Erysipelotrichaceae family in the colon of the B6D2F1 

mice. In the cecum of the B6D2F1 mice, CR altered the 

abundance of 17 of the 27 microbes identified. For both 

C57BL/6JN and B6D2F1 mice, CR altered significantly 

the abundance of more microbes in the cecum than in the 

colon. We further evaluated the total microbes that were 

altered by CR in both old C57BL/6JN and B6D2F1 

(Supplementary Table 4). We observed that the 

abundance of 21 microbes were changed by CR in the 

cecum of both old C57BL/6JN and B6D2F1 mice of 

which 17 of it were found to be altered with age in the  

C57BL/6JN mice as well (Supplementary Figure 3A). 

And there were 4 microbes that were unchanged with 

age in the C57BL/6JN mice but were altered by CR in 

both strains of mice (Supplementary Figure 3A). 

Similarly, CR altered the abundance of 20 microbes in 

the colon of old C57BL/6JN and B6D2F1 mice 

(Supplementary Figure 3B). Of the 20 microbes, 16 were 

found altered with age in the C57BL/6JN mice as well 

and 4 were found altered only in the old CR C57BL/6JN 

and B6D2F1 mice. Bacteriodes acidifaciens, Family 

S24-7, Rikenellaceae and F16 in cecum and Genus 

Bacteriodes, Bacteriodes acidifaciens, Family 

Rikenellaceae and F16 in colon were the microbes that 
were altered by CR independent of the strain but were 

found to be unchanged in the old C57BL/6JN mice 

(Supplementary Table 4).  
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Figure 3. The abundance of microbes that changed with age or CR in C57BL/6 mice. The relative abundance of the 34 microbes that 
changed significantly in C57BL/6JN mice are shown for adult mice fed AL (A-AL) or CR (A-CR) and old mice fed AL (O-AL) or CR (O-CR). The 
microbiome data are presented on the basis of family (A), genus (B), or species (C) of the microbes found in either the cecum or colon of the 
mice. 
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Figure 5 shows the effect of age and CR in C57BL/6JN 

mice on the abundance of the six microbes from Table 1 

that were the most abundant; collectively, these microbes 

comprised between 5 to 50% of the microbiome. The 

abundance of all six microbes showed similar changes 

with CR in the cecum and colon. Four of microbes 

showed a major decrease in abundance with age 

(Bacteroides acidifaciens, Bacteroides, Rikenellaceae, 

and S24-7), which was completely reversed by CR. Two 

of the most abundant microbes that showed the most 

dramatic changes were the genus Parabacteroides and the 

S24-7 family. Parabacteroides increased 100-fold in the 

cecum from less than 1% to over 25% of the microbiota in 

the old AL mice. In the colon, Parabacteroides 
abundance increased over 30-fold in the colon making up 

almost 5% of the microbiota in the old AL mice. CR 

reduced the abundance of Parabacteroides to less than 

2% in both the cecum and colon of old mice. The S24-7 

family of microbes decreased from 17 to 27% in the 

cecum and colon, respectively, of adult mice to negligible 

levels (less than 0.2%) in the old AL mice. CR resulted in 

an increase in the abundance of the S24-7 family to over 

19% in the cecum and colon. 

We next determined the degree of association in the 

abundance of the four microbial classes that made up 

the majority of microbes that changed with age and diet. 

Figure 6 shows the t-statistic from the OLS model when 

each coefficient is plotted for each microbial class. A 

positive t-statistic for diet indicates that microbial 

abundance in that class increases with CR, and a 

positive t-statistic for age indicates that microbial 

abundance increases with age. The data in Figure 6 

show a negative correlation for the phylogenetic class 

with CR and age, indicating that CR has opposing 

effects on the gut microbiome compared to age. In 

addition, the phylogenetic class Bacteroidia is 

associated with CR and youth, whereas the class 

Clostridia is associated with AL and age. 

 

Effect of age and caloric restriction on the 

metabolite composition of the fecal material from 

the colon of mice 

 

To understand how age and CR might affect the 

microbiome, we also measured the metabolites in the 

fecal pellets from the colon of the C57BL/6JN and

 

 
 

Figure 4. The abundance of microbes that changed with CR in B6D2F1 mice. The relative abundance of the 27 microbes that 

changed significantly in B6D2F1 mice are shown for old mice fed AL (O-AL) or CR (O-CR). The microbiome data are presented on the basis of 
family (A), genus (B), or species (C) of the microbes found in either the cecum or colon of the mice.  
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Table 1. Microbiota that changed with age and are reversed by caloric 
restriction. 

Microbiota 
C57BL/6 Mice B6D3F1 Mice 

Cecum Colon Cecum Colon 

Bacteroides acidifaciens ↑ ↑ ↑ NC 

Mucispirillum schaedleri ↓ ↓ NC NC 

Genus Bacteroides ↑ ↑ ↑ ↑ 

Genus Coprococcus NC ↑ NC NC 

Genus Oscillospira ↓ ↓ ↓ NC 

Genus Parabacteroides ↓ ↓ ↓ ↓ 

Genus Ruminococcus ↓ ↓ ↓ ↓ 

Family Christensenellaceae NC ↑ ND ND 

Family F16 ↑ ↑ ↑ ↑ 

Family Mogibacteriaceae ↓ ND ↓ ↓ 

Family Rikenellaceae ↑ ↑ ↑ ↑ 

Family S24-7 ↑ ↑ ↑ ↑ 

Order Bacteroidales ↑ ND ND ND 

Order Clostridiales NC ↓ NC ↑ 

Order RF39 ↓ NC NC NC 

The data are taken from Supplementary Tables 1–3 in the supplement. For the 
C57BL/6 mice: ↑indicates microbes that showed a decrease in abundance with 
age that was significantly increased by CR in old mice and ↓ indicates microbes 
that increased in abundance with age and was significantly reduced by CR in old 
mice.  In B6D2F1 mice: ↑indicates microbes that showed significant increase in 
abundance by CR in old mice and ↓ indicates microbes that showed significant 
decrease in abundance by CR in old mice. NC = No Significant Change. ND = Not 
Detected. 

 

B6D2F1 mice by targeted liquid chromatography mass 

spectrometry as described in the Methods. 

Supplementary Table 5 lists the 98 metabolites detected 

in the fecal samples and the levels of these metabolites 

in the fecal pellets obtained from the two strains of 

mice. We observed that the levels of 57 of the 98 

metabolites exhibited a significant change with either 

age (old AL vs adult AL in C57BL/6JN) or CR in the 

C57BL/6JN (old AL vs old CR) and B6D2F1 (old AL 

vs old CR) mice as shown in the Venn diagram in 

Figure 7A. The levels of 36 metabolites changed with 

age in AL C57BL/6JN mice, 30 changed with CR in the 

old C57BL/6JN mice, and 43 changed with CR in the 

old B5D2F1 mice. Approximately 60% of the 

metabolites that changed with age were significantly 

attenuated by CR in the C57BL/6JN mice and two-

thirds of the metabolites that changed with CR were the 

same for the old C57BL/6JN and B6D2F1 mice. The 

data in Supplementary Table 5 were analyzed by 
principal component analysis, and the results are shown 

in Figure 7B, 7C. For the C57BL/6JN mice, the adult 

AL and CR mice and the old CR mice overlapped; 

however, the old mice fed AL formed a separate cluster 

(Figure 7B). Figure 7C shows the PCA for old mice fed 

either AL or CR. While there was some overlap 

between old C57BL/6JN and B6D2F1 mice fed AL, the 

old CR C57BL/6JN or B6D2F1 mice were clearly 

separated from the old mice fed AL, with the B6D2F1 

mice showing the greatest separation.  

 

Figure 8A shows the heatmap of the 48 metabolites that 

changed significantly (FDR <0.05) in the C57BL/6JN 

mice (Old AL vs Adult AL and Old AL vs Old CR). It 

is evident, that the pattern of the fecal metabolites from 

the old AL mice was quite different from that observed 

for the adult AL or CR mice. The pattern of metabolites 

in the old CR approached a pattern more similar to that 

observed in the adult mice. Figure 8B shows the 

heatmap of the 53 metabolites that were changed 

significantly by CR (Old AL vs Old CR) in either old 

C57BL/6JN mice or old B6D2F1 mice. The pattern of 
fecal metabolites is quite different for the old 

C57BL/6JN and B6D2F1 mice fed even though their 

microbiome composition were similar (Figure 1F). CR 
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resulted in a dramatic change in the pattern of 

metabolites in both strains of mice. Interestingly, the 

difference in the metabolite pattern between the 

C57BL/6JN and B6D2F1 mice was largely resolved by 

CR. CR had a greater effect on the fecal metabolome of 

the B6D2F1 mice than the C57BL/6JN mice. 

 

We next determined the effects of age, diet, and strain 

on the metabolomic profile using an OLS linear model. 

The coefficients of this model reflect the independent 

fold changes on metabolic pathways represented by the 

metabolites that changed with age, diet, and strain. The 

heatmap in Figure 9A shows the average log2FC 

attributable to age, diet, and strain among all the 

metabolites measured in the respective pathways. The 

data show the following: the metabolomic effects of age 

and CR are broadly anti-correlated and the metabolomic 

profile of the B6D2F1 mice is correlated with that of 

CR and anti-correlated with that of age, suggesting that 

the B6D2F1 mice have bacteria that produce 

metabolites that are more reflective of the bacteria in 

younger animals and CR mice compared to the 

C57BL/6JN mice. To contrast the effects of age and CR 

on the metabolomic profile, we again used an OLS

 

 
 

Figure 5. The effect of age and CR on the abundance of the six major microbes found in C57BL/6JN mice. The relative 

abundance (mean and SEM) of six microbes from Table 1 are shown for 8-10 mice per group for adult and old C57BL/6JN mice fed AL (blue 
bars) and CR (red bars). 



 

www.aging-us.com 6307 AGING 

linear model where the coefficients reflect the 

independent fold changes in metabolome abundance 

resulting from age and diet. Figure 9B shows the 

average log2FC attributable to age and diet among all 

the metabolites measured in their respective pathways. 

The data show that the effects of age and CR on the 

metabolome are broadly anti-correlated as one would 

predict. In addition, pathways related to amino acid 

metabolism broadly increase with age and decrease with 

CR, whereas pathways associated with nucleotide 

metabolism increase with CR and decrease with age.  

 

Effect of age and caloric restriction on the 

transcriptome of mucosa from the colon of mice 

 

To gain an understanding of the potential interaction 

between the microbiome and intestine, we studied the 

effect of age and CR on the transcriptome of intestinal 

mucosa isolated from the colon of C57BL/6JN mice 

used to study the microbiome and metabolome. We 

identified a total of 45,796 transcripts, and after filtering 

for low raw counts, there were 36,083 transcripts. 

Differential expression analysis showed that the 

expression of 723 mucosal genes changed significantly 

[P (Corr) < 0.05 and 2.0-fold] with either age (old AL 

vs adult AL) or CR (old CR vs old AL and adult CR vs 

adult AL) in C57BL/6JN mice. Of the 660 genes that 

changed with age (279 increased, 381 decreased), CR 

reversed the age-related changes in 189 of the genes 

(29%) in old mice. In addition, CR significantly 

changed the levels of 57 genes that did not change with 

age in old mice, i.e., approximately one-fourth of the 

genes that changed with CR did not change with age. 

Interestingly, CR resulted in significant changes in 94 

of the genes in adult mice and over 50% of these genes 

remained changed by CR in the old mice. 

Supplementary Table 6 lists the top 20 genes whose 

expression changed the most with age and CR.  

 

Figure 10A shows PCA analysis of differentially 

expressed genes [P (Corr) < 0.05 and 2.0-fold] in old 

CR, old AL, adult CR based on adult AL in the 

C57BL/6JN mice. The transcriptomes of the adult and 

old CR mice formed clusters that were clearly separated 

from each other. In contrast to what we observed for the 

microbiome and metabolome, both adult CR and old 

CR formed clusters that were clearly separate from their 

AL counterparts. Interestingly, adult and old CR mice 

formed clusters that overlapped, suggesting a similarity 

in the transcriptome of adult and old CR mice. Figure 

10B shows the heatmap of genes that changed 

significantly in the C57BL/6JN mice. CR resulted in a

 

 
 

Figure 6. The degree of association between microbial taxa abundance, age, and diet. Using ordinary least squares (OLS) linear 

model, the t-statistic for each coefficient is plotted for the microbial phylogenetic classes: Bacteroidia, Bacilli, Clostridia, Verrucomicrobiae. 
There is a significant negative correlation between the age and diet t-statistic. 



 

www.aging-us.com 6308 AGING 

major shift in the transcriptome pattern in both adult 

and old mice. These data agree with the PCA data in 

Figure 10A, which showed that CR altered the 

transcriptome in both adult mice and old mice. 

 

DISCUSSION 
 

The first study to show that life-long CR (30% started at 

5 weeks of age) significantly changed the gut 

microbiota of old (15 and 35 months) mice was reported 

by Zhang et al. [13]. Subsequently, Kok et al. also 

reported that life-long CR (30% started at 9 weeks of 

age) significantly changed the microbiome of old (28 

months) mice [14]. However, in a study focusing 

primarily on response to influenza, Bartley et al. 

reported that CR (40% starting at 3-4 months of age) 

had very little effect on the microbiome of old (19 to 21 

months) mice [21]. These three studies used male 

C57BL/6 mice. The studies by Zhang et al. and Kok et 

al. were conducted on C57BL/6 obtained and 

maintained in either China or The Netherlands, 

respectively, while Bartley et al. used C57BL/6JN mice 

obtained from the animal colony maintained by NIA 

[13, 14, 21]. Because environment can have a major 

impact on the gut microbiome and the NIA animal 

colony is maintained under optimal husbandry and used

 

 
 

Figure 7. Effect of age and CR on the fecal metabolome. (A) Venn diagram showing the distribution of the number of metabolites that 

changed significantly in C57BL/6JN mice with age (orange) or with CR in old C57BL/6JN mice (blue) or changed significantly with CR in B6D2F1 
mice (green). (B) PCA Analysis of fecal metabolites from adult and old C57BL/6JN mice fed AL or CR (6 mice/group). Data normalized and 
imputed from the 98 metabolites. (C) PCA Analysis of fecal metabolites from old AL and CR C57BL/6JN and B6D2F1 mice (6 mice/group) 
normalized and imputed from the 98 metabolites. 
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Figure 8. Heatmaps of the fecal metabolome. Top Panel: Heatmap of the 48 metabolites that changed significantly (FDR <0.05) with 

either Old AL vs. Adult AL or Old AL vs. Old CR comparisons in C57BL/6JN mice (6 mice per group). Bottom Panel: The heatmap shows the 
relative levels of the 53 metabolites that changed significantly (FDR <0.05) with CR in either old C57BL/6JN or old B6D2F1 mice (6 mice per 
group). In order to generate the heatmap, we computed a z-score of the log2-abundance, where we adjusted the data, by metabolites, to 
have a mean of zero and a standard deviation of 1. The heatmap is generated using the Complex Heatmap R package, where the metabolites 
were clustered via the hclust function with the “complete” agglomeration method. Distance matrix for clustering are computed using 
“Euclidean” distance. The resulting heatmap presents the metabolites in rows and samples in columns. 
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by investigators across the country, we believed it was 

important to characterize in detail the effect of CR on 

the microbiome in mice from the NIA animal colony 

microbiome [15]. In this study, we evaluated the effect 

of 40% CR started at 3-4 months of age on the 

microbiota of both the cecum and colon of 9- and 24-

month-old C57BL/6JN mice, i.e., mice were fed a CR-

diet for either 5 or 20 months. This is the first study to 

assess the effect of age or CR on the cecum and to 

simultaneously compare the effect of short term and 

life-long CR on the microbiome. Our data show that 

both age and CR brought about significant changes in 

the microbiome in both the cecum and colon of 

C57BL/6JN mice. Most interestingly, CR attenuated the 

age-related changes in microbiome and resulted in a 

microbial profile of old mice becoming similar to that 

of adult mice. For example, CR altered the microbial 

diversity in both cecum and colon, which has been 

associated with optimal health and has been shown to 

change with age [22]. In addition, healthy, elderly have 

been shown to have a diverse gut microbiome compared 

to elderly individuals with various comorbidities, e.g., 

dysbiosis and reduced microbial diversity [23]. When 

we analyzed the microbial flora, the two most 

prominent phyla identified were the gram positive 

Firmicutes and gram negative Bacteroidetes. Studies in 

animals and humans have shown that reduced levels of 

Bacteroidetes and increased Firmicutes are associated 

with obesity [24, 25]. Our data show that CR increased 

the Bacteroidetes/Firmicutes ratio in both the cecum 

and colon of C57BL/6JN mice and this observation 

tracks with the fact that CR reduces adiposity and 

improves lean body mass [26].  

 

Comparisons of relative abundance of microbes also 

showed that age and CR significantly shifted the 

microbial profile of the intestine. The prominent 

microbial family observed in the cecum and colon of 

the old mice fed AL were Lachnospiraceae and 

Ruminococcaceae, which belong to the phylum 

Firmicutes. Many microbes in the Lachnospiraceae 

family are associated with impaired glucose 

metabolism, obesity, inflammation, and metabolic 

syndrome [27–29]. In contrast, the Ruminococceae 

family includes microbes that are positively correlated 

to oxidative stress, inflammation, inflammatory bowel 

diseases, and diabetes [30–32]. Apart from the 

Lachnospiraceae and Ruminococceae families, we also 

found the Erysipelotrichaceae and Enterobacteriaceae 

families, which are reported to be associated with 

inflammation and infections in the host, to be abundant 

in the cecum of the old AL mice [33, 34]. The

 

 
 

Figure 9. Effect of age, diet, and strain on the fecal metabolome. (A) An ordinary least squares (OLS) linear model with the formula 

*log (Abundance) ~ Age + Diet + Strain* is fitted to evaluate the effects of age, diet, and strain on the metabolomic profile. The coefficients of 
this model reflect the independent fold changes on metabolomic abundances caused by age, diet, and strain. This panel displays the average 
log2FC attributable to age, diet, and strain among all the metabolites measured in the respective pathways. A positive value for age, diet, or 
strain indicates that this metabolomic pathway is increased with age, DR, or B6D2F1 (versus C57BL/6JN), respectively. (B) OLS linear model 
coefficients reflecting the independent fold changes in metabolomic abundances caused by age and diet. The average log2FC attributable to 
age and diet among all the metabolites measured in the respective pathways are shown. A positive value for age or diet indicates that this 
metabolomic pathway is increased with age or CR, respectively. 
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abundance of these microbes in old AL mice could play 

a role in compromising the integrity of the gut. 

Interestingly, CR altered the relative abundance of 

several microbes known to have positive health 

benefits. For example, CR increased the abundance of 

the Rikenellaceae family and S24-7 family, which 

belong to the phylum Bacteroidetes. Studies show that 

the Rikenellaceae family contains hydrogen-producing 

bacteria that can neutralize reactive oxygen species and 

is inversely associated with inflammation [35, 36]. In 

addition, the S24-7 family has been shown to be a 

fermentative bacteria capable of producing enzymes 

that breakdown carbohydrates and have positive effects 

against diabetes and inflammatory arthritis [37, 38].  

 

We are the first group to simultaneously compare the 

effect of life-long CR on the microbiome of two strains 

of mice (C57BL/6JN and B6D2F1) to determine if there 

were major strain differences with respect to the effect 

of CR on the microbiome. Different strains of mice 

have been reported to show differences in the 

microbiome [39]. However, Turturro et al. showed that 

CR increased the lifespan of these two strains of mice to 

a similar extent (e.g., ~25-35%) [4]. CR significantly 

altered the microbiome of old B6D2F1 mice and 

increased the diversity of the microbiome and the 

Bacteroidetes/ Firmicutes ratio in the old B6D2F1 mice 

as it did in the old C57BL/6JN mice. Similarly, old AL 

B6D2F1 mice showed an increase in the abundance in 

the Lachnospiraceae and Ruminocococcaeae families 

and the genus Parabacteriodes just as that observed in 

the C57Bl/6JN mice. CR increased the Rikenellaceae 

and S24-7 families, the genus Bacteriodes, and 

Bacteriodes acidifaciens in the B6D2F1 mice just as it 

did in the C57BL/6JN mice. The most notable 

difference between the C57BL/6JN and B6D2F1 

microbial profile was in the abundance of Akkermansia 

muciniphila and the Lactobacillus genus. Akkermansia 

muciniphila was not identified in C57BL/6JN but was 

found to be significantly increased in the old B6D2F1 

mice fed AL diet and this increase was reversed by CR. 

Similarly, old AL B6D2F1 mice had a reduced 

abundance of Lactobacillus, and CR increased its 

abundance significantly. However, we did not observe a 

significant change in this genus in C57BL/6JN mice.  

 

To gain a better understanding of the mechanism of 

how aging and CR affect the gut microbiome, we 

compared the effect of age and CR on the relative levels 

of microbes in both the cecum and colon. Most of the

 

 
 

Figure 10. Analysis of colon mucosa transcriptome of C57BL/6JN mice fed AL and CR. (A) PCA analysis of transcriptome from adult 
and old mice fed AL or CR. (B) Heatmap of the relative levels of the transcripts that changed significantly with either age and/or CR in 
individual mice compared to Adult AL mice. The data were collected from 4 mice per group, and the PCA and heatmap plots show 94 
transcripts that show 2-fold change in expression [P (Corr) <=0.05)]. 
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previous reports on aging studied only the colon 

microbiome, and this is the first study to compare the 

effects of age and CR on these two intestinal segments. 

We wanted to know if the age-related changes in the 

microbiome were limited to the colon or if changes 

were also seen in the cecum. Our data clearly show that 

significant changes in the microbiome occurred in the 

cecum, e.g., ~80% of the microbes in the colon of 

C57BL/6JN mice that changed significantly with age 

and reversed by CR were also significantly changed in 

the cecum. However, there were microbes in the cecum 

that CR altered and that were not altered in the colon 

and vice versa. In addition, the relative changes in the 

levels of microbes induced by CR also varied in the 

cecum and colon. For example, the magnitude of the 

age-related changes in Parabacteriodes and 

Ruminococcus were much greater in the cecum than 

colon. Parabacteriodes increased ~7-fold in cecum and 

~2-fold in colon, and Ruminococcus was increased 100-

fold in the cecum and ~30-fold in the colon. Thus, our 

data show that changes in the microbiome with age and 

CR are initiated in the cecum, and these changes are 

further modified in the colon.   

 

An important observation in our study was that CR 

attenuated or reversed the changes that occurred with 

age and changed the intestinal milieu of the old mice to 

look more like adult mice even down to the genus level. 

For example, age increased the relative abundance of 

Parabacteriodes, Oscillospira and Mucispirillum, 

which are associated with intestinal disorders and 

infections [37, 40–43]. Life-long CR reduced the 

abundance of these bacteria potentially exerting health 

benefits in the old mice. On the other hand, age 

decreased the overall abundance of the Bacteriodes 
genus and Bacteriodes acidifaciens, and life-long CR 

increased these in both the cecum and colon of 

C57BL/6JN mice. These microbes have been shown to 

confer fuel to the intestine, prevent obesity and improve 

insulin sensitivity [44, 45]. The Bacteriodes and 

Parabacteriodes genus also display a dual nature with 

some reports showing anti-inflammatory effects and 

some reports pro-inflammatory effects [44, 46]. 

Therefore, the interpretation of the effect of changes in 

microbiome on the health of an organism needs to be 

done cautiously and more thorough functional analysis 

are warranted.  

 

Next, we addressed if CR altered the microbiome of the 

old mice to have a younger appearing profile similar to 

the adult mice early on in life or whether these changes 

occurred with age. One of the major observations from 

this study was that 5 months of CR in adult, 9-month-
old mice had only a small effect on the gut microbiome 

compared to life-long CR in old mice. While CR 

significantly altered the relative abundance of some 

microbes in the adult mice, the overall effect on the 

microbiome was minor compared to life-long CR in old 

mice, e.g., the PCA analysis (Figure 1) and the pattern 

of microbes (Figure 3) in adult mice fed AL or CR were 

similar for the cecum and colon. In addition, short-term 

CR had no significant effect on the diversity or the 

Bacteroidetes/ Firmicutes ratio in the adult mice while 

both were increased by CR in old mice (Figure 2). 

Fabbiano et al. reported that short-term CR (40% 

restriction for 3 and 6 weeks) changed the microbiome 

in C57BL/6J mice; however, only a few weeks of CR in 

young mice was evaluated in this study [47]. There was 

no comparison of these early changes to the effect of 

longer CR or long-term CR in old mice, which was used 

in our study.  

 

Our data on the metabolome of fecal material paralleled 

the changes we observed with the microbiome. The 

effects of age and CR on the metabolome are broadly 

anti-correlated as one would predict from the 

microbiome data. For example, we observed that the 

age-related changes in the metabolome were attenuated 

by CR in C57BL/6JN mice and short-term CR had 

minimal effect on the fecal metabolome. Interestingly, 

the fecal metabolome was quite different in the old 

C57BL/6JN and B6D2F1 fed AL even though the 

microbiomes were similar.  

 

One of the major questions that arises from studies on 

the effect of aging and CR on the microbiome is whether 

the changes in the microbiome play a role in the anti-

aging actions of CR or if the physiological changes that 

arise from CR, e.g., the gastrointestinal (GI) system, are 

responsible for attenuating the age-related changes in the 

microbiome. To begin to answer this question, we 

studied the transcriptome of intestinal mucosal as a 

surrogate measure of intestinal status. Life-long CR in 

old mice had a dramatic effect on the transcriptome of 

intestinal mucosa, e.g., the transcripts of 250 genes were 

changed significantly (>=2.0-fold) by CR, and CR 

reversed the age-related changes in over 75% (189 

genes) of the transcripts that changed significantly with 

age. Based on the large literature showing that life-long 

CR has a major effect of the transcriptome in various 

tissues, we were not surprised to observe a major effect 

of long-term CR on the transcriptome of the GI system, 

even though this is the first study to our knowledge to 

evaluate the effect of life-long CR on intestinal mucosa 

[48]. However, we were surprised to find that short-term 

CR in adult mice also had a major effect on the 

transcriptome, e.g., PCA analysis of the transcripts 

showed that CR in both adult and old mice resulted in a 

significant change in the transcriptome. This observation 
was in contrast to what we observed for the microbiome 

and the fecal metabolome, where we observed only 

minor effects of 5 months of CR in adult mice. Thus, our 
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transcriptome data show that CR has an impact on the 

colon before any major changes in the microbiome occur 

and agree with previous studies reporting that short-term 

CR has a significant impact on the gastrointestinal 

system. For example, early studies from Holt’s 

laboratory showed that 10 to 16 weeks of CR reduced 

epithelial cell proliferation in the rat colon and rectal cell 

proliferation in humans [8, 49]. Albanes et al. showed 

that 3 weeks of CR reduced DNA synthesis in the colon 

of young rats, which resulted in a decrease in the number 

of crypts and the total number of colonic mucosal cells 

dividing at any given time [50]. In addition, 6-12 weeks 

of CR has been shown to have a significant impact on 

intestinal stem cell function in mice, and we found that 

one-month of CR altered the expression of over 5000 

genes (fold change >1.25) in intestinal mucosa from 

mice [51–53]. Thus, our data and previous data on the 

impact of CR on the GI-system indicate that the initial 

impact of CR occurs on the physiological status of the 

GI-system, suggesting that the changes in the 

microbiome could potentially occur because of these 

physiological changes.  

 

In summary, our data demonstrate that life-long CR has 

a dramatic effect on the microbiome in old mice, which 

was similar in two strains of mice. The changes in the 

microbiome that occur with age and CR are initiated in 

the cecum and modified as the fecal material progresses 

to the colon. Importantly, our study gives us the first 

insight into the role the microbiome and the 

physiological status of the gastrointestinal system play 

in aging and the anti-aging actions of CR. Our data lead 

us to propose that the primary impact of CR is on the 

physiological status of the host’s gastrointestinal 

system, maintaining it in a more youthful state, which in 

turn maintains a more diverse and ‘youthful’ 

microbiome.  

 

MATERIALS AND METHODS 
 

Animals  

 

Male C57BL/6JN and B6D2F1 mice fed either AL or 

CR were obtained from the aging colony maintained by 

NIA. After receiving the mice from NIA, animals were 

housed at the animal facility and maintained under SPF 

conditions and individually housed in a HEPA barrier 

environment at the University of Oklahoma Health 

Sciences Center for at 4-8 weeks before being used in 

the following experiments. Mice fed ad libitum were 

fed irradiated NIH-31 mouse/rat diet (Teklad, Envigo), 

and the CR mice were fed the same diet fortified for 

micronutrients. CR was initiated by NIA at 14 weeks of 

age, at a level of 10% restriction, increased to 25% 

restriction at 15 weeks, and to 40% restriction at 16 

weeks of age. Adult (9 months of age) fed AL or CR 

and old mice (24 months of age) fed AL or CR were 

fasted overnight, and samples were collected during 

sacrifice (n=8-10/group). Mice were euthanized by 

decapitation and fecal material from cecum and colon 

and colon mucosa were harvested, snap frozen, and 

stored at −80° C until analyzed. Microbiome, 

metabolome and transcriptome analysis were done in 

the same animals. All animal experiments were 

performed according to protocols approved by the 

Institutional Animal Care and Use Committee.  

 

Microbiome analysis 

 

DNA extraction  

Fecal DNA was extracted from luminal fecal samples of 

cecum and colon using PowerFecal kits (Qiagen) 

according to the manufacturer’s instructions, with the 

exception that, rather than performing the initial 

homogenization of samples using the vortex adapter 

described in the protocol, samples are homogenized in 

the provided bead tubes using a TissueLyser II (Qiagen, 

Venlo, Netherlands) for three minutes at 30/sec, before 

proceeding according to the protocol and eluting in 100 

µL of elution buffer (Qiagen). DNA yields are 

quantified via fluorometry (Qubit 2.0, Invitrogen, 

Carlsbad, CA) using quant-iT BR dsDNA reagent kits 

(Invitrogen). 

 

16S rRNA library preparation and sequencing  

Extracted fecal DNA was processed at the University of 

Missouri DNA Core Facility. Bacterial 16S rDNA 

amplicons are constructed via amplification of the V4 

region of the 16S rRNA gene with universal primers 

(U515F/806R) previously developed against the V4 

region, flanked by Illumina standard adapter sequences. 

Oligonucleotide sequences are available at proBase 

[54]. Dual-indexed forward and reverse primers were 

used in all reactions. PCR was performed in 50 µL 

reactions containing 100 ng metagenomic DNA, 

primers (0.2 µM each), dNTPs (200 µM each), and 

Phusion high-fidelity DNA polymerase (1U). 

Amplification parameters were 98° C(3:00) + [98° C(0:15) + 

50° C(0:30) + 72° C(0:30)] × 25 cycles +72° C(7:00). 

Amplicon pools (5 µL/reaction) were combined, 

thoroughly mixed, and then purified by addition of 

Axygen Axyprep MagPCR clean-up beads to an equal 

volume of 50 µL of amplicons and incubated for 15 

minutes at room temperature. Products were then 

washed multiple times with 80% ethanol, and the dried 

pellet was resuspended in 32.5 µL EB buffer, incubated 

for two minutes at room temperature, and then  

placed on the magnetic stand for five minutes.  

The final amplicon pool was evaluated using the 
Advanced Analytical Fragment Analyzer automated 

electrophoresis system, quantified using quant-iT HS 

dsDNA reagent kits, and diluted according to Illumina’s 
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standard protocol for sequencing on the MiSeq 

instrument. 

 

Informatics analysis 

Read merging, clustering, and annotation of DNA 

sequences was performed at the University of Missouri 

Informatics Research Core Facility. Paired DNA 

sequences were merged using FLASH software, and 

removed if found to be far from the expected length of 

292 bases after trimming for base quality of 31 [55]. 

Cutadapt (https://github.com/marcelm/cutadapt) was 

used to remove the primers at both ends of the contig 

and cull contigs that did not contain both primers. The 

usearch fastq_filter command (http://drive5.com/ 

usearch/manual/cmd_fastq_filter.html) was used for 

quality trimming of contigs and rejecting those for 

which the expected number of errors is greater than 0.5 

[56]. All contigs were trimmed to 248 bases and shorter 

contigs are removed. The Qiime 1.9 command 

split_libraries_fastq.py was used to demultiplex the 

samples [57]. The outputs for all samples were 

combined into a single file for clustering. The uparse 

method (http://www.drive5.com/uparse/) was used to 

both cluster contigs with 97% identity and remove 

chimeras. Taxonomy was assigned to selected OTUs 

using BLAST against the SILVA database v132 of 16S 

rRNA sequences and taxonomy [58, 59]. 

 

Statistical analysis 

Relative abundances were performed through Qiime 

1.9, and all the bar graphs were generated using 

Microsoft Excel software (Microsoft, Seattle, WA). 

Principal components analysis was performed using the 

scikit-learn Python package, and OLS regression was 

performed using the statsmodels package [60, 61].  

 

Metabolome analysis 

 

Metabolomics analysis of the fecal pellets from the 

colon was performed in collaboration with the Nathan 

Shock Center of Excellent in Basic Biology of Aging at 

the University of Washington. The targeted liquid 

chromatography mass spectrometry (LC-MS/MS) data 

were collected using a standard protocol developed by 

the Northwest Metabolomics Research Center (NW-

MRC) that has been used in a number of studies [62–

68]. Briefly, the LC-MS/MS experiments were 

performed on a Shimadzu Nexera LC-20ADXR 

(Shimadzu, Kyoto, Japan) AB Sciex Triple Quad 6500+ 

MS (AB Sciex, Toronto, Canada) system equipped with 

a PAL HTC-xt autosampler (CTC Analytics, Zwingen, 

Switzerland). Each sample was injected twice, 10 µL 

for analysis using negative ionization mode and 5 µL 
for analysis using positive ionization mode. Both 

chromatographic separations were performed using 

hydrophilic interaction chromatography (HILIC) on a 

Waters XBridge BEH Amide column (150 x 2.1 mm, 

2.5 µm particle size, Waters Corporation, Milford, MA). 

The flow rate was 0.3 mL/min. The mobile phase was 

composed of Solvents A (10 mM ammonium acetate in 

95% H2O/ 3% acetonitrile/ 2% methanol + 0.2% acetic 

acid) and B (10 mM ammonium acetate in 93% 

acetonitrile/ 5% H2O / 2% methanol+ 0.2% acetic acid). 

After the initial 3 min isocratic elution of 95% B, the 

percentage of Solvent B was decreased linearly to 50% 

at t=8 min. The composition of Solvent B was 

maintained at 50% for 4 min (t=12 min), and then the 

percentage of B was gradually increased to 95%, to 

prepare for the next injection. The metabolite identities 

were confirmed by spiking the pooled serum sample 

used for method development with mixtures of standard 

compounds. Isotope labeled metabolite standards were 

spiked into the samples at different times during the 

sample preparation to monitor sample processing and 

sample injections. A laboratory quality control sample 

and pooled sample QC sample were measured once for 

every 10 biological samples to monitor data quality and 

provide consistent metabolite signals to normalize for 

any instrument drift. The extracted MRM peaks were 

integrated using MultiQuant 3.0.2 software (AB Sciex, 

Toronto, Canada).  

 

Statistical analysis 

Analysis of the targeted metabolomics data with 36 

samples and 216 metabolites was performed using R 

(version 3.4.2). Metabolite abundance was log2-

transformed and median normalized prior to imputation. 

All the metabolites with ≥ 5% missingness were 

excluded, and a total of 98 metabolites were included in 

the imputation step. We imputed the remaining missing 

values using the K-nearest neighbors imputation method 

implemented in the R impute package [69]. We fit a 

weighted linear model to the normalized and imputed 

metabolomic data using the Bioconductor limma 

package to test the group differences [70]. The limma 

package uses empirical Bayes moderated statistics, 

which improves power by 'borrowing strength' between 

metabolites to moderate the residual variance [71]. By 

using a weighted linear regression, we can smoothly up 

or down-weight individual samples, based on similarity 

to other similar sample types [72]. This allows us to 

keep all samples in the analysis, and it also minimizes 

the need to make decisions about removing possible 

outlier samples from consideration. We selected 

metabolites that have a significant difference with a 5% 

false discovery rate (FDR) using the Benjamini-

Hochberg method [73].  

 

Transcriptome analysis 

 

Transcriptome analysis was done using strand-specific 

RNA-Seq technology for RNA isolated from the 

https://github.com/marcelm/cutadapt
http://drive5.com/usearch/manual/cmd_fastq_filter.html
http://drive5.com/usearch/manual/cmd_fastq_filter.html
http://www.drive5.com/uparse/
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mucosa from the colon of adult and old mice fed AL or 

CR using the genomic sequencing facility at OMRF. 

RNA was isolated from the colon mucosa using the 

RNeasy kit from Qiagen (Germantown MD, USA). 

RNA integrity was checked using the Bioanalyzer 

(Agilent) and only samples with RNA integrity numbers 

>8 were used in the RNA-Seq. RNA was depleted of 

ribosomal RNA (Ribozero, Illumina) and used for 

generation of stranded RNA sequencing libraries, 

whereby the orientation and originating DNA strand of 

the RNA are maintained (Illumina Stranded RNA-Seq). 

Each library was uniquely indexed and then sized and 

quantified by capillary electrophoresis (TapeStation, 

Agilent). Libraries were sequenced in a paired-end 75 

fashion on an Illumina HiSeq 2000 in rapid run mode. 

An average of 81.1±9.5 million reads were generated 

for each library.  

 

Raw FASTQ files were imported into Strand NGS 

software (Strand Life Sciences, Version 3.4, Build 

239479) for trimming and alignment. All the statistical 

analysis and figure generation on transcriptome data 

were performed using Strand NGS software. Reads with 

average base Q score of <30 were discarded, and 1 base 

from 3’ and 5’, and adaptor sequences were eliminated. 

Reads were then aligned to mouse, build mm10 (UCSC) 

in an orientation-specific fashion. Reads that aligned 

normally (in the appropriate direction) were retained. 

Reads were further filtered on read quality metrics using 

the following cut-offs: N’s allowed in read <=0, quality 

threshold >= 30, number of multiple matches allowed 

<= 1. Duplicate reads were also excluded. Data were 

then normalized to the AL group and quantification was 

performed with the DESeq algorithm [74]. Transcripts 

that had a raw read count value >20 in 100% of the 

samples and in at least one of the conditions were 

considered expressed at a level sufficient for 

quantitation and retained. Statistically significant 

differentially expressed genes with P (Corr) cut off < 

0.05, FC cut off 2.0 were determined using One-way 

ANOVA (Multiple testing correction: Benjamini-

Hochberg, Post hoc test: Student Newman Keuls).  

 

Data upload  

 

Metagenome and Trancriptome data are accessible 

through NCBI BioProject. The accession numbers are 

PRJNA701657 (Metagenome) and PRJNA692441 

(Transcriptome). 
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SUPPLEMENTARY MATERIALS 
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Supplementary Figure 1. Relative abundance of all the microbes in the cecum and colon of C57BL/6J mice. 
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Supplementary Figure 2. Relative abundance of all the microbes in the cecum and colon of the B6D2F1 mice. 
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Supplementary Figure 3. Distribution of microbes that changed with CR in (A) Cecum and (B) Colon of both C57BL/6JN and B6D2F1 mice. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 5. 

 

Supplemenatry Table 1. Microbiota composition of the cecum from adult and old C57BL/6 mice fed ad 
libitum (AL) or caloric restriction (CR). 

Each value represents the mean ± SEM of data generated from 8 to 10 mice per group.  Significant differences 
between groups are shown for an FDR <0.05:  a = Significant difference between adult AL and young CR; b = Significant 
difference between adult AL and old AL; c = Significant difference between old AL and old CR; d = Significant difference 
between adult CR and old CR. 

  Adult AL Adult CR Old AL Old CR 

Species 

Akkermansia muciniphila 0.43 ± 0.36 3.25 ± 1.16a 0.0 ± 0.0 0.01 ± 0.01d 

Bacteroides acidifaciens 4.33 ± 0.72 8.1 ± 2.08 0.0 ± 0.0b 7.15 ± 1.56c 

Bacteroides uniformis 0.01 ± 0.0 0.0 ± 0.0 0.0 ± 0.0b 1.12 ± 0.39cd 

Eubacterium cylindroides 0.01 ± 0.01 0.55 ± 0.16a 0.0 ± 0.0 0.0 ± 0.0d 

Mucispirillum schaedleri 0.16 ± 0.02 0.11 ± 0.03 0.45 ± 0.13b 0.04 ± 0.01c 

Ruminococcus gnavus 0.7 ± 0.12 0.49 ± 0.11 0.45 ± 0.04 0.26 ± 0.05c 

Genus 

Allobaculum 0.88 ± 0.61 0.55 ± 0.25 0.0 ± 0.0 0.0 ± 0.0 

Anaeroplasma 0.52 ± 0.16 0.0 ± 0.0a 0.04 ± 0.02b 0.0 ± 0.0 

Bacteroides 13.23 ± 1.51 6.47 ± 1.74a 0.0 ± 0.0b 8.75 ± 1.26c 

Coprococcus 1.13 ± 0.24 0.41 ± 0.05a 0.37 ± 0.06b 0.55 ± 0.12 

Dehalobacterium 0.19 ± 0.03 0.17 ± 0.03 0.11 ± 0.02b 0.13 ± 0.03 

Dorea 0.38 ± 0.16 1.66 ± 0.52a 0.05 ± 0.01 0.14 ± 0.04cd 

Lactobacillus 6.26 ± 4.47 0.9 ± 0.1 12.46 ± 3.24 9.27 ± 5.64 

Oscillospira 5.14 ± 0.75 1.61 ± 0.22a 6.36 ± 0.95 1.08 ± 0.41c 

Parabacteroides 0.2 ± 0.05 0.56 ± 0.19 25.99 ± 2.89b 1.45 ± 0.22cd 

Prevotella 0.26 ± 0.05 0.55 ± 0.09a 0.0 ± 0.0b 0.0 ± 0.0d 

Ruminococcus 0.71 ± 0.13 0.37 ± 0.1a 1.07 ± 0.13 0.36 ± 0.15c 

Turicibacter 0.52 ± 0.25 0.0 ± 0.0 1.85 ± 1.36 0.17 ± 0.1 

rc4-4 0.47 ± 0.07 0.45 ± 0.05 0.29 ± 0.11 0.43 ± 0.08 

Family 

Christensenellaceae 0.2 ± 0.04 0.79 ± 0.09a 0.04 ± 0.01b 0.08 ± 0.02d 

Clostridiaceae 0.13 ± 0.03 0.09 ± 0.01 0.13 ± 0.06 0.1 ± 0.03 

Enterobacteriaceae 0.04 ± 0.02 0.04 ± 0.02 0.91 ± 0.48 0.43 ± 0.3 

Erysipelotrichaceae 0.47 ± 0.11 0.33 ± 0.12 0.98 ± 0.28 0.43 ± 0.08 

 F16 0.26 ± 0.06 0.61 ± 0.1a 0.0 ± 0.0b 1.17 ± 0.55c 

Lachnospiraceae 6.05 ± 1.18 3.78 ± 0.63 6.72 ± 0.99 4.0 ± 0.78 

Mogibacteriaceae 0.1 ± 0.01 0.09 ± 0.01 0.35 ± 0.08b 0.09 ± 0.02c 

Rikenellaceae 14.93 ± 1.61 16.81 ± 1.66 0.0 ± 0.0b 9.2 ± 1.79cd 

Ruminococcaceae 4.01 ± 0.51 3.9 ± 0.66 2.62 ± 0.29b 3.91 ± 0.92 

S24-7 17.83 ± 2.37 24.17 ± 3.53 0.0 ± 0.0b 23.1 ± 4.78c 

Order 

Order Bacteroidales 1.42 ± 0.2 1.21 ± 0.27 0.0 ± 0.0b 0.12 ± 0.03cd 

Order Clostridiales 18.41 ± 2.37 20.93 ± 4.17 37.09 ± 4.01b 25.8 ± 3.16 

Order RF32 0.16 ± 0.05 0.28 ± 0.12 0.0 ± 0.0b 0.0 ± 0.0 

Order RF39 0.24 ± 0.06 0.55 ± 0.11a 1.67 ± 0.21b 0.67 ± 0.22c 

Order YS2 0.22 ± 0.1 0.23 ± 0.07 0.0 ± 0.0 0.0 ± 0.0d 
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Supplemenatry Table 2. Microbiota composition of colon from adult and old C57BL/6 mice fed ad libitum 
(AL) or caloric restriction (CR). 

Each value represents the mean ± SEM of data generated from 8 to 10 mice per group.  Significant differences between 
groups are shown for an FDR <0.05: a = significant difference between adult AL and adult CR; b = significant difference 
between adult AL and old AL; c = Significant difference between old AL and old CR; d = Significant difference between 
adult CR and old CR.   

 

 

 

 

 

 

 

 

 

 

 

 

  Adult AL Adult CR Old AL Old CR 

Species 

Bacteroides acidifaciens 2.75 ± 0.84 6.71 ± 2.15 0.0 ± 0.0b 3.97 ± 0.89c 

Bacteroides uniformis 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.67 ± 0.29cd 

Mucispirillum schaedleri 0.47 ± 0.18 0.19 ± 0.09 0.87 ± 0.2 0.24 ± 0.07c 

Ruminococcus gnavus 0.79 ± 0.27 0.65 ± 0.17 0.78 ± 0.06 0.51 ± 0.13 

Genus     

Anaeroplasma 0.37 ± 0.18 0.1 ± 0.08 0.01 ± 0.0 0.0 ± 0.0 

Bacteroides 2.95 ± 0.67 3.54 ± 1.03 0.0 ± 0.0b 3.02 ± 0.41c 

Coprococcus 1.28 ± 0.37 1.72 ± 0.54 0.44 ± 0.04b 1.34 ± 0.14c 

Dehalobacterium 0.22 ± 0.05 0.39 ± 0.05a 0.24 ± 0.03 0.54 ± 0.06c 

Dorea 0.08 ± 0.04 0.56 ± 0.17a 0.02 ± 0.01 0.07 ± 0.02cd 

Lactobacillus 0.65 ± 0.34 0.26 ± 0.1 0.7 ± 0.2 0.57 ± 0.27 

Oscillospira 8.18 ± 2.13 7.14 ± 1.91 13.13 ± 0.83b 2.36 ± 0.31cd 

Parabacteroides 0.13 ± 0.08 0.41 ± 0.21 4.79 ± 0.7b 0.73 ± 0.08c 

Ruminococcus 1.49 ± 0.41 0.79 ± 0.17 3.02 ± 0.34b 1.06 ± 0.29c 

Turicibacter 0.04 ± 0.03 0.01 ± 0.0 0.38 ± 0.22 0.09 ± 0.06 

rc4-4 0.52 ± 0.19 0.97 ± 0.12 0.44 ± 0.16 1.3 ± 0.24c 

Family      

Christensenellaceae 0.11 ± 0.03 0.25 ± 0.05a 0.01 ± 0.0b 0.09 ± 0.02cd 

Erysipelotrichaceae 0.08 ± 0.04 0.21 ± 0.09 0.3 ± 0.1 0.21 ± 0.05 

F16 0.25 ± 0.08 0.48 ± 0.08 0.0 ± 0.0b 0.85 ± 0.34c 

Lachnospiraceae 5.8 ± 1.35 5.15 ± 0.9 10.04 ± 1.84 5.82 ± 0.58 

Rikenellaceae 5.52 ± 1.51 7.57 ± 1.02 0.01 ± 0.0b 4.17 ± 1.37c 

Ruminococcaceae 5.74 ± 1.16 3.96 ± 0.9 4.28 ± 0.64 3.0 ± 0.5 

S24-7 26.57 ± 4.76 31.62 ± 3.34 0.02 ± 0.01b 19.72 ± 2.75cd 

Sphingobacteriaceae 0.32 ± 0.31 0.02 ± 0.0 0.29 ± 0.27 0.02 ± 0.0 

Order     

Order Clostridiales 35.52 ± 3.77 27.0 ± 2.59 59.33 ± 1.49b 49.17 ± 2.67cd 

Order RF39 0.16 ± 0.05 0.31 ± 0.07 0.89 ± 0.18b 0.48 ± 0.18 
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Supplemenatry Table 3. Microbiota composition of cecum and colon from old B6D2F1 mice fed ad libitum (AL) 
or caloric restriction (CR). 

 Cecum Colon 

  Old AL Old CR Old AL Old CR 

Species   

Akkermansia muciniphila 7.11 ± 2.01 0.0 ± 0.0a 3.06 ± 0.94 0.0 ± 0.0a 

Bacteroides acidifaciens 0.0 ± 0.0 5.78 ± 0.43a 0.67 ± 0.67 1.4 ± 0.1 

Mucispirillum schaedleri 0.2 ± 0.13 0.03 ± 0.01 1.1 ± 0.28 0.47 ± 0.15 

Ruminococcus gnavus 0.52 ± 0.1 0.38 ± 0.06 0.79 ± 0.11 0.75 ± 0.06 

Genus   

Adlercreutzia 0.09 ± 0.02 0.17 ± 0.02a ND ND 

Anaeroplasma 0.17 ± 0.08 0.09 ± 0.09 ND ND 

Anaerostipes 0.26 ± 0.03 0.0 ± 0.0a ND ND 

Bacteroides 0.0 ± 0.0 4.67 ± 0.63a 0.0 ± 0.0 1.67 ± 0.24a 

Coprococcus 0.45 ± 0.07 0.75 ± 0.14 0.74 ± 0.14 1.29 ± 0.32 

Dehalobacterium 0.26 ± 0.04 0.17 ± 0.01a 0.28 ± 0.04 0.27 ± 0.02 

Lactobacillus 0.1 ± 0.04 5.09 ± 0.67a 0.06 ± 0.04 1.05 ± 0.52 

Oscillospira 6.78 ± 0.36 5.16 ± 0.61a 12.68 ± 1.97 12.47 ± 0.68 

Parabacteroides 30.72 ± 2.64 0.21 ± 0.05a 14.18 ± 2.51 0.11 ± 0.03a 

Prevotella 0.0 ± 0.0 0.51 ± 0.14a ND ND 

Ruminococcus 2.33 ± 0.38 0.56 ± 0.07a 3.97 ± 0.66 1.46 ± 0.1a 

Turicibacter 0.6 ± 0.21 1.17 ± 0.18 0.18 ± 0.04 0.14 ± 0.02 

rc4-4 5.01 ± 1.09 0.8 ± 0.15a 2.54 ± 0.55 0.32 ± 0.06a 

Family   

Erysipelotrichaceae 0.92 ± 0.18 0.06 ± 0.02a 0.45 ± 0.09 0.04 ± 0.01a 

F16 0.0 ± 0.0 1.05 ± 0.22a 0.0 ± 0.0 0.27 ± 0.03a 

Lachnospiraceae 6.92 ± 0.67 3.83 ± 0.49a 8.64 ± 0.62 8.55 ± 1.15 

Mogibacteriaceae 0.18 ± 0.02 0.09 ± 0.01a 0.16 ± 0.03 0.06 ± 0.01a 

Peptostreptococcaceae 0.29 ± 0.15 0.01 ± 0.01 0.29 ± 0.07 0.07 ± 0.01a 

Rikenellaceae 0.0 ± 0.0 7.18 ± 0.72a 0.67 ± 0.67 4.19 ± 0.46a 

Ruminococcaceae 4.03 ± 0.57 2.89 ± 0.39 5.76 ± 0.96 6.04 ± 0.51 

S24-7 0.02 ± 0.0 33.76 ± 1.99a 2.68 ± 2.67 9.03 ± 0.97a 

Order   

Order Clostridiales 32.29 ± 3.22 24.95 ± 1.58 40.66 ± 2.57 50.13 ± 1.43a 

Order RF39 0.71 ± 0.13 0.63 ± 0.11 0.43 ± 0.13 0.24 ± 0.03 

Each value represents the mean ± SEM of data generated from 8 to 10 mice per group. Significant differences between 
groups are shown for an FDR <0.05: a = significant difference between AL and CR mice.  ND = Not detected. 
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Supplemenatry Table 4. Microbiome altered by caloric restriction (CR) in both C57BL/6JN 
and B6D2F1 mice. 

Microbiota Cecum Colon 

  C57BL/6JN B6D2F1 C57BL/6JN B6D2F1 

Species 

Mucispirillum schaedleri ↓ NC ↓ NC 

Ruminococcus gnavus ↓ NC NC NC 

Bacteroides acidifaciens* ↑ ↑ ↑ NC 

Genus 

Bacteroides* ↑ ↑ ↑ ↑ 

Coprococcus NC NC ↑ NC 

Dehalobacterium NC ↓ ↑ NC 

Lactobacillus NC ↑ NC NC 

Oscillospira ↓ ↓ ↓ NC 

Parabacteroides ↓ ↓ ↓ ↑ 

Ruminococcus ↓ ↓ ↓ ↓ 

Turicibacter NC NC NC NC 

rc4-4 NC ↓ ↑ ↓ 

Family 

Erysipelotrichaceae NC ↓ NC ↓ 

Lachnospiraceae NC ↓ NC NC 

Ruminococcaceae NC NC NC NC 

S24-7* ↑ ↑ ↑ ↑ 

Mogibacteriaceae ↓ ↑ ND ↑ 

F16* ↑ ↑ ↑ ↑ 

Rikenellaceae* ↑ ↑ ↑ ↑ 

Order 

Clostridiales NC NC ↓ ↑ 

RF39 ↓ NC NC NC 

The data are taken from Tables 1S, 2S, and 3S in the supplement. For the C57BL/6JN mice: ↑indicates 
microbes that showed a decrease in abundance with age but was significantly increased by CR in old mice 
and ↓ indicates microbes that increased in abundance with age and was significantly reduced by CR in old 
mice.  In B6D2F1 mice: ↑indicates microbes that showed significant increase in abundance by CR in old 
mice and ↓ indicates microbes that showed significant decrease in abundance by CR in old mice. NC = No 
Significant Change. Microbes with * were found unchanged with age in C57BL/6JN mice but were altered 
by CR in both C57BL/6JN and B6D2F1 old mice.  

 

Supplemenatry Table 5. Levels of fecal metabolites from C57BL/6 and B6D2F1 mice fed ad libitum (AL) or caloric 
restriction (CR). 
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Supplemenatry Table 6. List of the top 20 transcripts that show a significant [P (Corr) <= 0.05] and 2-fold change 
with age or CR in C57BL/6 mice. 

Ensembl ID 
Entrez ID Log FC FC (abs) Regulation Gene symbol 

Transcripts that change with age (Old AL vs Adult AL) in C57BL/6 mice 

ENSMUSG00000079260 100504715 5.939521 61.37254 up Tmppe 

ENSMUSG00000020826 18126 5.692607 51.71844 up Nos2 

ENSMUSG00000079494 69049 4.578009 23.8846 up Nat8f5 

ENSMUSG00000030004 68396 4.480648 22.32593 up Nat8 

ENSMUSG00000044988 83428 4.337706 20.21992 up Ucn3 

ENSMUSG00000051262 93674 4.168231 17.97888 up Nat8f3 

ENSMUSG00000035394 74453 3.714172 13.12433 up Cfap53 

ENSMUSG00000025194 100038628 3.380169 10.41195 up Gm10768 

ENSMUSG00000087361 68400 3.302278 9.864719 up 0610043K17Rik 

ENSMUSG00000031302 245537 3.136771 8.795529 up Nlgn3 

ENSMUSG00000002265 18616 -4.84128 28.66614 down Peg3 

ENSMUSG00000054423 27062 -4.61523 24.5088 down Cadps 

ENSMUSG00000055193 317652 -4.57431 23.82348 down Klk15 

ENSMUSG00000025991 227231 -4.55286 23.47186 down Cps1 

ENSMUSG00000031430 78789 -3.95537 15.51261 down Vsig1 

ENSMUSG00000055567 329178 -3.80721 13.99862 down Unc80 

ENSMUSG00000027674 58869 -3.75772 13.52654 down Pex5l 

ENSMUSG00000031292 382253 -3.7395 13.35675 down Cdkl5 

ENSMUSG00000074796 269356 -3.70428 13.03465 down Slc4a11 

ENSMUSG00000009378 240638 -3.61335 12.23844 down Slc16a12 

Transcripts that change with CR (Adult CR vs Adult AL) in C57BL/6 mice 

ENSMUSG00000020826 18126 2.707298 6.530971 up Nos2 

ENSMUSG00000013611 66696 2.399487 5.276156 up Snx31 

ENSMUSG00000031538 18791 2.322075 5.00051 up Plat 

ENSMUSG00000061615 319172 2.292758 4.899918 up Hist1h2ab 

ENSMUSG00000033676 14402 2.282655 4.865725 up Gabrb3 

ENSMUSG00000044988 83428 2.013193 4.036746 up Ucn3 

ENSMUSG00000108218 257871 1.958138 3.8856 up Olfr1372-ps1 

ENSMUSG00000015702 71790 1.919249 3.782262 up Anxa9 

ENSMUSG00000114442 100038627 1.817609 3.524965 up F630042J09Rik 

ENSMUSG00000051262 93674 1.812597 3.512741 up Nat8f3 

ENSMUSG00000074796 269356 -3.10644 8.612539 down Slc4a11 

ENSMUSG00000055193 317652 -2.47794 5.571014 down Klk15 

ENSMUSG00000043165 16939 -2.25796 4.783151 down Lor 

ENSMUSG00000030205 93746 -2.1144 4.330094 down Gprc5d 

ENSMUSG00000031430 78789 -1.92479 3.796819 down Vsig1 

ENSMUSG00000099003 102465626 -1.90968 3.757266 down Mir7035 

ENSMUSG00000022225 17228 -1.87459 3.666969 down Cma1 

ENSMUSG00000044083 100504221 -1.84962 3.604044 down Efcab8 

ENSMUSG00000064925 104433 -1.81453 3.517459 down Snora62 

  99169 -1.7873 3.451673 down AU015228 

Transcripts that change with CR (Old CR vs Old AL) in old C57BL/6 mice 
 

ENSMUSG00000027068 241452 3.636485 12.43629 up Dhrs9 
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ENSMUSG00000007682 13371 3.547132 11.68942 up Dio2 

ENSMUSG00000030963 22242 3.267541 9.630031 up Umod 

ENSMUSG00000030954 67133 3.209645 9.251227 up Gp2 

ENSMUSG00000078302 15229 3.118569 8.685258 up Foxd1 

ENSMUSG00000074796 269356 3.05619 8.317731 up Slc4a11 

ENSMUSG00000025991 227231 2.695655 6.478479 up Cps1 

ENSMUSG00000030205 93746 2.538617 5.810316 up Gprc5d 

ENSMUSG00000024912 14283 2.5329 5.78734 up Fosl1 

ENSMUSG00000056716 432436 2.498507 5.651002 up Gm5420 

ENSMUSG00000079260 100504715 -4.44553 21.789 down Tmppe 

ENSMUSG00000020826 18126 -4.24985 19.02536 down Nos2 

ENSMUSG00000030483 13088 -3.38368 10.43735 down Cyp2b10 

ENSMUSG00000039787 99151 -3.02324 8.129922 down Cercam 

ENSMUSG00000027209 75823 -2.65985 6.319671 down Fam227b 

ENSMUSG00000038550 229599 -2.57473 5.957578 down Ciart 

ENSMUSG00000000489 18591 -2.528 5.767729 down Pdgfb 

ENSMUSG00000044988 83428 -2.51122 5.701023 down Ucn3 

ENSMUSG00000062017 67928 -2.49858 5.651283 down Abca14 

ENSMUSG00000063171 66184 -2.45845 5.496249 down Rps4l 

The top 20 transcripts that show a significant fold change (FC) with either age or CR in adult and old C57BL/6 mice. Log Fold 
Change (Log FC) between two conditions is the difference between their respective average normalized signal values. 
Absolute FC (FC (abs)) is computed as (sign of Log FC) ×2|log FC|. 

 


