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INTRODUCTION 
 

Clusterin (CLU) is a secreted glycoprotein being 

expressed in various tissues including liver, brain, 

ovary, testis, heart, and blood vessels, and has been 

functionally involved in many different physiological 

and pathological processes [1, 2]. CLU acts like a 

stress-activated, extracellular ATP-independent small 

heat shock-like chaperone, whose levels are elevated 

during aging, cancer, and neurodegenerative disorders 

[3]; recent studies have also highlighted a role for CLU 

in intracellular proteostasis [4] to suppress 

proteotoxicity. 

 

Reportedly, CLU is implicated in pancreatic 

physiology, as well as in metabolic regulation and 
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ABSTRACT 
 

Clusterin (CLU) is an ATP-independent small heat shock protein-like chaperone, which functions both intra- and 
extra-cellularly. Consequently, it has been functionally involved in several physiological (including aging), as 
well as in pathological conditions and most age-related diseases, e.g., cancer, neurodegeneration, and 
metabolic syndrome. To address CLU function at an in vivo model we established CLU transgenic (Tg) mice 
bearing ubiquitous or pancreas-targeted CLU overexpression (OE). Our downstream analyses in established Tg 
lines showed that ubiquitous or pancreas-targeted CLU OE in mice affected antioxidant, proteostatic and 
metabolic pathways. Targeted OE of CLU in the pancreas, which also resulted in CLU upregulation in the liver 
likely via systemic effects, increased basal glucose levels in the circulation and exacerbated diabetic 
phenotypes. Furthermore, by establishing a syngeneic melanoma mouse tumor model we found that 
ubiquitous CLU OE suppressed melanoma cells growth, indicating a likely tumor suppressor function in early 
phases of tumorigenesis. Our observations provide in vivo evidence corroborating the notion that CLU is a 
potential modulator of metabolic and/or proteostatic pathways playing an important role in diabetes and 
tumorigenesis. 
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metabolic disorders. Specifically, it was shown that 

partial pancreatectomy in CLU knockout (KO) mice 

did not result in complete regeneration of the organ 

and β-cell production was incomplete [5], while 

transfection of pancreatic cells with CLU cDNA 

increased cell proliferation and differentiation [6]. 

Furthermore, CLU is highly expressed in pancreatic 

tubular complexes in hypertensive rats during 

spontaneous pancreatitis and enhanced islet 

regeneration [7]. Serum CLU levels are elevated in 

patients with type 2 diabetes (T2D) and correlate 

positively with blood glucose (GLU) levels [8]; 

moreover, CLU gene polymorphisms have been 

associated with T2D and a strong correlation between 

serum CLU levels and insulin (INS) resistance 

markers was discovered [9]. Nonetheless, although 

these studies indicate a link between CLU and diabetes 

the underlying mechanisms remain largely unknown. 

 

CLU is also implicated in all stages of cancer,  

i.e., progression, promotion, metastasis and 

chemoresistance acquisition [1]. There is also evidence 

that CLU inhibition at late stages of tumor evolution 

can have beneficial effects in therapy, whereas at early 

stages increased levels of CLU likely suppress 

tumorigenesis [10]. Intracellularly, CLU was (among 

others) found to stabilize the cytosolic Ku70-Bax 

complex, inhibiting thus pro-apoptotic Bax to activate 

apoptosis [11]. 

 

Herein, we report the establishment of CLU 

overexpressing transgenic (Tg) mice; either 

ubiquitously or with pancreas-targeted expression. We 

show that targeted CLU overexpression (OE) in the 

pancreas increased basal GLU levels in the circulation 

and exacerbated diabetic phenotypes. Also, by 

employing a syngeneic melanoma mouse model in CLU 

Tg (ubiquitous OE) mice we found that ubiquitous CLU 

OE delayed melanoma tumor cells growth, indicating a 

likely tumor suppressor function in early phases of 

tumorigenesis. 

 

RESULTS 
 

Ubiquitous or pancreas-targeted CLU OE in mice 

affects proteostatic and metabolic pathways 

 

Our gene and protein expression analyses showed that 

both the TgN102 and TgG106 lines carrying the 

human (h)βactin-clu Tg express higher clu levels (vs. 

non-Tg littermates) in the heart, muscle, brain, liver, 

and intestine (significant at the TgN102 line) tissues 

(Figure 1A). These findings were further verified at 

the protein expression level (in the brain CLU 

expression was moderately increased) in both the 

soluble cell fraction (cell lysates) and in cell 

membranes (cell pellets) of isolated tissues (Figure 

1B). Consistently, CLU levels increased in the sera of 

Tg animals (Figure 1C). Gene expression analyses in a 

panel of antioxidant, metabolic and mitochondrial 

genes in CLU overexpressing tissues from the TgN102 

and TgG106 mouse lines revealed similar expression 

patterns in the two lines for most tissues analyzed 

(Figure 2A; Supplementary Table 1); these similarities 

were more intense in liver, intestine, and the muscle. 

Also, gene expression patterns amongst tissues were 

similar (for both Tg lines) mostly between liver and 

muscle (Figure 2A; Supplementary Table 1). Parallel 

gene expression analyses in CLU deficient mice 

(C57BL/6-clu KO; herein indicated as CLU KO) 

revealed a rather tissue-specific pattern with most 

similarities observed between intestine and heart and 

to a lesser extend (as in Tg lines) between liver and 

muscle (Figure 2B; Supplementary Table 2). In a 

tissue specific pattern, the majority of analyzed genes 

tended to be upregulated (vs. Con; non-Tg littermate 

mice) in the muscle of Tg CLU overexpressing mice 

(Figure 2A); interestingly enough, these were 

suppressed in CLU KO mice indicating that alterations 

in CLU expression levels likely impacts on genomic 

responses (Figure 2A, 2B). In support, the expression 

of the antioxidant responses-related transcription 

factor nrf2 and of its target txnrd1 and nqo1 genes 

seem to be differentially regulated in CLU OE and 

CLU KO mice as it tends to be downregulated in the 

liver and intestine of CLU OE mice and to be induced 

in the same tissues in CLU KO mice (Figure 2A, 2B); 

notably the opposite regulatory readout for these genes 

was noticed in the muscle (Figure 2A, 2B). Regarding 

metabolic/mitochondrial genes, tfam and pgc-1a were 

suppressed in the brain but tended to be induced in 

other tissues, while foxo3 was downregulated only in 

the heart (Figure 2A). Given that pgc-1a was 

downregulated in the intestine and muscle of CLU KO 

mice (Figure 2B) we hypothesize that its expression 

levels are likely directly modulated in these tissues by 

CLU expression levels. These findings suggest tissue-

dependent effects after CLU OE that can possibly be 

attributed to (among others) differential tissue-

dependent metabolic demands. 

 

Our attempts to establish pancreas-specific CLU 

overexpressing animals carrying the pdx-1-clu 

transgene resulted in two Tg heterozygous lines 

(TgI173, TgI178) carrying the Tg; notably, we could 

not establish homozygous animals because of increased 

embryonic lethality. We found that clu mRNA and CLU 

protein expression levels were elevated in the pancreas 

of the TgI173 and TgI178 lines, and also in liver 
(Figure 3A, 3B) indicating CLU OE-mediated systemic 

effects. CLU OE in isolated pancreas and liver tissues 

was evident both in the soluble cell fraction (cell 
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lysates) and in cell membranes (cell pellets) (Figure 

3B). Gene expression analyses in metabolic tissues, i.e., 

pancreas, liver and muscle of TgI173 and TgI178 vs. 
non-Tg littermate mice, revealed some level of 

heterogenicity amongst the two Tg lines (Figure 3C; 

Supplementary Table 3); yet a notable trend for several 

metabolic genes downregulation was found in the 

muscle and pancreas (most evident in the Tgl178 line) 

tissues. On the other hand, for most genes assayed in the 

liver we noted a tendency for higher expression levels, 

with foxo3 showing a similar pattern of upregulation in 

both the liver and the pancreas of the Tgl173 and 

 

 
 

Figure 1. CLU is overexpressed in tissues of the TgΝ102 and ΤgG106 (ubiquitous CLU OE) mice. (A) Relative clu mRNA 

expression levels in the heart, muscle, brain, liver, pancreas, lung, intestine, and colon of TgΝ102, ΤgG106 lines and control (littermate 
non-Tg) animals. (B) Representative immunoblot analyses in shown tissue samples [whole cell lysates and cell mem branes (pellets)] 
from Tg or control animals probed with a CLU antibody; GAPDH probing was used as a reference. ( C) Immunoblot analyses of CLU 
expression levels in serum of shown Tg or control animals; IgG probing was used as loading reference. Error bars,  ± SD (n=4 per mouse 
genotype); *P<0.05; **P<0.01. 
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Figure 2. Expression levels (vs. controls) of antioxidant, mitochondrial and metabolic genes (heat map) in isolated shown 
tissues of TgN102 and ΤgG106 (ubiquitous CLU OE) mice or in CLU KO mice. (A) Heat map indicating relative expression levels of 
shown genes in isolated brain, liver, intestine, heart, and muscle tissues of TgN102 and ΤgG106 (ubiquitous CLU OE) vs. control (Con; 
littermate non-Tg) mice. (B) Heat map of shown genes expression in isolated liver, intestine, heart, and muscle tissues of CLU KO vs. control 
mice. *P<0.05; **P<0.01 (Tg or KO mice vs. Con); additional statistical analyses (i.e., Pearson Correlation r and F significance) are shown in 
Supplementary Tables 1, 2. 
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Tgl178 lines (Figure 3C). Thus, ubiquitous, or pancreas-

targeted CLU upregulation in mice alters basal 

expression levels of antioxidant, proteostatic, mitostatic 

and metabolic genes. 

 

Pancreas-targeted CLU OE exacerbates diabetic 

phenotypes 

 

To investigate the functional role of pancreas-targeted 

CLU upregulation in metabolic stress conditions, we 

performed an intraperitoneal GLU tolerance test in 

TgI173, TgI178 mice vs. non-Tg littermates. It was 

found that pancreas-specific young CLU Tg male mice 

developed higher GLU levels during the respective 

tolerance experiment (Figure 4A); thus, CLU Tg males 

likely have impaired GLU tolerance. Consistently, an 

INS tolerance test in the same mice groups revealed that 

both young and aged CLU Tg male mice tend to 

develop higher (vs. non-Tg littermate mice) GLU levels 

(Figure 4B) indicating that they are less INS tolerant. 

 

 
 

Figure 3. CLU is overexpressed in the pancreas and liver of TgI173, ΤgI178 (pancreas-targeted CLU OE) mice. (Α) Relative clu 

mRNA expression levels (vs. control; littermate non-Tg animals) in the pancreas, liver, and muscle of TgI173 (+/-), ΤgΙ178 (+/-) animals. (Β) 
Representative immunoblot analyses of shown Tg (or not) animals’ tissues samples [whole cell lysates and cell membranes (pellets)] probed 
with a CLU antibody; GAPDH was used as a reference. (C) Heat map indicating relative expression levels of shown genes in isolated liver, 
pancreas, and muscle tissues of TgI173 and ΤgI178 Tg vs. control (Con; littermate non-Tg) mice. Error bars ± SD (n=4-5 per mouse genotype); 
*P<0.05 (Tg lines vs. control). Statistical analyses (i.e., Pearson Correlation r and F significance) of data shown in Figure 3C are reported in 
Supplementary Table 3. 
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Figure 4. Pancreas-targeted CLU OE induces GLU, INS and PYR decreased tolerance. (Α) GLU tolerance curve (A1) and area under 

the curve (A2, calculated from the sum of the areas of the different trapeziums formed) in shown animal groups; GLU levels were measured 
before and after (15, 30, 60 and 120 min) GLU injection. (B) INS tolerance test. Shown is GLU tolerance curve (B1) and area under the curve 
[B2, calculated as in (A2)] in indicated animal groups; GLU levels were measured before and after (15, 30, 60 and 120 min) INS injection. (C) 
PYR tolerance test. Shown is GLU tolerance curve (C1) and area under the curve [C2, calculated as in (A2)] in indicated animal groups; GLU 
levels were measured before and after (15, 30, 60 and 120 min) PYR injection. (D) GLU levels following STZ administration in control (Con STZ) 
and Tg (Tg STZ) mice. GLU levels were measured during the whole duration of the experiment (6 months). Con; young or old littermate non-
Tg male animals; Tg; young or old pancreas-targeted CLU OE heterozygous male mice. Error bars are shown in curves (A1–C1). In (A–C) n=9-11 
per mouse genotype; in (D) n=5 per mouse genotype. Error bars, ± SD; *P<0.05; **P<0.01. 
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During fasting, tissues avoid hypoglycemia through 

glycogenesis and glycogenolysis from inorganic 

molecules, e.g., pyruvate (PYR) and lactic acid. PYR 

administration and the organism’s glycemic reaction is 

thus a marker of normal liver function and its ability to 

produce GLU. By performing an intraperitoneal PYR 

tolerance test in pancreas specific CLU Tg mice we 

found that young or aged male mice accumulated higher 

GLU levels, suggesting that they are also less PYR 

tolerant (Figure 4C); despite similar noted responses in 

female mice in these assays these were not statistically 

significant. Given these findings we measured fasting 

GLU levels in male TgN102 and TgG106 (ubiquitous 

CLU OE) mice and we also observed a significant 

induction in serum GLU levels (Supplementary Figure 

1) indicating that they are likely in a hyperglycemic 

state. Finally, in a streptozotocin (STZ)-mediated 

diabetes induction model, we observed that STZ treated 

TgI173, TgI178 Tg animals (pancreas specific CLU 

OE) had constantly higher GLU levels in relation to 

control animals (Figure 4D), indicating an exaggeration 

of the STZ-induced diabetic phenotype. In support, 

tolerance tests showed that STZ treated-CLU 

overexpressing Tg (TgI173, TgI178) mice tend to be 

less (vs. non-Tg treated littermates) GLU, INS and PYR 

tolerant (Supplementary Figure 2). 

 

Gene expression studies in isolated pancreatic and liver 

tissues from STZ treated (or not) TgI173 and TgI178 Tg 

mice, showed in the pancreas a trend for increased (vs. 

STZ treated non-Tg littermate mice) expression levels 

of the antioxidant genes nrf2, nqo1 and txnrd1, as well 

as of genes involved in fatty acid synthesis (acaca, 

srebpc1, fas) and metabolic regulation (gsk3a, gsk3β, 

pdp2, pdk1, pklR, mmtorc1, akt1) (Supplementary 

Figure 3). In the liver, a trend for increased gene 

expression levels in STZ-treated CLU overexpressing 

mice (vs. non-Tg littermates) was observed for nrf2; for 

mitochondrial and mitostatic genes (atp5a, ppargc1b, 

sdhA, pprc1, timm17b), as well as for the metabolic 

genes gsk3a, gsk3β, foxo1, foxo3, pdk1, akt1, gys1, 

gys2, g6pc and pepck (Supplementary Figure 3). Thus, 

pancreas-targeted CLU OE causes metabolic 

deregulation being evident by altered expression of 

mitochondrial and metabolic genes, along with 

exaggeration of diabetic phenotypes as manifested by 

decreased GLU, INS and PYR tolerance in basal 

conditions or in a model of STZ-induced diabetes. 

 

Ubiquitous CLU OE alters proteostatic modules and 

mitigates cancer progression in a melanoma mouse 

tumor model 

 
Given that ubiquitous CLU OE in mice tended to 

increase nrf2 expression levels in the heart and muscle 

of Tg animals (see above), we investigated the possible 

interaction between CLU and proteostasis network 

modules. To this end, mouse embryonic fibroblasts 

(MEFs) were isolated from TgN102 and TgG106 lines 

and non-Tg littermate control animals. MEFs derived 

from Tg mice expressed higher levels of clu mRNA vs. 

controls (Supplementary Figure 4Α); they also 

possessed higher (vs. controls) cathepsins B, L activity 

(Supplementary Figure 4B), while proteasome activity 

was higher in MEFs from the TgG106 line 

(Supplementary Figure 4C). Thus, increased CLU levels 

mobilize proteostatic modules. 

 

Since it was hypothesized that high CLU expression 

levels may suppress tumor progression at early, but not 

late, stages of carcinogenesis [1, 4, 10], we then 

investigated the functional implication of CLU OE in 

cancer. We developed a syngeneic mouse melanoma 

tumor model by grafting B16.F1 melanoma cells in the 

flank of control and CLU OE Tg (TgN102 and TgG106) 

mice. We found that tumors in non-Tg littermate C57Bl/6 

mice become pulpable earlier and grew significantly 

faster as compared to tumors developed in CLU Tg 

animals (Figure 5Α, 5Β). CLU Tg mice were also 

characterized by enhanced lysosomal cathepsins B, L 

(Figure 5C1) and a trend for increased (not significant) 

proteasomal (Figure 5C2) enzymatic activities further 

verifying proteostatic modules activation in CLU TgN102 

and TgG106 lines. Further studies revealed a significant 

downregulation (vs. littermate non-Tg mice) in a panel of 

antioxidant, proteasome, autophagy-related, 

mitochondrial, and metabolic genes in tumors grown in 

CLU TgN102 and TgG106 mice (Supplementary Figure 

5Α); this readout was particularly enhanced in genes 

encoding enzymes that contribute to Warburg effect in 

cancer cells. Furthermore, grafting melanoma tumor cells 

in mice increased serum CLU levels in control but also in 

Tg mice (Supplementary Figure 5B) suggesting a possible 

role of circulating CLU in suppressing tumor promotion 

in CLU OE Tg mice. Overall, ubiquitous OE of CLU 

exerts a tumor suppressive role in the melanoma mouse 

tumor model. 

 

DISCUSSION 
 

CLU is an exciting chaperone whose different isoforms 

likely function both intra- and extra-cellularly [11]. Here, 

we report the establishment of CLU overexpressing Tg 

mice showing that ubiquitous CLU upregulation 

modulates antioxidant, proteostatic and metabolic genes. 

CLU was characterized as a sensitive cellular biosensor 

of oxidants that functions to protect cells from the 

deleterious effects of oxidative stress [12]; also, it was 

found to stabilize the Ku70-Bax complex, preventing 

Bax protein from activating the mitochondrial apoptotic 

pathway [11] and to cause juxtanuclear aggregate 

formation and mitochondrial alteration [13]. 
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Targeted CLU OE in the pancreas was induced based 

on previous studies that indicated a close link between 

CLU expression levels and diabetes [8, 14]. Indeed, 

pancreas-targeted CLU OE also induced higher CLU 

expression levels in the liver, modulated metabolic 

genes and impaired GLU, INS and PYR tolerance of Tg 

mice. These traits are usually accompanied with 

reduced GLU uptake into the INS-sensitive tissues (e.g., 

skeletal muscle, liver, and adipose tissue) and are signs 

of metabolic syndrome/INS resistance that can lead to 

diabetes and atherosclerosis [15]. Consistently, previous 

findings have showed that elevated plasma CLU levels 

are associated with INS resistance markers [9]. Yet, 

given the different clu transcripts that have been 

identified in physiological or stress conditions [16–20] 

along with the fact that the exact structure of the mature 

protein is not known [20], the functional role of CLU in 

human pathologies, including metabolic syndrome, 

remains to be clarified. In a STZ-mediated diabetes 

model, pancreas-targeted CLU OE induced significantly 

higher GLU levels, as well as GLU, INS and PYR 

decreased tolerance indicating a more severe diabetic 

phenotype in those Tg animals. It has been shown 

before that increased serum CLU levels are linked with 

T2D [8, 13] and that high fat diet in CLU deficient mice 

led to increased INS resistance [21]; in this model it was 

proposed that CLU protects from INS resistance by 

reducing oxidative stress. Since we found that increased 

CLU levels in pancreas and liver from the tissue 

specific CLU Tg mice do not induce premature onset of 

diabetes but exacerbate INS intolerance, we suggest that 

pancreas specific CLU upregulation may result in 

deregulation of the GLU-INS metabolic pathway. In 

support, CLU was identified recently as a hepatokine 

that targets muscle (a tissue particularly enhanced in 

males) GLU metabolism and INS sensitivity through 

low-density lipoprotein receptor-related protein-2 along 

with the INS receptor signaling cascade [22]. Elevated 

GLU levels upregulate the metabolic genes akt, foxo1, 

pgc-1, g6pc and pepck in the liver, where activation of 

the phosphoinositol 3-kinase/AKT pathway inhibits the 

rate-controlling enzymes of gluconeogenesis and 

promotes glycogen synthesis [23, 24]. In  

STZ-treated pancreas CLU overexpressing Tg 

 

 
 

Figure 5. Melanoma tumor cells growth is reduced in vivo at CLU Tg (ubiquitous OE) mice. (A) Average tumor volume 
development by day 20, in control (Con; littermate non-Tg animals), TgN102 and TgG106 (ubiquitous CLU OE) mice after syngeneic 
melanoma tumor cells (Β16.F1) inoculation. (Β) Representative photos of control animals and of TgN102, TgG106 mice at the day of sacrifice. 
(C) Relative (%) cathepsins B, L (C1) and proteasome (C2) enzymatic activities in excised tumors of control and CLU overexpressing mice. Error 
bars, ± SD (n=6 per mouse genotype); *P<0.05; * *P < 0.01. Shown differences in (A) are also significant at days 13, 15 and 18 (P<0.05). 
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mice, activation of the AKT pathway might be a 

countereffect aiming to increase GLU uptake in the 

tissues. Nevertheless, upon diabetes induction, where 

pancreatic β-cells are destroyed and no INS is produced, 

CLU OE seems to promote foxo1 activation, which 

along with its co-activator pgc-1 induce transcription of 

g6pc and pepck enzymes that participate in GLU 

production [25] in the liver; a fact that explains the 

increased GLU levels observed. Probably, the observed 

hyperglycemia can be also attributed to impaired uptake 

of GLU from skeletal muscle and liver and in general 

all INS-dependent tissues. Elevated expression levels of 

the transcription factor Srebp1c and its targets scd-1 and 

acl are also observed in conditions of excessive GLU 

production, to promote lipogenesis in the liver [26] and 

a free fatty acid flux into the liver which also 

contributes to hepatic INS resistance [27]. Our results 

show that Srebp1c levels drop in both groups after STZ 

administration; yet, in STZ-treated pancreas-CLU 

overexpressing mice its levels remain higher than in 

control mice possible due to increased fatty acid 

oxidation. It has been stated before that during 

prolonged INS resistance, Srebp1c levels increase, to 

initiate de novo fatty acid biosynthesis [28]; however, 

CLU OE in hepatocytes downregulated Srebp1c 

expression [29]. In support to the proposed 

mitochondrial-metabolic deregulation in our CLU OE 

Tg models, chronic diabetes induced by STZ provoked 

significant alterations in hepatic mitochondrial function 

[30] and STZ-induced cytotoxicity in HepG2 cells is 

also mediated by oxidative stress and mitochondrial 

dysfunction [31]; moreover, mitochondria function was 

compromised in diabetic and prediabetic humans [32, 

33]. Induction of diabetes also leads to decreased 

expression levels of the transcription factor FOXO6. 

Elevated FOXO6 levels in the liver led to 

gluconeogenesis and increased GLU levels during 

fastening, that were downregulated by INS mediated 

FOXO6 suppression through phosphorylation and 

inactivation of its transcriptional activity [34]. Our data 

suggest that CLU likely interacts with FOXO6 in the 

liver to reduce GLU levels. Pancreatic β-cells 

elimination due to STZ administration indicate that 

CLU in our Tg animals could be produced either from 

the remaining β-cells; from enhanced β-cells 

regeneration [35] or from the liver. The mechanistic 

details behind these observations should however await 

further future studies. 

 

Furthermore, we observed that ubiquitous CLU OE 

delays the growth of melanoma tumor cells being 

grafted in Tg mice. CLU action during carcinogenesis is 

a continuous field of study since CLU has been 
implicated in tumor cells survival, epithelial–

mesenchymal transition, metastasis and 

chemoresistance [4, 11, 15, 36]. CLU seems to promote 

cancer at more advanced stages of the disease, while at 

early stages, in agreement with our ubiquitous CLU 

overexpressing in vivo model, it likely exerts a 

suppressive role [37–40]. We propose that increased 

circulating or intracellular CLU levels may, via its 

chaperone activity, establish a tumor suppressive micro-

environment by inhibiting tumor promoting proteotoxic 

stress. Indeed, important key enzymes involved in the 

Warburg effect like hexokinase 4 (HEX4), pyruvate 

kinase muscle isozyme 2 (PKM2) and lactate 

dehydrogenase (LDHA) are downregulated in CLU 

overexpressing mice, while given that HEX2 and PKM2 

are substrates of chaperone mediated autophagy [41, 

42], CLU OE may, as reported before [43–45], also 

modulate autophagic responses. Moreover, in the 

grafted tumors of CLU OE mice c-MYC and its targets, 

e.g., glucose transporters (GLUT1-4), LDHA and 

PKM2 [46] are downregulated. Hypoxia-inducible 

factor 1 alpha (HIF1α) reduction is also followed by 

reduced expression of glycolytic enzymes like 

hexokinase II (HEX2) and pyruvate dehydrogenase 

kinase 1 (PDK1), an inhibitor of the tricarboxylic acid 

cycle [47]. Finally, CLU OE was found to (among 

others) decrease PGC1a levels, which reportedly 

promotes metastasis by mediating mitochondrial 

biogenesis [48]. 

 

Taken together, our observations provide in vivo 

evidence which corroborate the notion that CLU is a 

potential modulator of metabolic and/or proteostatic 

pathways playing a significant functional role in 

diabetes and tumorigenesis. 

 

MATERIALS AND METHODS 
 

Use of animals 

 

Mice were maintained under specific pathogen-free 

conditions in the facilities of the Department of Animal 

Models for Biomedical Research of the Hellenic Pasteur 

Institute (Facilities License Numbers: ELBIO11, 

ELBIO12 and ELBIO13). Animals were housed at 

room temperature 22 ± 2° C, relative humidity 40-70% 

and 12 hours light/12 hours dark cycle. All mice 

procedures were assessed by the Institutional Protocol 

Evaluation Committee and licenses were issued by 

national authorities, according to the Greek Law 

56/2013, in conformity with European Union 

guidelines; PD 56/2013 and European Directive 

2010/63/EU, welfare and ethical use of laboratory 

animals based on 3+1R. The experimental protocols 

have been positively evaluated by the Institutional 

Protocol Evaluation Committee and were licensed under 

the registered codes 987/10.02.2012 and 2582/29-05-

2018, by the Official Veterinary Authorities of Attika 

(Greece) Prefecture. 
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Generation of CLU overexpressing mice 

 

To establish Tg mice overexpressing CLU ubiquitously, 

mouse CLU cDNA was inserted in a hβactin promoter 

cassette. The plasmid was microinjected into pronuclei 

of F1 (CBA/CaOla × C57BL/6 OlaHsd)-fertilized 

oocytes, as described previously [49]. Two Tg lines, 

Tg.hβactin.clu, were produced (TgN102, TgG106) that 

transmitted the transgene in a Mendelian way. To obtain 

pancreas-targeted CLU overexpressing mice, the mouse 

CLU cDNA was inserted in a pancreatic and duodenal 

homeobox 1 (pdx-1) gene promoter cassette. The 

plasmid was microinjected into pronuclei of F1 

(CBA/CaOla × C57BL/6 OlaHsd)-fertilized oocytes, as 

above. Two Tg lines, Tg.pdx-1.clu, were produced 

(TgI173, TgI178) that transmitted the transgene in a 

Mendelian way. All generated Tg mice lines were 

backcrossed to the C57BL/6 background for at least 10 

generations and are registered in the resources of HPI as 

(B6-Tg(hβactin.clu)N102HP and G106HP, as well as 

B6-Tg(pdx-1.clu)I173HP and I178HP. To identify Tg 

mice, genomic DNA was amplified with primers 

specific for CLU cDNA: forward, 5′- GAT CTT GTC 

TGT GGA CTG TTC A-3′, and reverse, 5′- CTA TCT 

CAT TCC GCA CGG CTT-3′. All mice showed no 

pathological phenotypic characteristics and they 

reproduced normally. 

 

CLU deficient mice 

 

CLU-deficient mice (CLU KO) backcrossed to the 

C57Bl/6 strain for more than 10 generations were 

obtained at the Animal Facility of the University of 

Parma by breeding heterozygous parents. Mice were 

housed in a standard animal facility under controlled 

environmental conditions (22 ± 2° C, 12 hours 

light/dark cycle) and were allowed free access to food 

and water. Genotyping of the offspring was performed 

by PCR amplification of DNA extracted from ear 

biopsies as described before [50]. A total of 8 mice (2 

male CLU KO, 2 male WT, 2 female CLU KO and 2 

female WT), aged 7-8 months underwent blood 

withdraw by retro-orbital bleeding. Then, animals were 

sacrificed by cervical dislocation, tissues were collected 

and quick frozen in liquid nitrogen and stored at -80° C 

until use. All experimental procedures involving CLU 

KO mice were approved and conducted in accordance 

with the Italian law (D.lgs 26/2014). 

 

Preparation of tissue protein extracts, SDS-PAGE 

and immunoblot analysis 

 

Tissue and tumor extracts from experimental and 
control (littermate non-Tg mice) mice were lysed with 

NP-40 lysis buffer containing protease and phosphatase 

inhibitors (Sigma-Aldrich, USA). Protein content of 

samples was assessed by Bradford (Bio-Rad 

Laboratories, UK). SDS-PAGE and immunoblotting 

assays were performed, as described previously [51]. 

Primary and horseradish peroxidase-conjugated 

(Jackson Laboratories) secondary antibodies were 

applied for 1 h at room temperature (RT) and were 

developed by using an enhanced chemiluminescence 

reagent kit (Bio-Rad Laboratories). Primary antibodies 

used were against CLU (Santa Cruz, SC-6419) and 

GAPDH (Sigma, G9545). 

 

Isolation of MEFs, Real-Time PCR and 

measurement of proteasome, cathepsins B, L 

activities 

 

Isolation of MEFs was done as described previously 

[52]. RNA extraction from mouse tissue or tumor 

extracts, cDNA synthesis and Real-Time PCR, along 

with measurement of proteasome and cathepsins B, L 

activities in cells, tissues or tumor extracts was done as 

described previously [53, 54]; for details see 

Supplementary Materials and Methods. 

 

Intraperitoneal GLU, INS and PYR tolerance tests; 

GLU, INS measurements in mice plasma 

 

Control (littermate non-Tg mice) or experimental mice 

(see Figure legends) were fasted overnight. Blood 

samples were collected from the tail vein prior to 

intraperitoneal injection of GLU (1 g/kg, Sigma-

Aldrich), INS (1 mU/g bodyweight, Pharmaserve, 

Greece) or sodium PYR (2 g/kg, Applichem), 

respectively. Blood samples were collected at 15-, 30-, 

60-, and 120-min post-injection of substances [55]. 

GLU and INS levels in isolated murine plasma were 

measured in an external veterinary diagnostic lab. 

 

Streptozotocin inducible diabetes model 

 

Male mice overexpressing CLU in pancreas and 

littermate non-Tg mice (control) were injected with 

streptozotocin (STZ, Sigma-Aldrich) for 5 consecutive 

days. STZ was dissolved in 0.1 M sodium citrate buffer 

(pH 4.5) and was injected intraperitoneally (40 mg/kg) 

within 15 min of dissolution; the control group received 

citrate buffer solution. 

 

Syngeneic melanoma inducible tumor model 

 

Mice ubiquitously overexpressing CLU (~25 g of 

weight, 6-8 weeks of age) and littermate non-Tg mice 

(control) were subcutaneously inoculated with 105 

B16.F1 melanoma cells. Tumor growth rate was 
recorded every 2 days by measuring the major and 

minor axes of the formed tumors with a digital caliper. 

Measurements were transformed into tumor volume 
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using the formula: tumor volume (cm3) = major axis x 

minor axis2 x 0.5. On day 22, animals were euthanized 

by cervical dislocation and tumors were excised for 

RNA extraction, immunoblotting, proteasome and 

cathepsins B, L activity measurements. 

 

Statistical analysis 

 

All experiments were performed in triplicates and data 

were statistically analyzed with the use of ANOVA 

single factor. Level of correlation among different 

analyzed groups was calculated by the Pearson 

correlation coefficient, r. 

 

Data availability 

 

The datasets generated and/or analyzed during the 

current study are available from the corresponding 

author on reasonable request. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Materials and Methods 
 

Isolation of MEFs 

 

MEFs were isolated as described previously (Durkin et 

al., 2013) at developmental embryonic day 13.5 

(E13.5). MEFs were cultivated in Dulbecco's modified 

Eagle's medium (Gibco Life Technologies), 

supplemented with fetal bovine serum (10%) and L-

glutamine (2mM) in a humidified incubator at 5% CO2 

and 37° C. Cells were subcultured with the use of 

trypsin/EDTA solution (Gibco Life Technologies). 

 

RNA extraction from mouse tissue extracts, cDNA 

synthesis and Real-Time PCR 

 

RNAlater (Sigma-Aldrich) and the RNeasy mini kit 

(Qiagen) were used for total RNA isolation from tissue 

or tumor samples according to the manufacturer’s 

instructions. cDNA synthesis and Quantitative Real-

time PCR were performed as described before 

(Cheimonidi et al., 2018). Primers were designed using 

the primer-BLAST tool (http://www.ncbi.nlm.nih. 

gov/tools/primer-blast/) and were the following:  

b-ACTIN-F: GGC-TGT-ATT-CCC-CTC-CAT-CG, b-
ACTIN-R: CCA-GTT-GTT-AAC-AAT-GCCA-TGT; 

CLU-F: GCA-GGA-GGT-CTC-TGA-CAA-TGA, CLU-

R: GAC-GGC-GTT-CTG-AAT-CTC-CT; NRF2-F: 

CCA-GGA-CTA-CAG-TCC-CAG-CAG, NRF2-R: CTC-

CAA-GAT-CTA-TGT-CTT-GCC-TCC; TXNRD1-F: 

CCA-TCG-GTG-ACA-TCC-TGG-AG, TXNRD1-R: 

CTC-TGA-GCC-AGC-AAT-CTC-CC; NQO1-F: CAT-

TGC-AGT-GGT-TTG-GGG-TG, NQO1-R: TCT-GGA-

AAG-GAC-CGT-TGT-CG; PSMA7-F: ATC-AAC-

AGA-GCC-CGG-GTA-GA, PSMA7-R: GCC-GAG-

ATA-CCA-AAT-GGC-CT; PSMB5-F: AAT-GCT-TCA-

CGG-AAC-CAC-CA, PSMB5-R: CTT-CAC-CGT-

CTG-GGA-AGC-AA; CATHEPSIN L-F: AAT-GGA-

GGT-CTG-GAC-TCG-GA, CATHEPSIN L-R: CAG-

CGA-ACT-CGG-CTC-TGT-AT; BECLIN1-F: GGA-

AGT-AGC-TGA-AGA-CCG-GG, BECLIN1-R: TTA-

GAC-CCC-TCC-ATG-CCT-CA; LC3B-F: GCT-CGC-

TGC-TGT-CTA-GAT-GT, LC3B-R: CAG-TCG-CTT-

AAG-CTG-GGT-CA; HDAC6-F: TCA-GCC-TCA-

ACT-GGT-CTT-GG, HDAC6-R: AGC-AAA-TGG-

GTT-AGG-TGG-GC; P62-F: CTT-CGG-AAG-CTG-

AAA-CAT-GGA-C, P62-R: TGA-CAT-TGG-GAT-

CTT-CTG-GTG-G; GSK3a-F: CAG-AGA-CGA-GGG-

AAC-TGG-TG, GSK3a-R: CAG-TGG-TCC-AGC-TTA-

CGC-A; GSK3b-F: TAG-TCG-AGC-CAA-GCA-GAC-

AC, GSK3b-R: TGT-CTC-GAT-GGC-AGA-TTC-CAA; 
PDK1-F: ACG-GGA-CAG-ATG-CGG-TTA-TC, PDK1-

R: GCT-TCC-AGG-CGG-CTT-TAT-TG; PDP2-F: 

AGG-AGA-GGA-CGA-GGA-TAC-GAG, PDP2-R: 

CTC-CCA-CCT-CGT-AAA-AGA-GCA; PKLR-F: GGC-

AGA-TGA-TGT-GGA-CCG-AA, PKLR-R: CCA-GAT-

CAC-CAA-CTC-GGA-GG; FOXO3-F: GGT-ACC-

AGG-CTG-AAG-GAT-CA, FOXO3-R: CGT-GGG-

AGT-CTC-AAA-GGT-GT; FOXO1-F: TCA-AGG-

ATA-AGG-GCG-ACA-GC, FOXO1-R: CCT-CCC-

TCT-GGA-TTG-AGC-ATC; PEPCK-F: AAG-AAG-

AAA-TAC-CTG-GCC-GCA, PEPCK-R: TTT-GTC-

TTC-ACT-GAG-GTG-CCA; AKT1-F: CCA-AGG-

AGA-TCA-TGC-AGC-AC, AKT1-R: TAC-CTG-GTG-

TCA-GTC-TCA-GAG-G; MTOR-F: CCA-TCA-ATC-

TGA-TGC-TGG-A, MTOR-R: GGTGT-GGC-ATG-

TGG-TTC-TGT; INSR-F: TGG-CAT-GGC-ATA-CTT-

GAA-CG, INSR-R: TTG-CCC-CCT-TTC-CGA-TAG-

TA; GYS-1-F: CAC-AGA-ACG-GTTGTC-GGA-CT, 

GYS-1-R: GTG-AAG-TGG-TCT-GGA-AAG-GC; GYS-
2-F: TAA-ACA-GTC-ACG-CCG-GCA-AA, GYS-2-R: 

TTG-TCT-GGA-AAA-GCC-CTG-CT; PKM2-F: TGC-

AAT-TAT-TTG-AGG-AAC-TCC, PKM2-R: CAC-

TGC-AGC-ACT-TGA-AGG-AG; GLUT1-F: CAT-

CCT-TAT-TGC-CCA-GGT-GTT-T, GLUT1-R: GAA-

GAC-GAC-ACT-GAG-CAG-CAG-A; GLUT4-F: AAA-

AGT-GCC-TGA-AAC-CAG-AG, GLUT4-R: TCA-

CCT-CCT-GCT-CTA-AAA-GG; HK2-F: TGA-TCG-

CCT-GCT-TAT-TCA-CGG, HK2-R: AAC-CGC-CTA-

GAA-ATC-TCC-AGA; FH-F: GAG-AGC-TGA-TCT-

TGC-CTG-AA, FH-R: ACA-CTG-AGT-AGG-GTT-

CAC-CT; LDHA-F: TGT-CTC-CAG-CAA-AGA-CTA-

CTG-T, LDHA-R: GAC-TGT-ACT-TGA-CAA-TGT-

TGG-GA; SDHA-F: TGT-GCG-CAC-TGC-AGA-CCA-

TA, SDHA-R: CAA-ACG-GCT-TCT-TCT-GCT-GTC; 

ATP5B-F: ATG-CAG-GAA-AGG-ATC-ACC-ACC, 

ATP5B-R: AGC-AAT-AGC-CCG-GGA-CAA-C; FAS-

F: GCT-GCG-GAA-ACT-TCA-GGA-AAT, FAS-R: 

AGA-GAC-GTG-TCA-CTC-CTG-GAC-TT; SCD-1-F: 

CTG-ACC-TGA-AAG-CCG-AGA-AG, SCD-1-R: GCG-

TTG-AGC-ACC-AGA-GTG-TA; ACL-F: GCC-AGC-

GGG-AGC-ACA-TC, ACL-R: CTT-TGC-AGG-TGC-

CAC-TTC-ATC; ACAC-F: GCC-TCT-TCC-TGA-CAA-

ACG-AG, ACAC-R: TGA-CTG-CCG-AAA-CAT-CTC-

TG; FOXO6-F: AGA-GCG-CCC-CGG-ACA-AG-AGA, 

FOXO6-R: GCC-GAA-TGG-AGT-TCT-TCC-AGC-C; 

SREBPC-1-F: CCA-TCG-ACT-ACA-TCC-GCT-TCT-

T, SREBPC-1-R: ACT-TCG-CAG-GGT-CAG-GTT-

CTC; APOE-F: ACA-GAT-CAG-CTC-GAG-TGG-

CAA-A, APOE-R: ATC-TTG-CGC-AGG-TGT-GTG-

GAG-A; TIMM17A-F: ATT-GAA-GGA-GCT-GGT-

ATC-TTG-C, TIMM17A-R: CGG-TAG-TCT-CCA-

AAC-GGC-G; TIMM17B-F: CAG-GCT-ATC-AAG-

GGC-TTC-CG, TIMM17B-R: TCC-TCA-CAG-CAT-

TGA-CAC-TAC-C; TFAM-F: CAG-GAG-GCA-AAG-

GAT-GAT-TC, TFAM-R: CCA-AGA-CTT-CAT-TTC-

ATT-GTC-G; PGC1a-F: GTA-AAT-CTG-CGG-GAT-

GAT-GG, PGC1a-R: AGC-AGG-GTC-AAA-ATC-

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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GTC-TG; PPARGC1b-F: GGA-GAC-ACA-GAT-GAA-

GAT-CCA-AGC, PPARGC1b-R: GCT-CCA-CCG-

TCA-GGG-ACT-C; PPRC1-F: CAG-GAG-AAG-AAG-

CCC-TTA-GAC-C, PPRC1-R: CTT-TCG-CCA-AGA-

GTG-AGA-CAG; MPC1-F: AAC-TAC-GAG-ATG-

AGT-AAG-CGG-C, MPC1-R: GTG-TTT-TCC-CTT-

CAG-CAC-GAC; BAX-F: TAG-CAA-ACT-GGT-GCT-

CAA-GG, BAX-R: TCT-TGG-ATC-CAG-ACA-AGC-

AG; KU70-F: CCC-AAG-GTT-GAA-GCC-ATA-AA, 

KU70-R: TTA-CGA-AAA-TGG-GCC-TTC-AG; P53-F: 

GTA-TTT-CAC-CCT-CAA-GAT-CC, P53-R: TGG-

GCA-TCC-TTT-AAC-TCT-A; HIF1A-F: TCA-AGT-

CAG-CAA-CGT-GGA-AG, HIF1A-R: TAT-CGA-

GGC-TGT-GTC-GAC-TG; MYC-F: TGA-GCC-CCT-

AGT-GCT-GCA-T, MYC-R: AGC-CCG-ACT-CCG-

ACC-TCT-T. 

 

Measurement of proteasome and cathepsin B, L 

activities in cells or tumor extracts 

 

Isolated cells or tumor samples were lysed in the 

presence of protease and phosphatase inhibitors (Sigma-

Aldrich); protein content of samples was assessed with 

Bradford (Bio-Rad Laboratories). Proteasome and 

cathepsin B, L activities were measured as described 

before (Cheimonidi et al., 2018). 
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Fasting GLU levels in control and CLU Tg (ubiquitous OE) male mice. GLU levels in control (littermate 
non-Tg) and CLU Tg male mice following fasting (n=4 per mouse genotype). Error bars, ± SD; *P<0.05. 
 

 
 

Supplementary Figure 2. GLU, INS and PYR decreased tolerance of CLU Tg (pancreas targeted OE) mice, is exacerbated in a 
model of STZ-mediated induction of diabetes. GLU levels (tolerance curves) in control (Con; littermate non-Tg) mice, control mice being 
treated with STZ (Con STZ), CLU overexpressing (Tg; pancreas-targeted) mice and CLU overexpressing mice being treated with STZ (Tg STZ). 
Mice were administered GLU (A1), INS (B1) or PYR (C1); GLU levels were measured before GLU, INS, PYR injection (see, Materials and 
Methods) and 15, 30, 60 and 120 minutes after. (A2–C2) Areas under respective curves (A1–C1) being calculated from the sum of the different 
trapeziums formed (errors bars are shown in curves). (n=5 per mouse genotype). Error bars, ± SD; *P<0.05. 
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Supplementary Figure 3. Expression levels (heat map) of antioxidant, mitochondrial and metabolic genes in the pancreas 
and liver of control or CLU Tg (pancreas-targeted OE) mice (vs. non STZ treated animals) after STZ administration-mediated 
induction of diabetes. Heat map indicating relative expression levels of shown genes following STZ treatment in control (Con; littermate 
non-Tg) or TgI173, ΤgI178 mice; differential responses among the different animal groups are also evident by shown Pearson Correlation (r) 
values (Con vs. Tg columns). The different groups of animals tested are control (Con; littermate non-Tg) mice, control mice being 
administered STZ (Con STZ), CLU overexpressing mice (Tg; pancreas-targeted) and CLU overexpressing mice being administered STZ (Tg STZ) 
(n=5 per mouse genotype). *P<0.05; **P<0.01 (Tg STZ vs. Con STZ treatment). 
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Supplementary Figure 4. CLU OE upregulates proteostatic modules in MEFs derived from TgN102 or TgG106 (ubiquitous OE) 
mice. (A) Relative clu mRNA expression levels in control (Con; littermate non-Tg), TgN102 and TgG106 mice derived MEFs. (B) Relative (%) 
cathepsin B, L enzymatic activities in control, TgN102 and TgG106 MEFs. (C) Relative (%) proteasome enzymatic activities in control, TgN102 
and TgG106 MEFs. Error bars, ± SD (n=2-4 per mouse genotype); *P<0.05; **P<0.01. 
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Supplementary Figure 5. Differential (vs. controls) gene expression levels (along with CLU serum levels in Tg mice) in 
melanoma tumors grafted in TgN102 and ΤgG106 (ubiquitous OE) mice. (A) Heat map indicating relative expression levels (vs. Con; 
littermate non-Tg) of shown autophagic, proteasome, antioxidant, mitochondrial and metabolic genes in melanoma cells-derived tumors 
grafted in TgN102 or TgG106 mice (n=6 per mouse genotype); similar genomic responses in Tg mice are also evident by shown Pearson 
Correlation (r) values (TgN102 vs. TgG106). (B) CLU protein levels in the serum of shown mice bearing (or not) melanoma cells-derived 
tumors (n=6 per mouse genotype). GAPDH probing (tissue lysate) was used as a reference. In (A), *P<0.05; **P<0.01 (Tg vs. Con). 
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Supplementary Tables 
 

Supplementary Table 1. Statistical analyses (Figure 2A). 

 

Pearson Corr.1 denotes gene expression correlation within tissue amongst the two Tg lines, and 
Pearson Corr.2 across tissues (n=4 per mouse genotype). 
Regression analysis (F significance) refers to genes studied in either Tg lines or tissues. 

 

Supplementary Table 2. Statistical analyses (Figure 2B). 

 

Pearson Corr.2 across tissues (n=4 per mouse genotype). 
Regression analysis (F significance) refers to genes 
studied in either Tg lines or tissues. 

 

Supplementary Table 3. Statistical analyses (Figure 3C). 

 

Pearson Corr.1 denotes gene expression correlation within tissue amongst the 
two Tg lines, and Pearson Corr.2 across tissues (n=4 per mouse genotype). 
Regression analysis (F significance) refers to genes studied in either Tg lines or 
tissues. 


