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INTRODUCTION 
 
The use of epigenome-wide association studies has 

provided a deeper insight into individual differences 

and fluctuations in DNA methylation levels in the 

human genome. Many studies have identified age-

related differentially methylated regions (DMRs) and 

sites (DMSs) that have the potential to predict 

epigenetic age in various human tissues [e.g. 1–4]. 

These studies indicated that epigenetic age is highly 
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ABSTRACT 
 

DNA methylation is known as a biomarker for age with applications in forensics. Here we describe the VISAGE 
(VISible Attributes through GEnomics) Consortium’s enhanced tool for epigenetic age estimation in somatic 
tissues. The tool is based on eight DNA methylation markers (44 CpGs), bisulfite multiplex PCR followed by 
sequencing on the MiSeq FGx platform, and three statistical prediction models for blood, buccal cells and 
bones. The model for blood is based on six CpGs from ELOVL2, MIR29B2CHG, KLF14, FHL2, TRIM59 and PDE4C, 
and predicts age with a mean absolute error (MAE) of 3.2 years, while the model for buccal cells includes five 
CpGs from PDE4C, MIR29B2CHG, ELOVL2, KLF14 and EDARADD and predicts age with MAE of 3.7 years, and the 
model for bones has six CpGs from ELOVL2, KLF14, PDE4C and ASPA and predicts age with MAE of 3.4 years. The 
VISAGE enhanced tool for age estimation in somatic tissues enables reliable collection of DNA methylation data 
from small amounts of DNA using a sensitive multiplex MPS assay that provides accurate estimation of age in 
blood, buccal swabs, and bones using the statistical model tailored to each tissue. 
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correlated with chronological age but have also revealed 

differences in epigenetic aging rates amongst 

individuals. The epigenetic aging rate was further 

correlated with lifespan, as well as age-related traits and 

diseases [5–8]. Although the potential of epigenetic age 

prediction in biomedical sciences needs further 

investigation, one promising application is found in 

forensics. 

 

DNA-based age prediction in forensic applications can 

be used for intelligence purposes to gain information 

from unknown individuals who have left their DNA at a 

crime scene or whose remains are subjected to genetic 

identification. Perpetrators, who remain unknown to the 

investigating authorities from their forensic DNA 

profiles, cannot be identified with standard DNA 

profiling techniques. In recent years, forensic DNA 

phenotyping has emerged as an approach that can obtain 

information of an unknown crime scene sample donor 

on their appearance and bio-geographic ancestry from 

crime scene DNA [9]. This allows for focused police 

investigations to help characterize unknown 

perpetrators, where estimating age from crime scene 

DNA would also be highly informative. Age is an 

important phenotypic feature that manifests itself 

through a set of visible attributes that are difficult to 

hide or modify, and therefore can be very effective in 

narrowing down the number of potential suspects in the 

context of forensic DNA phenotyping. In particular, 

aging is reflected in several features of human visible 

characteristics like hair greying, hair loss, facial 

wrinkles and other signs of aging skin [10]. Thus, 

reliable DNA-based prediction of appearance traits as a 

forensic intelligence tool is ideally accompanied with 

age estimation. 

 

A number of methods that use DNA methylation 

markers to predict age have been reported. Such 

methods can be classified into two main categories 

according to the number of CpG sites included. Large 

scale methods incorporate hundreds of loci [2, 3, 5, 11] 

and require DNA microarray technology to collect the 

data necessary for using predictive algorithms. Since 

forensic genetics is very demanding in terms of the 

sensitivity of the methods applied, smaller sets of 

markers that can be analyzed using lower DNA input 

methods are more suitable. Most of the epigenetic age 

prediction methods proposed in the forensic field have 

been designed to predict age in blood. Weidner et al. 

(2014) developed a 3-CpG model involving genes 

ASPA, ITGA2B and PDE4C, and using pyrosequencing 

technology that allowed age estimation with a mean 

absolute error (MAE) of 4.12 years. Several smaller age 
predictive tests were then proposed in forensics [12, 

13]. The test developed by Zbieć-Piekarska offered a set 

of markers suitable to predict age from blood in 

Europeans and Asians [14]. The method involved 

analysis of five DMSs in ELOVL2, TRIM59, 

C1orf132/MIR29B2CHG, KLF14 and FHL2, that 

provided prediction accuracy in blood with a MAE of 

3.7 and 4.2 years in Polish and Korean populations, 

respectively [12, 14]. Importantly, these markers also 

showed similar accuracy for age prediction in saliva 

(MAE = 3.6 years) [15] and buccal swabs (MAE = 4.3 

years) [15]. Moreover, some of these markers also 

showed a correlation with age in bones and teeth [16–

18]. Blood (especially bloodstains), buccal swabs, and 

skeletal remains are commonly analyzed in forensic 

laboratories for human identification. Age estimation 

methods developed for these tissues may provide 

additional information to assist with the identification 

process. The VISAGE consortium has implemented 

these five markers in a basic tool for sensitive multiplex 

PCR amplification of bisulfite converted DNA followed 

by a massively parallel sequencing (MPS) on a MiSeq 

FGx instrument [19]. Indeed, due to the quantitative 

character of DNA methylation variation and the well-

known method-to-method bias of DNA methylation 

analysis, predictive models based on data generated 

with one method, including public datasets based on 

DNA methylation microarrays [12, 15] cannot be easily 

adopted to interpret DNA methylation data generated 

with another method. Methylation analysis methods 

widely vary in forensic use and have hampered 

comparisons of the efficiency of qPCR [20], SNaPshot 

[21] and MPS [22]. 

 

MPS offers a universal solution to DNA variation 

analysis that can be applied to study DMSs as well as 

the established variation of single nucleotide 

polymorphism (SNPs) and short tandem repeats (STRs) 

[23]. Differences exist between MPS analysis of both 

marker types since the completely quantitative nature of 

DMS analysis contrasts with the mainly qualitative 

nature of SNP and STR analysis, so the MPS multiplex 

capacity is markedly lower for DMS analysis compared 

to SNP and STR analysis. Genotyping of bisulfite-

converted DNA has become the standard for DNA 

methylation analysis. Although the design of targeted 

PCR-based MPS tests is difficult to apply to bisulfite-

converted DNA, small scale multiplexing is possible 

and this could be a solution to the problem of measuring 

DNA methylation in forensic genetic tests, offering the 

right balance between sensitivity, throughput and 

reliability. The forensic community has made the first 

steps towards implementation of MPS for DNA 

methylation analysis [24–26]. 

 

In this study, we have advanced the development of 
epigenetic age estimation in forensics and present the 

VISAGE enhanced tool for age estimation of DNA 

from somatic tissues, combining eight age-informative 



 

www.aging-us.com 6461 AGING 

DNA methylation markers into a bisulfite multiplex 

PCR for simultaneous targeted MPS and three new 

statistical models to predict age in blood, buccal cells 

and bones. 

 

RESULTS 
 

Assay development and optimization 

 

Eight age-informative DNA methylation markers 

containing 44 CpG sites (Supplementary Table 1) were 

selected from the literature based on their reported age 

correlation in different somatic tissues such as blood, 

buccal cells and bones [11, 12, 27–31], and were 

successfully combined into one multiplex PCR assay 

for bisulfite-converted DNA. Five of these selected 

markers were included in the previously described 

VISAGE basic tool for estimating age from blood [19]. 

Primer pairs targeting three newly selected markers, 

EDARADD, PDE4C and ASPA were added sequentially 

to the multiplex assay of the VISAGE basic age tool 

[19] to monitor the effect of each added marker 

individually and to finally achieve a functioning 

multiplex for all eight markers (Table 1). 

 

The design was first tested with artificially methylated 

DNA standards (N = 10) at an optimum input DNA 

amount for bisulfite conversion of 200 ng using the 

MiSeq Reagent Kit v2. Sequence read depth at all 44 

CpGs covered by the primer design of the eight DNA 

methylation markers exceeded the minimum of 1,000 

reads (mean = 42,012.1 ± 21,282.7 paired reads) set for 

accurate methylation quantification [32]. Measured 

methylation values of the differentially methylated 

DNA standards showed robust quantification with an 

average difference between duplicates of 1.3% ± 2.1% 

(one CpG per marker; Supplementary Figure 1). As 

expected from the lower PCR product yields for 

PDE4C, CpG positions located in the target sequence of 

this marker produced low read depths (mean = 3,386.3 

± 1,630.4 paired reads) compared to the other markers. 

Figure 1A illustrates normalized read depth of one CpG 

site per marker, clearly indicating the lower sequence 

output of PDE4C C5. Furthermore, the read depths of 

the CpGs located in PDE4C (7 CpGs) and ELOVL2 (9 

CpGs) were lower for positions that were not covered 

during sequencing from both ends (Figure 1C, 1D). This 

results from the read length of the used sequencing kit 

(2 x 150 cycles), which is not sufficient to cover the 

whole targeted region of the two longest amplicons 

from both directions (ELOVL2: 267 bp and PDE4C: 

215 bp). 

 

Aiming at a balanced PCR multiplex, the concentrations 

of the PDE4C primers were increased equimolarly and 

more balanced amplicon yields were obtained at an 

assay concentration of 1 µM (Supplementary Figure 2). 

The altered PCR multiplex was tested using the MiSeq 

Reagent Kit v3 and methylated DNA standards (N = 

12). Read depth of PDE4C CpGs was increased to 

23,005.7 ± 4,659.5 paired reads. When comparing 

normalized read depths to earlier generated data, the 

performance of PDE4C was enhanced, but a fully 

balanced sequence read distribution was not achieved. 

This was observed in the relative decrease of read depth 

at MIR29B2CHG (Figure 1A). However, on average the 

v3 kit led to an approximately doubled sample coverage 

(v3: 701,330.8 ± 147,289.9 versus v2: 348,679.2 ± 

62,647.1 paired reads) and an increase in mean read 

depth of 45,109.4 paired reads (overall mean = 87,121.5 

± 54,854.7, Figure 1B). The number of reads at target 

CpG positions on MIR29B2CHG still yielded a mean of 

20,2435 ± 8,741 paired reads. Additionally, the longer 

read length of the v3 kit enabled constant read depths at 

all the CpGs of ELOVL2 and PDE4C across the 

targeted sequences (Figure 1C, 1D). The sequence 

quality control showed that all 44 target CpG positions 

had a misincorporation rate below 0.4% (mean = 

0.04%) and the calculated bisulfite conversion 

efficiency exceeded 99.6% for all samples. 

 

Evaluation of MPS assay performance 

 

Seven differentially methylated DNA standards were 

assessed with the final optimized assay using the v3 kit. 

The methylation quantification of all 44 CpGs versus 

the expected methylation is shown in Figure 2. 

Measured methylation levels at most CpGs were close 

to the line of identity, indicating good overall 

concordance between experimentally determined and 

actual methylation levels. CpG sites at MIR29B2CHG 
and EDARADD showed an overestimation of 

methylation levels, while CpGs at ELOVL2 exhibited a 

bias towards unmethylated Cs. The methylation 

quantification obtained appeared to be robust with an 

average difference between duplicates of 1.9% ± 1.2% 

across markers and methylation levels ranging from 5% 

to 75% (Supplementary Table 2). However, two outliers 

were detected: both the 50% methylated sample at 

PDE4C positions and the 25% methylated sample at 

MIR29B2CHG showed higher variation (12% and 7.5%, 

respectively) between duplicates. Potential variability 

between the target CpG sites throughout the same 

amplicon was explored by calculating the maximum 

difference in methylation at one marker and sample 

(excluding ASPA, N = 1). Overall, these differences 

were low with a mean of 1.8% ± 2% across markers and 

ratios. The highest variation was detected at KLF14 

with 3.9% ± 2.4% when comparing amplicons, which at 
the same time showed the most stable methylation 

quantification (mean difference between duplicates = 

0.8% ± 1%). Further evaluation of DNA standards at 
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Table 1. Primer sequences and concentrations of the final PCR multiplex. 

Marker Primer sequence (5'-3') 
CpGs 

[N] 

Amplicon 

size [bp] 
Amp. position (GRCh38) Strand 

Final 

conc. 

[µM] 

Design 

FHL2 
fwd: TGTTTTTAGGGTTTTGGGAGTATAG 1 

167 Chr2:105399250-105399416 + 0.2 [12] 
rev: ACACCTCCTAAAACTTCTCCAATCTCC 1 

KLF14 
fwd: GGTTTTAGGTTAAGTTATGTTTAATAGT 1 

128 Chr7:130734307-130734434 + 0.2 [12] a 
rev: ACTACTACAACCCAAAAATTCC 0 

TRIM59 
fwd: TATAGGTGGTTTGGGGGAGAG 1 

141 Chr3:160450140-160450280 + 0.2 [12] 
rev: AAAAAACACTACCCTCCACAACATAAC 1 

ELOVL2 
fwd: AGGGGAGTAGGGTAAGTGAG 1 

267 Chr6:11044500-11044766 + 0.2 [28] 
rev: AAACCCAACTATAAACAAAACCAA 0 

MIR29B2CHG 
fwd: GTAAATATATAAGTGGGGGAAGAAGGG 1 

146 Chr1:207823605-207823750 + 0.4 [12] 
rev: TTAATAAAACCAAATTCTAAAACATTC 0 

EDARADD 
fwd:TTGGTGATTAGGAGTTTTAGTGTTTT 0 

193 Chr1:236394309-236394501 - 0.4 [28] 
rev: CCACCTACAAATTCCCCAAA 0 

ASPA 
fwd: TTTTGGAGGAATTTATGGGAA 0 

108 Chr17:3476207-3476314 + 0.4 present study 
rev: ATAAATAATTTTACCTCCAACCCTA 0 

PDE4C 
fwd: TTGTAGGAGGAAAAGGGTTAG 1 

215 Chr19:18232953-18233167 + 0.4 or 1b present study 
rev: AAAACAAAAACTTACAACAAATTAAA 0 

aforward primer was adapted to match GRCh38. 
bassay design 1: 0.4 µM; assay design 2: 1 µM. 

different methylation levels showed that the highest 

differences were observed at 100% expected 

methylation with a mean of 3.8% ± 2.6%. 

 

Next, the 50% methylated DNA standard was used to 

test the sensitivity of the MPS assay with 200 ng, 100 

ng, 50 ng, 20 ng, 10 ng and 1 ng input DNA in duplicate 

reactions. Although sample coverage decreased from 

200 ng (mean = 374,254.5 paired reads) to 1 ng (mean = 

280,105 paired reads), the lower input samples still 

showed high sequencing coverage values. One outlier at 

10 ng was detected with lower coverage (76,464 paired 

reads) for one of the duplicates. This sample showed 

very low library quantification results (2.6 nM) in 

comparison to the median concentration of the 

sensitivity dilution series’ libraries (319.7 nM) and a 

read depth below the 1,000 reads threshold for the 

MIR29B2CHG amplicon. Except for one further sample 

at 1 ng DNA input for PDE4C, all other replicates 

showed read depths above the 1,000 reads threshold at 

the 44 targeted CpG sites. Furthermore, base 

misincorporation rates remained below 0.6% down to 

10 ng DNA input and below 1.3% for 1 ng samples. 

Bisulfite conversion efficiency exceeded 99.4% for all 

samples. 

 

Differences of mean methylation obtained for duplicates 

from 100 ng to 1 ng DNA input at all 44 CpGs were 

compared to the mean methylation level obtained for 

the 200 ng reference sample. The average differences 

and standard deviations per marker are shown in Figure 

3. At 100 ng and 50 ng DNA inputs, methylation levels 

were close to those of the reference with 1.6% ± 1.1% 

and 1.7% ± 1.4% differences across the eight markers, 

respectively. Variability increased slightly from 50 ng 

to 20 ng (3.4% ± 3.9%) and from 20 ng to 10 ng (4.4% 

± 2.7%). In particular, PDE4C showed higher variation 

at 10 ng with a mean difference of 11% to the optimum 

DNA input. A more detailed analysis of the 10 ng 

replicates showed an increased difference between 

duplicates (median = 6.0%) compared to the higher 

DNA input samples of the sensitivity study (median 

difference = 1.5% at 200 ng to 3.0% at 20 ng). Higher 

deviations from methylation values obtained for the 

reference DNA input were observed for the low 

quantity 10 ng sample (2.6 nM library) possibly 

introducing greater variation. Additionally, higher base 

misincorporation rates were observed within the 

PDE4C amplicon sequence of this duplicate 

(Supplementary Figure 3B). At 1 ng DNA input, 

methylation quantification became unreliable with 

extensive deviation from the values of the reference 

DNA input (14.0% ± 20.5%). 

 

Development of prediction model for blood, buccal 

cells and bones 

 

DNA methylation data generated with the MPS tool in 

blood (N = 160), buccal swab (N = 160) and bone (N = 

161) DNA samples were randomly divided into a 

training set (N = 112 each) and testing set (N = 48 blood 

and buccal cells and 49 bones) by retaining comparable 

distributions of age and sex between both sets as far as 

possible (Table 2). The correlation of DNAm in 
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particular CpG sites with age in blood, buccal cells and 

bones was investigated in the appropriate training sets 

using univariate linear regression analysis. All 44 CpG 

sites at the eight DNA methylation markers covered by 

the MPS tool showed a statistically significant 

correlation with age in blood (Supplementary Table 1). 

For 26 CpG sites (59%) located in ELOVL2, FHL2, 

TRIM59 and PDE4C very high β values were observed 

(>0.9) with single CpGs explaining R2 > 80% of the 

variation observed in age in blood samples (>90% for 8 

CpG sites within ELOVL2 and FHL2). The highest 

statistical significance was noted for ELOVL2 C9 (β = 

0.963; P-value = 9.724×10-65; R2 = 0.928). As with 

blood, all cytosines also showed significant correlation 

with age in buccal cells, but only in 13 of the sites 

(30%) were β values > 0.9 recorded. The highest 

significance was achieved for PDE4C C5 (β = 0.965; P-

value = 3.648×10-65); by itself explaining R2 = 93.1% of 

the variation observed in age in buccal cells 

(Supplementary Table 1). In the case of bones, 

significant correlation with age was observed for all 

CpGs except C2 and C3 from MIR29B2CHG. The 

position C1 in MIR29B2CHG was weakly but 

significantly correlated with age (β = -0.24; P-value = 

0.011). High significance and effect size with β > 0.8 

were noted for TRIM59 C3-C8 (P-value: 4.899×10-34; 

1.699×10-26; 4.431×10-27; 5.537×10-30; 4.2×10-32; 

8.743×10-34), KLF14 C3 (P-value: 1.68×10-33), ELOVL2 
C2 (2.021×10-33), FHL2 C5 (2.307×10-26) and C7 

(6.591×10-31), as well as PDE4C C4 (2.492×10-29), C6 

(6.886×10-30) and C7 (2.355×10-26). Since DNA 

methylation-age correlations may show non-linear 

patterns, various types of data transformation were also 

tested. Curve estimation analysis indicated a non-linear 

pattern for CpG sites within ELOVL2 with power 

transformation best fitting the DNA methylation data 

for blood and buccal cells and thus power transformed 

data were used in modelling (Figure 4). 

 

 
 

Figure 1. (A) Normalized read depth was calculated by selecting one CpG site per marker to assess for read distribution between amplicons. 

The dashed line indicates the expected value per marker (0.125) in case of a perfectly balanced distribution. (B) Read depth at one CpG site 
per marker. (C) Read depth at all CpGs located in the target sequence of PDE4C and (D) ELOVL2. All boxplots compare DNA methylation 
standards processed with the first assay design using the MiSeq reagent kit v2 (N = 10) and the re-optimized assay (design 2) using the MiSeq 
reagent kit v3 (N = 12). 
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DNA methylation data generated with the MPS tool for 

112 blood samples, 112 buccal cell samples and 112 

bone samples were next used to train the three 

respective models. Because of the lack of the data in 

PDE4C C5 or ELOVL2 C2, two samples from the 

training sets were rejected and therefore the final 

number of samples used to train the models for buccal 

cells and bones was 111. The multivariate stepwise 

 

 
 

Figure 2. Methylation quantifications obtained for duplicates (indicated by shape) were calculated for all 44 target CpG sites 
(ASPA: 1 CpG, EDDARAD: 2 CpGs, ELOVL2: 9 CpGs, FHL2: 10 CpGs, KLF14: 4 CpGs, MIR29B2CHG: 3 CpGs, PDE4C: 7 CpGs, 
TRIM59: 8 CpGs). The dashed line represents the line of identity (intercept = 0, slope = 1). 

 

 
 

Figure 3. Difference to 200 ng of sensitivity dilutions at 50% methylation level: The average difference per marker was 
calculated from mean obtained methylation values (N = 2) at all 44 target CpG sites. The error bars represent the standard 

deviation at markers targeting more than one CpG (EDARDD 2 CpGs, ELOVL2 9 CpGs, FHL2 10 CpGs, KLF14 4 CpGs, MIR29B2CHG 3 CpGs, 
PDE4C 7 CpGs, TRIM59 8 CpGs). Due to the high difference of PDE4C at 1 ng (61.9%), the value is excluded from the plot. 
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Table 2. Samples used in multivariable linear regression analysis and prediction modelling. 

DNA source 
Sample 

number/sex 
Mean age 

Training set  Testing set 

Sample number Age range  Sample number Age range 

Blood 160/80:80 40.2±22.7 112 1-75  48 1-75 

Buccal cells 160/80:80 40.5±22.8 112a 2-80  48 2-80 

Bones 161/129:32 46.1±14.8 112a 19-93  49b 22-75 

abecause of the missing data for PDE4C C5 or ELOVL2 C2 one sample from the buccal cell training set and one sample from 
the bone training set were excluded and therefore the final number of samples to train the models was 111. 
bthree samples had missing data in ELOVL2 C2. 

linear regression method was applied to select markers 

from the available set of 44 CpGs from eight genes and 

to train the final models. The data for the selected CpG 

positions in ELOVL2 were power transformed before 

prediction analysis and this treatment proved to improve 

age prediction for DNA from blood and buccal cells. 

The analysis of blood samples showed that the optimal 

age model for blood centered on 6 CpG sites from six 

genes, ELOVL2, MIR29B2CHG, KLF14, TRIM59, 

FHL2 and PDE4C (Table 3). Effect sizes expressed by 

β values were different and except for marker 

MIR29B2CHG C1 (β = -0.234), were positively 

correlated with age. The largest effect size in the model 

was attributed to the power transformed ELOVL2 C7 

position (β = 0.328; P-value = 3.24×10-7) and the 

smallest one to TRIM59 C8 (β = 0.096; P-value = 

4.48×10-4). This model explains 98.2% of age variation 

(R2) observed in the training set and predicts age with 

an accuracy of MAE = 2.2 years in the training set and 

MAE = 3.2 years in the testing set (Figure 5 and Table 

4). Table 5 outlines the optimal model for buccal cells 

comprising 5 CpG sites from 5 genes, PDE4C, 

MIR29B2CHG, ELOVL2, KLF14 and EDARADD. The 

largest β value was observed for marker PDE4C C5 (β 

= 0.351; P-value = 1.29×10-7) and this position was 

found to explain most of the age variation explained by 

the model (R2 = 93.1%). Power transformed ELOVL2 

C9 had the second largest effect (β = 0.244; P-value = 

4.81×10-5). Negative and weak correlation was observed 

for a CpG in EDARADD not included in the blood 

model (β = -0.098). The final model explains R2 = 

97.5% of variation observed in the training set and 

predicts age with an accuracy of MAE = 2.5 years in the 

training set and MAE = 3.7 years in the testing set 

(Figure 5 and Table 4). 

 

Table 6 shows the optimal model for bones comprising 

six CpGs from four genes, ELOVL2, PDE4C, KLF14 

 

 
 

Figure 4. Curve estimation for DNA methylation data at ELOVL2 C7 in blood and ELOVL2 C9 in buccal cells. 
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Table 3. Characteristics of the markers in age predictive model for blood. 

CpG  CpG_ID 
GRCh38 chromosome 

position 

Standardized 

coefficient β 
t statistic P-value Adjusted R2 

ELOVL2 C7a - chr6:11044634 0.328 5.458 3.24×10-7 0.952 

PDE4C C5 - chr19: 18233127 0.125 2.785 0.006 0.962 

MIR29B2CHG C1 - chr1:207823681 -0.234 -8.555 1.05×10-13 0.974 

KLF14 C4 - chr7:130734375 0.111 4.751 6.46×10-6 0.977 

TRIM59 C8 - chr3:160450202 0.096 3.624 4.48×10-4 0.980 

FHL2 C1 cg06639320 chr2:105399282 0.169 3.419 0.001 0.982 

apower transformation for the DNA methylation data for ELOVL2 was applied (y = 0.002*x^2.366) before multiple linear 
regression analysis. 

and ASPA. The largest β value was observed for marker 

KLF14 C3 (β = 0.498; P-value = 2.002×10-16) and the 

smallest positive effect size in the model was attributed 

to marker ELOVL2 C7 (β = 0.20). The developed 

prediction model explains R2 = 92.4% of variation in 

age observed in the training set and predicts age with an 

accuracy of MAE = 3.3 in the training set and MAE = 

3.4 in the testing set (Figure 5 and Table 4). 

 

Our data show an increase in the MAE value with 

increased age of the sample donors for blood and 

buccal cell models. The highest MAE value was 

observed in the 3rd (age 41-60 years) and 4th (>60 

years) age categories (Table 4). When age was 

analyzed as a continuous variable it was significantly 

correlated with MAE in both tissue types (Pearson 

correlation P-value of 0.001 and 3.86×10-4 for blood 

training and testing sets, respectively and P-values of 

0.011 and 2.52×10-4 for buccal cells training and 

testing sets, respectively). This effect was not seen in 

bones, neither in the training (P-value = 0.122) nor the 

testing set (P-value = 0.070). 

 

 
 

Figure 5. Predicted vs. chronological age in the blood, bones and buccal cells training and testing sets. 



 

www.aging-us.com 6467 AGING 

Table 4. MAE in different age categories. 

Age category 
MAE in blood 

 
MAE in buccal cells 

 
MAE in bones 

Training set Testing set Training set Testing set Training set Testing set 

1  1.8 (N=28) 2.2 (N=12)  1.7 (N=28) 1.5 (N=12)  3.0 (N=2)b -b 

2 1.5 (N=28) 1.6 (N=12)  2.0 (N=27) 2.8 (N=12)  3.2 (N=42) 2.8 (N=17) 

3 2.7(N=28) 3.5 (N=12)  3.4 (N=28) 5.7 (N=12)  3.3 (N=47) 3.7 (N=21) 

4 3.0 (N=28) 5.5 (N=12)  3.1 (N=28) 4.8 (N=12)  3.3 (N=20) 3.9 (N=8) 

Overall 2.2 (N=112) 3.2 (N=48)  2.5 (N=111) 3.7 (N=48)a  3.3 (N=111)c 3.4 (N=46)c 

Age categories: age category 1: 1–20; age category 2: 21-40; age category 3: 41–60; age category 4: >60. 
aone sample had missing data in PDE4C C5. 
bthere were only two bone samples falling into the age category of 1-20 (both included in the training set) therefore 
calculation of MAE for the testing set was impossible and the value of MAE designated for the training set should be treated 
with caution. 
cone sample from the training set and three from the testing set had missing data in ELOVL2 C2. 

Table 5. Characteristics of the markers in age predictive model for buccal cells. 

CpG  CpG_ID 
GRCh38 chromosome 

position 

Standardized 

coefficient β 
t statistic P-value Adjusted R2 

PDE4C C5 - chr19: 18233127 0.351 5.671 1.29×10-7 0.931 

MIR29B2CHG C3 - chr1:207823672 -0.232 -9.472 1.02×10-15 0.955 

ELOVL2 C9a - chr6:11044628 0.244 4.243 4.81×10-5 0.966 

KLF14 C1 cg14361627 chr7:130734355 0.17 5.441 3.54×10-7 0.972 

EDARADD C1 cg09809672 chr1:236394383 -0.098 -3.303 0.001 0.975 

apower transformation for the DNA methylation data for ELOVL2 was applied (y = 0.055*x^1.673) before multiple linear 
regression analysis. 

Table 6. Characteristics of the markers in age predictive model for bones. 

CpG CpG_ID 
GRCh38 chromosome 

position 

Standardized 

coefficient β 
t statistic P-value Adjusted R2 

ELOVL2 C2 cg24724428 chr6:11044655 -0.246 -2.758 0.007 0.735 

ELOVL2 C7 - chr6:11044634 0.200 2.606 0.010 0.924 

KLF14 C3 - chr7:130734372 0.498 9.788 2.002×10-16 0.850 

PDE4C C6 cg01481989 chr19:18233131 0.374 4.096 8.349×10-5 0.912 

PDE4C C4 - chr19:18233105 0.245 2.938 0.004 0.916 

ASPA C1 cg02228185 chr17:3476273 -0.142 -3.467 0.001 0.920 

 

Age prediction in blood from methylation data 

obtained with the VISAGE basic tool 

 

To enable age prediction from methylation data 

collected with the previously reported VISAGE basic 

tool for age estimation from blood, comprising a 5-

plex MPS assay [19], we re-trained our 112-sample 

containing blood training set for the five CpGs based 

on data generated with the VISAGE enhanced tool. 

This model predicts age in the training set with an 

accuracy of MAE = 2.7 and in the testing set with 

MAE = 3.8. The lower accuracy achieved with the 5-

markler model compared to the full 6-marker model 

(see above) can be explained by the addition of 

PDE4C in the VISAGE enhanced model. Moreover, 

when performing age prediction modelling using data 

for these five markers obtained from buccal cells and 

bones, we achieved higher errors for buccal cells with 

MAE = 3.9 and 4.3 for training and testing sets, 

respectively, and bones with MAE = 4.7 and 4.0 years 

for training and testing sets, respectively. Notably, the 

buccal and bone models based on the eight DNA 

methylation markers of the VISAGE enhanced tool 

achieved more accurate age prediction than those 

based on the five markers in the VISAGE basic tool 

for blood, lacking the three additional markers, 

covering all three somatic tissues in the VISAGE 

enhanced tool. 
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To check the compatibility of the two VISAGE age 

tools, the VISAGE basic tool for estimating age from 

blood and the VISAGE enhanced tool for estimating 

age from somatic tissues including blood, buccal cells 

and bones, methylation results obtained for the seven 

artificially methylated DNA standards generated with 

the 8-plex assay of the VISAGE enhanced tool were 

compared to those produced with the 5-plex assay of the 

VISAGE basic tool [19]. Both assays showed very 

similar amplification bias for DNA methylation 

quantifications at the overlapping five CpGs 

(Supplementary Figure 4A). When subtracting 

methylation levels obtained with the VISAGE 8-plex 

assay from values obtained for the 5-plex assay, the 5-

plex assay of the VISAGE basic tool appeared to 

produce slightly higher methylation values at the five 

relevant CpG sites (mean differences = 2.4%) than the 

8-plex assay of the VISAGE enhanced tool did. The 

absolute differences between methylation 

quantifications at the same expected DNA methylation 

level were on average 3.0% ± 2.7% across the seven 

DNA standards and markers for the two assays 

(Supplementary Figure 4B). To explore whether these 

differences were significantly different, observed 

methylation values with the 8-plex enhanced tool assay 

were plotted against those of the 5-plex basic tool 

(Supplementary Figure 5). Regression models showed 

no statistically significant performance differences 

between the two assays (Bonferroni corrected P-values: 

ELOVL2 C7: 0.681, KLF14 C1: 1.000, MIR29B2CHG 

C1: 1.000, FHL2 C2: 0.756, TRIM59 C7: 1.000). These 

results indicate that the blood model developed here for 

the five CpGs in the VISAGE basic tool for age 

estimation from blood [19] can be used for estimating 

age in blood, based on data generated with the VISAGE 

basic tool. However, due to the lower errors achieved 

with the blood model based on the 8-plex data, use of 

the VISAGE enhanced tool, including 8-plex data and 

the 6-marker predictive model, is advised to estimate 

age from blood. 

 

Accuracy of developed predictive models in 

predicting age in various human tissues 

 

To assess the performance of the developed prediction 

models in predicting age in human tissues other than 

blood, buccal cells or bones, we also applied the 

VISAGE enhanced age tool to 24 DNA samples 

collected postmortem from various tissues of 22 males 

and 2 females ranging in age from 21 to 73 years at the 

time of death (mean age = 41.0 ± 12.5). Table 7 

summarizes the results of these experiments. This 

limited dataset confirmed that the developed blood 
model can accurately predict age in blood samples of 

deceased individuals (MAE = 3.1). However, the 

prediction accuracy obtained with postmortem cartilage 

and muscle samples estimated with the models 

individually developed for blood, buccal cells and bones 

was unsatisfactory (Table 7). Univariate association 

testing conducted using linear regression in this small 

set of 24 samples showed positive signals of association 

for TRIM59, FHL2, MIR29B2CHG, ELOVL2 and 

PDE4C in muscle and cartilage (data not shown). 

Although we found our eight DNA methylation markers 

were associated with age in the vast majority of CpG 

sites in different tissue types, detailed analysis of the 

DNA methylation-age correlation for particular CpG 

sites showed a different pattern of DNA methylation 

changes in different tissues (Supplementary Figure 6), 

and this underlies the high predictive error observed for 

muscle and cartilage when using the developed models. 

 

DISCUSSION 
 

Although the use of hundreds of CpGs for age 

estimation delivers small prediction errors [2, 7], such 

marker densities are currently impossible in forensic 

applications due to the lack of suitably sensitive DNA 

technology. Smaller sets of DNA methylation age 

markers that can be analyzed with forensically suitable 

technology typically predict age in different tissues with 

different accuracies. To develop a universal epigenetic 

age prediction tool for forensic applications, the 

VISAGE enhanced tool for age estimation from somatic 

tissues represents a significant step forward in age 

estimation for criminal investigations. This tool 

includes a MPS-based assay for eight DNA methylation 

markers (44 CpGs) and three different statistical models 

appropriate for blood, buccal cells and bones as DNA 

sources. The eight markers previously demonstrated age 

correlation in various forensically relevant DNA 

sources [12, 13, 15, 28, 30, 33]. The data we used here 

to train and test the prediction models were generated 

with the developed MPS tool, as method-to-method bias 

prevents the usage of datasets available from the 

literature. 

 

A crucial step in the optimization of the MPS assay of 

the VISAGE enhanced age tool was the development of 

the multiplex PCR for bisulfite converted DNA. The 

severe chemical treatment during bisulfite conversion 

not only leads to DNA degradation and loss, but also 

markedly reduces the complexity of the DNA sequence. 

Consequently, primer specificity is potentially reduced 

and the formation of primer dimers is favored [34]. 

Additionally, most targeted CpGs were located in CpG 

islands (except ASPA and EDARADD) that represent 

regions difficult to amplify. We successfully combined 

ASPA, EDARADD and PDE4C with the five markers of 

the VISAGE basic assay (ELOVL2, MIR29B2CHG, 

KLF14, FHL2, TRIM59) into an 8-plex PCR assay for 

the final VISAGE forensic MPS tool described here. 
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Table 7. Age prediction accuracy in blood, cartilage and muscle samples obtained with the developed models 
for blood, buccal cells and bones. 

DNA source N 
MAE 

Blood age model Buccal cells age model Bone age model 

Blood 24 3.1 6.5 4.9 

Cartilage 24 13.1 12.3 25.8 

Muscle 24 17.1 17.3 13.7 

 

Samples processed with the re-configured assay using 

the MiSeq Reagent Kit v3, which offers increased read 

length and is commercially available in forensic quality, 

yielded high quality sequences and high read depths for 

all eight amplicons. The observed variability between 

read depths at targeted CpGs most likely results from 

differences in primer pair efficiencies that could not be 

fully balanced by adjusting primer concentrations 

(Figure 1A, 1B). Assay performance was confirmed 

with DNA methylation standards that allowed the 

assessment of methylation quantification for robustness 

and linearity. Since the introduction of bisulfite 

conversion for DNA methylation analysis, PCR bias 

towards the unmethylated or methylated template 

molecule has been repeatedly described [35–37], 

highlighting the difficulties in achieving a completely 

methylation-independent amplification. To avoid 

accentuating such bias, mismatch primers were used for 

CpG sites within primer sequences. Although 

methylation quantification of most markers was close to 

the line of identity, we observed a bias towards 

methylated DNA templates (MIR29B2CHG and 

EDARADD) as well as an underestimation of 

methylation levels (ELOVL2). Interestingly, the 

avoidance of a CpG or the inclusion of one or two CpGs 

in the primer sequences did not appear to noticeably 

change the strength of methylation bias. The observed 

PCR bias appeared stable, with minor differences 

between duplicates (mean = 1.9% ± 1.2%), which is 

important for reliability of age prediction. The most 

challenging marker for multiplex development was 

PDE4C, for which a higher variability (4.8% ± 3.7%) 

was observed in comparison to other markers. 

Nevertheless, methylation quantification of samples 

used for predictive modelling showed that PDE4C has a 

wide DNA methylation range and a large effect size, 

which makes it a reliable marker for all three age 

prediction models. Assuming that the range of DNA 

methylation throughout a person’s lifespan determines 

the required minimum accuracy for a marker, the 

highest accuracy would be needed for KLF14. In line 

with this consideration, the methylation quantification 

at optimum DNA input for KLF14 showed the smallest 

differences between duplicates. For further analysis of 

the used DNA methylation controls, we compared 

maximum differences in methylation values obtained at 

the same target and sample. Surprisingly, the highest 

variability was observed at 100% methylation level 

(3.8% ± 2.6%) and not, as expected at 50% methylation. 

As the fully methylated DNA standards represent an 

artificial system, some variability may be inherent in the 

methylation controls. 

 

Like all quantitative methods, DNA methylation analysis 

to attempt chronological age prediction is impacted by 

stochastic effects when the DNA input amount is low 

[38]. This poses a limitation to the application of 

quantitative DNA methylation to forensic samples that 

contain only minute amounts of DNA. Furthermore, the 

DNA is not necessarily equally distributed in such 

tissues, which adds additional variation due to a sampling 

effect. Additionally, DNA loss during bisulfite 

conversion and further stochastic processes during the 

subsequent multiplex PCR step count up to this variation. 

Previous studies suggested that 20 ng to 10 ng DNA 

template used for PCR are required for a reliable 

methylation quantification [38, 39], although a higher 

sensitivity (10 ng DNA input for bisulfite conversion ~2 

ng at PCR) has recently been reported [26]. We tested a 

dilution series of the initial DNA amount used for 

bisulfite conversion to perform a first sensitivity 

evaluation of the VISAGE enhanced tool age assay. 

When comparing mean quantified DNA methylation 

levels to the optimum DNA input, we observed a robust 

quantification down to 20 ng DNA input for most 

markers. According to previous studies investigating 

DNA loss during bisulfite conversion, the DNA amount 

used for PCR would be estimated to be from 8.8 ng (45% 

DNA loss [40]) to 11.8 ng (26% DNA loss [41]), which 

is in agreement with considerations regarding low DNA 

quantities. Results of this sensitivity study clearly 

indicate that methylation quantification of 1 ng samples 

was unreliable with increased differences to the reference 

DNA input as well as an increased variability between 

targeted CpGs of the same amplicon. Additionally, 

samples at 1 ng DNA input showed CpGs that appeared 

completely methylated (e.g. at ELOVL2, PDE4C) or 

unmethylated (e.g. PDE4C), indicating an amplification 

bias towards the methylated or unmethylated DNA 

template during PCR. Overall, the results from 

development and optimization of the VISAGE enhanced 

tool for age estimation from somatic cells showed 
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promising results for future application in routine 

forensic DNA analyses. However, small differences 

between sequencing runs, may affect the final age 

prediction outcome, as recently described by Han et al. 

(2020) [42]. The study reported a shift in DNA 

methylation levels between sequencing runs that led to an 

increased MAE in an independent validation set. The 

extent of such variabilities and the impact on age 

prediction, particularly when analyzing low DNA input 

samples, needs to be further addressed before application 

in real casework. Further validation studies including 

inter-laboratory exercises will bring deeper insight into 

the assay’s robustness, reproducibility and sensitivity. 

 

The developed 8-plex MPS assay was used to collect 

DNA methylation data necessary for the development 

of the three age prediction models. The model for blood 

comprises six CpGs from ELOVL2, MIR29B2CHG, 

KLF14, FHL2, TRIM59 and PDE4C and predicts age 

with MAE of 3.2 years. As expected, ELOVL2 was the 

top ranked marker, which alone explains 95% of 

variation in this age model. Non-linear age-DNA 

methylation correlation was observed in this DMRs, in 

line with other studies [28, 43]. The correlation of DNA 

methylation in ELOVL2 with age in blood was first 

suggested by Garagnani et al. (2012) [44] and was soon 

confirmed in independent studies, making ELOVL2 the 

most important epigenetic age predictor in a range of 

fields including forensics [3, 4, 39, 45]. The five 

remaining predictors include blood markers widely 

validated in studies of different populations from 

Europe and Asia [13–15, 22, 30, 46].  

 

The model for buccal cells includes five CpG sites from 

PDE4C, ELOVL2, MIR29B2CHG, KLF14 and 

EDARADD and predicts age with a MAE of 3.7 years. 

PDE4C was the top ranked marker and alone explained 

93.1% of variation in age. Early studies suggested PDE4C 

as an age predictor in blood and saliva [27, 47] and it was 

rapidly adopted in age prediction models for blood [11, 

28]. In our study, this marker had a higher predictive 

value in buccal cells, which confirms the conclusions of 

the study of Eipel et al. (2016) [31], whose markers 

showed higher correlation with age in saliva and buccal 

cells than in blood. ELOVL2, MIR29B2CHG and KLF14 

come from the five best predictors for blood selected by 

the study of Zbieć-Piekarska [12], which had been shown 

to be suitable for predicting age in saliva and buccal cells 

in Asian populations [15]. The buccal cell tissue marker 

EDARADD, was included in the first age prediction 

algorithm developed for saliva [27] and replicated in other 

studies that investigated blood, saliva and buccal cells [28, 

48–51]. 
 

Furthermore, we present here an age prediction model 

for bones which is based on only six CpGs from four 

DMRs in ELOVL2, KLF14, PDE4C and ASPA. This 

model predicts age with a relatively small error, with a 

MAE of 3.4 years in the testing set. Age prediction 

attempts using epigenetic markers in bone material are 

rare. Prediction models reported for teeth were based 

on a relatively small number of samples and found 

ELOVL2, PDE4C, EDARADD, FHL2 and PENK to be 

useful predictors of age in teeth [16, 18, 28]. Naue et 

al. (2018) attempted to predict age in various tissues 

including bone and found DNA methylation at 

ELOVL2, KLF14 and TRIM59 to be correlated with age 

in bones. Other suggested age predictors for bones 

include DDO, F5, LDB2, NKIRAS2, RPA2 and 

ZYG11A [13]. In a recent paper Lee et al. (2020) 

reported TMEM51 and EPHA6 as new age markers for 

bones identified from Infinium MethylationEPIC 

BeadChip array data. This study also confirmed age 

correlation in bones for ELOVL2, FHL2, KLF14 and 

TRIM59 [17]. 

 

Our study shows that the eight CpGs selected for 

predicting age in somatic cells are a robust set of 

markers for developing accurate age prediction 

algorithms for DNA extracted from blood, buccal cells 

and bones. In particular, PDE4C, ELOVL2 and KLF14 

are used in all models and various combinations of just 

eight markers can predict age in the three tissues with 

effective accuracy with a MAE of 3.2 - 3.7 years. 

 

In agreement with other studies, an increased MAE in 

age predictions of older individuals was observed in 

blood and buccal cells, which can be explained by a 

combination of genetic and environmental factors 

influencing the individual rate of aging [6, 43, 52]. 

Therefore, we calculated the MAE for different age 

groups, which allows to account for the corresponding 

age category in the interpretation of real casework. In 

addition, the MAE range can be provided along with the 

predicted age (e.g. from 2.2 to 5.5 years for blood). 

 

Our study confirms the importance of ELOVL2 and 

PDE4C for epigenetic age prediction and provides 

further evidence that MIR29B2CHG (ranked 3rd in the 

blood model and 2nd in the buccal cell model), is a 

valuable age predictor in forensics. In the first two 

markers, hypermethylation with age is observed, and in 

the third hypomethylation. All three are characterized 

by a wide range of DNA methylation levels during an 

individual’s lifespan (50-70%). KLF14 is characterized 

by the lowest range of DNA methylation over a lifespan 

but this marker is consistently suitable in all three 

predictive models [21, 51, 53]. ASPA was chosen only 

for use as a bone age predictor in our study, while FHL2 
and TRIM59 were selected exclusively as blood age 

predictors, although correlation with other tissue types 

has been demonstrated for these markers. Our study 
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aimed to select a universal set of DMSs for epigenetic 

age prediction in various somatic tissues, but since the 

pattern of DNA methylation change differed in various 

cell types tested, the DNA methylation data collected 

for individual tissues had to be incorporated into 

separate training sets for tailored prediction models. In 

addition, our pilot study of postmortem samples, which 

analyzed tissues from 24 deceased persons, indicated 

the models developed did not predict cartilage and 

muscle age correctly. 

 

In summary, the study outlined here presents a complete 

tool for estimating a person’s age from DNA in forensic 

applications that deal with low amounts of DNA from 

the three forensically relevant tissue types of blood, 

buccal cells and bones. The VISAGE enhanced tool for 

age estimation in somatic tissues comprises a single 

bisulfite MPS assay targeting 44 CpGs from eight 

carefully selected DNA methylation markers and three 

separate predictive models for blood, buccal cells and 

bones. The MPS assay provided reliable and 

reproducible methylation quantifications, enabling 

accurate age prediction in samples down to a minimum 

of 20 ng of DNA. The three individual tissue models 

provide a good balance of marker number and accuracy 

given the capacity limitations of the DNA methylation 

measurement technology used. Future work could focus 

on increasing the model testing datasets to investigate 

the reliability of reported error estimates for the three 

models. It will also be useful to gauge the performance 

of the age prediction models for data produced using the 

VISAGE enhanced tool with additional forensically 

relevant somatic tissues. Notably, DNA methylation 

variation in non-somatic tissues, such as semen, is 

known to differ from that in somatic tissues; the 

development of an epigenetic tool for age estimation in 

semen is currently in progress by the VISAGE 

Consortium. 

 

MATERIALS AND METHODS 
 

Selection of DNA methylation markers for age 

prediction in somatic tissues 

 

Five age markers previously described in Zbieć-

Piekarska et al. (2015) [12] were used as the basis for 

developing the VISAGE enhanced tool for age 

estimation of forensic DNA from somatic cells. We 

performed a comprehensive literature search and 

extended the original marker set comprising ELOVL2, 

MIR29B2CHG, TRIM59, KLF14 and FHL2 with the 

three additional markers of EDARADD, PDE4C and 

ASPA. It has been shown in multiple studies that these 

three markers have considerable capacity to further 

improve prediction of age in buccal cells/saliva and 

have been demonstrated to correlate with age in other 

somatic cells including bones [11, 12, 27–31]. The eight 

marker combination selected for inclusion in the 

expanded VISAGE MPS multiplex comprised a total of 

44 individual CpG sites (Supplementary Table 1). 

 

Assay design and development 

 

Multiplex PCR 

Development of the multiplex PCR assay for targeted 

bisulfite sequencing used primer designs established for 

the VISAGE basic test [19] (ELOVL2, KLF14, TRIM59, 

FHL2 and MIR29B2CHG) with primers for the three 

additional markers (PDE4C, ASPA and EDARADD), 

either newly designed using MethPrimer [54] and 

PrimerSuite [55] or gathered from the literature. When 

CpG sites within the primer sequences were 

unavoidable, a deliberate mismatch was introduced. In 

the specific cases of PDE4C and MIR29B2CHG, 

degenerate primers carrying a Y at CpG positions were 

also designed and tested, but no increase in amplicon 

yield was observed (data not shown) and consequently, 

mismatch primers were utilized in the final multiplex 

PCR. All newly tested primer pairs are listed in 

Supplementary Table 3. The formation of non-specific 

PCR products and primer dimers was evaluated in silico 

using BiSearch [34] and AutoDimer [56]. Primer 

sequences and final multiplex PCR concentrations are 

listed in Table 1. 

 

PCR optimizations were performed with DNA 

extracted from 10 ml EDTA venous whole blood from 

three samples using the Blood Maxi Kit (Qiagen, 

Hilden, Germany) and quantified by real-time 

quantitative PCR [57]. Blood samples either derived 

from one individual sampled within this study under 

written informed consent (approved by the ethics 

commission of the Medical University of Innsbruck 

under study number 1086/2017) or were purchased 

from Biotrend (Köln, Germany). Bisulfite conversion 

was performed with 200 ng extracted DNA using the 

Premium Bisulfite Kit (Diagenode, Ougrée, Belgium) 

according to the manufacturer’s protocol. An 

additional dry spin before elution was performed to 

prevent ethanol carry-over into the PCR. A total of 2 

µl converted DNA was used for primer tests with the 

Multiplex PCR Kit (Qiagen) in 25 µl assay volume. 

Annealing temperature gradient PCRs were performed 

to optimise the singleplex reactions to test primers 

targeting ASPA, PDE4C and EDARADD as well as 

with the entire multiplex system. Post-PCR 

purification was performed with 1.5X volume of 

AMPure XP beads (Beckman Coulter, Brea, 

California, USA) and 15 µl low TE (10 mM Tris, 0.1 
mM EDTA, pH 8) were used for elution. PCR 

products were evaluated for amplicon yield and size on 

the Bioanalyzer using the DNA 1000 Kit (both Agilent 



 

www.aging-us.com 6472 AGING 

Technologies, Santa Clara, CA, USA). The final 

multiplex PCRs were carried out using the 

thermocycler steps: initial denaturation at 95° C for 15 

min; 38 cycles of 95° C for 10 s, 57° C for 30 s, 72° C 

for 30 s; final elongation at 72° C for 10 min. 

 

PCR products were also assessed with Sanger 

sequencing to verify all amplicons before massively 

parallel sequencing as described in [58]. In brief, 

reactions were carried out using BigDye Terminator 

v1.1 Cycle Sequencing kit (Thermo Fisher Scientific - 

TFS, Waltham, MA, USA) in 10 µl reaction volumes 

and 0.3 µM primer (listed in Table 1). The thermal 

cycling comprised steps: 96° C for 1 min; 25 cycles of 

95° C for 15 s, 50° C for 5 s and 60° C for 4 min. Cycle 

sequencing products were purified using centrifugation 

over Sephadex G-100 columns (Amersham, Little 

Chalfont, UK). Electrophoresis of sequencing products 

was performed on an ABI3500 instrument (TFS) using 

standard settings. Raw sequences were analysed with 

the Sequencer 5.1 (Gene Codes Corporation, Ann 

Arbor, MI, USA) software and assembled with an in-

house prepared reference (bisuflite converted reference 

for targeted amplicons). 

 

Massively parallel sequencing and data analysis 

All PCR products were quantified using the Qubit 

dsDNA HS Assay Kit (TFS) for library preparation. All 

protocol steps were performed in half volume with 50 ng 

purified PCR products using the KAPA Hyper Prep Kit 

with KAPA Library Amplification Primer Mix and 

KAPA SI Adapter Kit Set A+B at 15 µM (all Roche, 

Basel, Switzerland), following the manufacturer’s 

instructions. Post-ligation and post-amplification clean-

ups were performed with 0.8X and 1X AMPure XP 

beads, respectively. Libraries were amplified with 5 

PCR cycles. Purified libraries were quantified with the 

KAPA Library Quantification Complete kit (Roche) and 

evaluated using the DNA 1000 Kit on the Bioanalyzer. 

For sequencing, libraries (N = 24 per run) were pooled 

equimolarly (4 nM) and processed according to the 

MiSeq System Denature and Dilute Libraries Guide, 

Protocol A (Document #15039740 v10; Illumina, San 

Diego, CA, USA). All libraries were diluted to 7 pM and 

spiked with 2 µl 20 pM PhiX control v3. For assay 

optimization, sequencing was performed with the MiSeq 

Reagent Kit v2 2x 150 cycles or the MiSeq Reagent Kit 

v3 2x 200 cycles (both Verogen, San Diego, CA, USA). 

 

Assay re-optimization (final design) 

In order to balance amplicon yields, PDE4C primers 

were tested at increasing concentrations (0.4 µM, 0.6 

µM, 0.8 µM, 1 µM). Multiplex PCR was performed 
with 8 µl eluate from bisulfite conversion of 200 ng 

DNA, followed by library preparation according to the 

protocol described above. Final libraries were evaluated 

on the Bioanalyzer using the DNA 1000 Kit 

(Supplementary Figure 2). The newly optimized 

multiplex PCR was tested using the MiSeq Reagent v3 

kit, which allows for longer read lengths (v3: 600 cycles 

versus v2: 300 cycles) and provides higher output (v3: 

13.2 to 15 GB versus v2: 4.5 to 5.1 GB). 

 

Performance evaluation with DNA standards of 

known methylation state 

Assay evaluation was performed with artificially 

methylated DNA standards, which were prepared using 

the human WGA methylated and non-methylated DNA 

Set (Zymo Research, Irvine, CA, USA). Fully 

methylated and non-methylated control DNA samples 

were diluted to 20 ng/µl in low TE and quantified with 

the Qubit dsDNA HS Assay Kit (TFS). These two 

control DNA dilutions were mixed at different volume 

proportions to achieve 5%, 10%, 25%, 50% and 75% 

methylated DNA standards. DNA inputs stated for 

assay evaluation refer to the DNA amount used for 

bisulfite conversion. The optimum DNA input (200 ng) 

is indicated by the manufacturer of the Premium 

bisulfite kit. The whole eluate from bisulfite conversion 

could be used for the multiplex PCR to increase 

sensitivity however, to ensure equal volumes within the 

performance evaluation, 8 µl of eluate were used for 

amplification. DNA methylation standards at optimum 

input were used to test the first assay design (duplicates 

of 0%, 25%, 50%, 75% and 100% methylated DNA 

standards) as well as the re-optimized protocol (design 

2; duplicates of 5%, 10%, 25%, 50%, 75% methylated 

DNA standards and one replicate of 0% and 100% 

methylated control). Sensitivity assessment of the re-

optimized protocol was performed with 200 ng, 100 ng, 

50 ng, 20 ng, 10 ng and 1 ng DNA input of a 50% 

methylated DNA standard. Samples were processed 

together with negative template controls (NTC, PCR 

grade water) for all steps with two NTCs selected for 

sequencing. Sequencing baseline noise was below the 

1,000 reads threshold at all amplicons for NTC-1 (mean 

= 169.9 ± 89.1 paired reads). NTC-2 (mean = 747.5 ± 

972 paired reads) showed higher read depth at KLF14 

C1 and C2 (mean = 5702.5 paired reads) and TRIM59 

C1 to C3 and C8 (1,064 paired reads). Inspection in 

IGV showed misaligned reads at KLF14 causing high 

read depth (Supplementary Figure 3A), whereas a low 

level of contamination at TRIM59 cannot be fully 

excluded. However, read depth was very low compared 

to the overall read depth at this amplicon (overall mean 

= 141,623.1 ± 33,757.9 paired reads). 

 

Development of predictive models 

 
Samples used in predictive modelling 

Peripheral blood was collected in EDTA-tubes from 160 

unrelated, healthy individuals: 80 males and 80 females in 
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the age range 1–75 years (mean 40.2 ± 22.7) under two 

research projects AEVITAS (DOBR/0002/R/ID1/2012/) 

and NEXT (DOB-BIO7/17/01/2015). These sampling 

regimes were approved by the Commission of Bioethics 

at the Institute of Cardiology in Warsaw (IK-NP-0021-

79/1396/13) and the Ethics Committee of the Jagiellonian 

University in Krakow (KBET/122/6120/11/2016); plus 

1072.6120.24.2017 for retrospective analysis of samples. 

In all cases informed consent was provided by participants 

or their legal representatives (parents). Buccal swabs from 

160 unrelated, healthy individuals: 80 males and 80 

females in the age range 2–80 years (mean 40.6 ± 22.8) 

were obtained from a previous EUROFORGEN project 

(7PR UE, grant no 28548) with the consent of the 

Commission on Bioethics of the Regional Board of 

Medical Doctors in Krakow for retrospective analysis of 

samples (48 KBL/OIL/2008; OIL/KBL/23/2017). 

Samples were divided into training and testing sets for 

statistical analyses as presented in Table 2. A set of 161 

bone samples (occipital bone or femoral shaft): 129 males 

and 32 females in the age range 19–93 years (mean 46.1 ± 

14.8) was collected during routine autopsies, performed 

by a forensic medical examiner at the Department of 

Forensic Medicine, Medical College of Jagiellonian 

University in Krakow. In addition, blood, muscle (rectus 

abdominis muscle) and costal cartilage were collected 

from 24 individuals. The samples were stored at -80° C 

until further processing. The time from death to autopsy 

ranged from 1 to 5 days. The study was approved by the 

ethics committee of the Jagiellonian University in 

Krakow, Poland (KBET/122.6120.86.2017). 

 

DNA extraction and quantification 

DNA from blood was extracted using a modified salting 

out procedure [59], PrepFiler Express™ Forensic DNA 

Extraction Kit (TFS) or standard phenol-chloroform 

method. Previously used DNA extracts were stored 

frozen, at 4° C or room temperature (the percentage of 

methylation detected from different storage conditions 

was checked randomly and compared with previous 

Pyrosequencing results) [12]. DNA from buccal swabs 

and postmortem samples including bones was extracted 

using a silica-based method with Sherlock AX kit (A&A 

Biotechnology, Gdansk, Poland). Bone surfaces were 

cleared of soft tissue with a sterile scalpel and the entire 

exterior was abraded with a grindstone attached to a 

Dremel rotary tool to remove potential contaminants. 

Before the extraction bone pieces (~1cm3) were treated 

with 15% bleach for 1min, repeatedly shaken with 100% 

ethanol and distilled water (dH2O), and finally subjected 

to UV irradiation. The thoroughly dried samples were 

pulverized using a FreezerMill 6750 apparatus (Spex 

CertiPrep, NJ, USA) and EDTA decalcification applied 
to each of the samples. DNA concentration was 

measured in all samples using Qubit dsDNA HS Assay 

Kit with the Qubit instrument. 

Bisulfite sequencing of samples using the VISAGE 

assay 

DNA from blood was subjected to bisulfite conversion 

(BC) using the Qiagen 96-well bisulfite conversion kit 

(Qiagen, Hilden, Germany). In most blood samples, 

2,000 ng of DNA was used, and elution was made in 

100 µl of elution buffer. In 27 samples with lower DNA 

concentration (400 ng or less) the elution volume was 

reduced to 40 µl. Bisulfite conversion of DNA extracted 

from buccal swab samples and the 233 postmortem 

samples (161 bone samples and 72 tissues samples) was 

conducted with the EZ DNA Methylation-Direct Kit 

(Zymo Research). In all swab samples, DNA input for 

bisulfite conversion was 200 ng in an elution volume of 

10 µl. In samples collected postmortem, the DNA input 

for BC was 500 ng and the elution volume was 25 µl. 

DNA methylation data was collected for all samples 

using the VISAGE assay. Each PCR reaction contained 

5 µl bisulfite converted DNA except for samples with 

lower DNA concentration when 8 or 10 µl BC DNA 

were used for the PCR amplification. MPS sequencing 

was performed on the Illumina MiSeq FGx instrument 

with the MiSeq FGx ForenSeq Reagent Kit, MiSeq 

Reagent Kit v2 300 cycles and MiSeq Reagent Kits 

Nano 300 cycles with 5% PhiX Control (except for the 

first experimental run, which used 1% PhiX Control). 

The final DNA pool was diluted to 7-12 pM, depending 

on the run and tissue type. Pools were made from 40 to 

74 libraries (including 0% and 100% DNA methylation 

controls) combined. The MiSeq instrument was set to 

perform paired-end sequencing of 151 reads in both 

directions and to complete the data collection, seven 

main and five additional sequencing runs were 

performed (Supplementary Table 4). 

 

Data analysis 

 

MPS data analysis 

Alignment was carried out relative to a custom 

reference genome containing only the targeted 

sequences (Supplementary Table 5) using an adapted 

Burrows-Wheeler alignment for bisulfite converted 

DNA sequences – bwa-meth [60]. An additional quality 

control step was performed on the raw data (fastq) for 

the samples used for predictive modelling, which was 

reviewed in detail with FastQC software [61]. Bam file 

creation, sorting, filtering and indexing was performed 

with Samtools [62]. Alignments of all samples were 

inspected using the Integrative Genomics Viewer (IGV) 

[63]. Total numbers of read information was extracted 

from amplicon positions using bam-readcount with 

minimum mapping quality and minimum base quality 

thresholds set to 30 [https://github.com/genome/bam-
readcount]. At target CpG sites, obtained C reads were 

divided by the sum of C reads and T reads to calculate 

beta values. Observed methylation values refer to 

https://github.com/genome/bam-readcount
https://github.com/genome/bam-readcount
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percentage beta values. Bisulfite conversion efficiency 

of samples was estimated by calculating the percentage 

of mean reversed beta values from all non-CpG-Cs (T 

reads divided by the sum of C reads and T reads). Total 

coverage refers to the sum of the number of reads per 

amplicon (one CpG site per amplicon was selected). 

Read depth was normalized by dividing the read depth 

at target positions by the total coverage. Only CpG sites 

with the minimum number of 1,000 reads were accepted 

for further analyses including the prediction modelling 

that was then applied to the data. For statistical analyses 

Microsoft Excel and R [https://www.r-project.org/] [64] 

were used. 

 
Statistical analysis and prediction modelling 

The correlation between age and DNA methylation 

levels at the 44 investigated CpGs in eight genes was 

analyzed in a training set of 112 carefully selected DNA 

samples from blood, 112 samples from buccal cells and 

112 samples from bones (Table 2). The effect size of 

particular loci was defined with standardized regression 

coefficients (β). The linearity of DNA methylation-age 

correlation was verified for all the tested CpGs. A clear 

non-linear pattern of correlation was noted for ELOVL2, 

which is in agreement with previous studies [28, 43] 

and therefore, DNA methylation data for this marker 

were power transformed before multivariate linear 

regression analysis was applied. The proportion of age 

variance explained by individual predictors and their 

cumulative impact was assessed based on the 

calculation of R2 coefficients. The same datasets of 112 

blood, 111 buccal cells samples and 111 bone samples 

were used to develop linear regression age prediction 

models. The selection of a set of optimal markers was 

performed by stepwise linear regression with 

probability of F statistic, based on a statistical test of the 

improvement in model error, used as a criterion for 

predictors entry/removal. The developed models were 

further tested using an independent set of 48 blood 

samples, 48 buccal cells samples and 49 bone samples 

(Table 2). The potential applicability of the developed 

models to predict age in some other human cell types 

was verified in a study involving three tissue types 

collected from 24 deceased individuals (aged 21-73). 

This experiment involved blood, cartilage and muscle 

samples. All the analyses were conducted using PS 

IMAGO PRO 5.1 software (IBM SPSS Statistics 25). 

 
DNA methylation data comparison to the VISAGE 

basic assay 

Data generated using the VISAGE basic prototype tool 

from 0%, 5%, 10%, 25%, 50%, 75% and 100% 

methylated DNA standards (Run1; 200 ng DNA input 

to bisulfite conversion using the Premium bisulfite kit 

[19]) was re-analyzed with bam-readcount. The mean 

methylation values from duplicates were used to 

calculate the differences between the two assays and to 

test for statistically significant differences between the 

two assays. Statistical testing was carried out in R using 

the “linearHypothesis” function implemented in the 

package “cars”. To control for the family-wise error in 

multiple hypothesis testing, P-values were adjusted 

using the Bonferroni method. 
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Appendix 
 

Centres and investigators of the VISible Attributes 

through GEnomics (VISAGE) Consortium 

(http://www.visage-h2020.eu/): 

 

• Erasmus University Medical Center Rotterdam 

(Netherlands): Manfred Kayser, Vivian Kalamara, 

Arwin Ralf, Athina Vidaki. 

• Jagiellonian University (Poland): Wojciech 

Branicki, Ewelina Pośpiech, Aleksandra Pisarek.  

• Universidade de Santiago de Compostela (Spain): 

Ángel Carracedo, Maria Victoria Lareu, 

Christopher Phillips, Ana Freire-Aradas, Ana 

Mosquera-Miguel, María de la Puente. 

• Medizinische Universität Innsbruck (Austria): 

Walther Parson, Catarina Xavier, Antonia 

Heidegger, Harald Niederstätter. 

• Universität zu Köln (Germany): Michael Nothnagel, 

Maria-Alexandra Katsara, Tarek Khellaf. 

• King's College London (United Kingdom): Barbara 

Prainsack, Gabrielle Samuel. 

• Klinikum der Universität zu Köln (Germany): Peter 

M. Schneider, Theresa E. Gross, Jan Fleckhaus. 

• Bundeskriminalamt (Germany): Ingo Bastisch, 

Nathalie Schury, Jens Teodoridis, Martina 

Unterländer. 

• Institut National De Police Scientifique (France): 

François-Xavier Laurent, Caroline Bouakaze, Yann 

Chantrel, Anna Delest, Clémence Hollard, Ayhan 

Ulus, Julien Vannier. 

• Netherlands Forensic Institute (Netherlands): Titia 

Sijen, Kris van der Gaag, Marina Ventayol-Garcia. 

• National Forensic Centre, Swedish Police Authority 

(Sweden): Johannes Hedman, Klara Junker, Maja 

Sidstedt. 

• Metropolitan Police Service, London (United 

Kingdom): Shazia Khan, Carole E. Ames, Andrew 

Revoir. 

• Centralne Laboratorium Kryminalistyczne Policji 

(Poland): Magdalena Spólnicka, Ewa Kartasińska, 

Anna Woźniak.  
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Measured versus expected methylation values as obtained for duplicates that were prepared 
according to the first assay design. The dashed line indicates the line of identity (intercept = 0, slope = 1). 



 

www.aging-us.com 6481 AGING 

 
 

Supplementary Figure 2. Bioanalyzer electropherograms (DNA 1000 kit) show final libraries after multiplex PCR with increasing 
PDE4C concentrations: (A) 0.4 µM, (B) 0.6 µM, (C) 0.8 µM, (D) 1 µM. The PDE4C amplicon is marked with an arrow. 
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Supplementary Figure 3. (A) IGV capture of alignments for NTC-2 KLF14 amplicon. Alignments are viewed as pairs and shown in squished 

mode. Target CpG sites are indicated by arrows. (B) IGV capture of alignments for the low quantity 10 ng sample. Alignments at PDE4C are 
viewed as pairs and shown in squished mode. Target CpG sites are indicated by arrows. 
 

 
 

Supplementary Figure 4. (A) Methylation values obtained from seven differentially methylated DNA standards processed with the basic or 

final VISAGE prototype tools. (B) Absolute difference between mean quantifications obtained for the two assays. 



 

www.aging-us.com 6483 AGING 

 
 

Supplementary Figure 5. Assuming that methylation quantification of the DNA methylation standards using the basic tool or 
the final tool do not differ significantly, the obtained values should be close to the line of identity (plotted line; intercept = 0, 
slope = 1). This was tested by comparing the linear regression model based on the experimental data of each marker with the line    of 

identity (regression line is indicated by the dashed, blue line). Results failed to indicate at the 5% Type−I error level a statistically significantly 
superior performance of the empirical   regression model to the line of identity for all five markers (Bonferroni corrected P−values:  
ELOVL2_C7: 0.681, KLF14_C1: 1.000, MIR29B2CHG_C1: 1.000, FHL2_C2: 0.756, TRIM59_C7: 1.000). 
 

 
 

Supplementary Figure 6. Correlation between DNA methylation and chronological age in 3 tissue types collected from 24 
deceased individuals. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 5. 

 

Supplementary Table 1. Characteristics of all the CpG sites analysed in the study and the results of univariate 
association testing for age and CpG sites analysed in training sets for blood (N=112), buccal cells (N=112) and 
bones (N=112). 

 

Supplementary Table 2. Average difference of measured methylation values between duplicates (5% to 75% 
methylated DNA standards; N = 5) obtained for all CpG sites per marker. 

Marker CpGs (N) Mean SD Median Minimum Maximum 

ASPA 1 1.39 1.59 0.69 0.13 3.81 

EDARADD 2 1.26 0.78 1.68 0.05 2.21 

ELOVL2 9 1.23 0.76 1.03 0.02 2.89 

FHL2 10 1.26 0.82 1.18 0.14 2.79 

KLF14 4 0.81 0.98 0.36 0.01 2.9 

MIR29B2CHG 3 3.01 2.45 2.62 0.13 7.46 

PDE4C 7 4.76 3.69 3.94 0.47 12 

TRIM59 8 1.74 0.6 1.74 0.56 2.85 

overall  1.93 1.23 1.33 0.81 4.76 

 

Supplementary Table 3. Primer sequences tested for multiplex PCR optimizations. 

 

Supplementary Table 4. List of sequencing runs for data collecting, used Illumina® MiSeq Kits, library 
concentration, % PhiX Control and number of pooled samples (including methylation standards 0% and 100%). 

Run Run name Used kit Lib. conc. [pM] % PhiX control No. samples 

1 Swab1 MiSeq Reagent Kit Micro v2 300 cycles 7 1 40 

2 Blood1 MiSeq FGx v3 600 cycles 7 5 40 

3 Blood2.1 MiSeq FGx v3 600 cycles 9 5 62 

4 Blood2.2 * MiSeq FGx v3 600 cycles 11 5 62 

5 Blood3 MiSeq FGx v3 600 cycles 12 5 67 

6 Swab2 MiSeq FGx v3 600 cycles 12 5 62 

7 Swab3 MiSeq FGx v3 600 cycles 12 5 63 

8 Swab+blood* MiSeq Reagent Kit Nano v2 300 cycles 10 5 8 

9 Swab+blood* MiSeq Reagent Kit Nano v2 300 cycles 10 5 5 

10 Tissue MiSeq Reagent Kit v2 300 cycles 10 5 72 

11 Bones1+blood* MiSeq Reagent Kit v2 300 cycles 10 5 64 

12 Bones2 MiSeq FGx v3 600 cycles 12 5 72 

13 Bones3+blood* MiSeq FGx v3 600 cycles 12 5 67 

*additional runs for some samples due to missing data. 

Supplementary Table 5. Sequences used for FASTA file preparation (GRCh38). 


