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INTRODUCTION 
 

Gastric cancer (GC) is the 3rd most common cause of 

tumor-associated death and the 3rd most commonly 

diagnosed tumor worldwide [1–4]. The cause and 

pathogenesis of this disease are complex and 

associated with many factors [5–8]. Despite the great 

achievements that have been made in GC therapeutics, 

the survival rate of GC patients remains unsatisfactory 

[9–12]. The major challenge in the treatment of 

advanced GC is the manifestation of peritoneal, distal 

organ and lymphatic metastases [13–15]. Therefore, a 

detailed and improved understanding of the molecular 

mechanisms underlying GC progression and 

development is greatly needed. 

As one type of ncRNA, lncRNAs are more than 200 nt 

long [16–18]. Growing evidence has revealed that 

lncRNAs are involved in several cellular pathways and 

processes, including cell apoptosis, angiogenesis, 

differentiation, immune responses, proliferation and 

metabolism [19–21]. Compelling studies have shown 

that lncRNAs play critical roles in the development and 

initiation of tumors and that lncRNAs act as tumor 

suppressor genes or oncogenes in tumors [22–25]. 

Recently, a new lncRNA, MSC-AS1, was identified as 

a crucial modulator in the development of tumors  

[26–30]. Cao et al. [31]. found that MSC-AS1 promoted 

hepatocellular carcinoma progression by enhancing 

PGK1 expression. Yao et al. [30]. showed that | 

MSC-AS1 increased nasopharyngeal carcinoma 
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ABSTRACT 
 

Emerging studies have noted that dysregulated lncRNAs are implicated in cancer progression and 
tumorigenesis. We first showed that MSC-AS1 was overexpressed in gastric cancer (GC) cells (HGC-27, 
MKN-45, SGC-7901 and MGC-803 cells) compared with GES cells. We observed that MSC-AS1 was 
upregulated in GC specimens compared with paired normal specimens. MSC-AS1 increased cell growth and 
cycle progression. Moreover, the overexpression of MSC-AS1 enhanced the secretion of the inflammatory 
mediators IL-1β, IL-6 and TNF-α. We found that the overexpression of MSC-AS1 inhibited the expression of 
miR-142-5p in HGC-27 cells. We noted that DDK5 was a target gene of miR-142-5p. The overexpression of 
miR-142-5p suppressed the luciferase activity of wild-type DDX5, but the luciferase activity of the mutant 
DDX5 was not changed. We showed that miR-142-5p was downregulated in GC specimens compared with 
paired normal specimens. MSC-AS1 expression was inversely correlated with miR-142-5p expression in GC 
specimens. MSC-AS1 induced cell growth, cell cycle progression and inflammatory mediator secretion  
by modulating DDX5. These results showed that MSC-AS1 functions as a key oncogene in the development 
of GC. 
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development by regulating miR-524-5p/NR4A2. 

However, the functional role of MSC-AS1 in GC 

remains unknown. 

 

RESULTS 
 

MSC-AS1 and DDX5 were overexpressed and miR-

142-5p was downregulated in GC cells 

 

MSC-AS1 was overexpressed in GC cells (HGC-27, 

MKN-45, SGC-7901 and MGC-803 cells) compared to 

GES cells (Figure 1A). miR-142-5p was downregulated 

in GC cells (HGC-27, MKN-45, SGC-7901 and MGC-

803 cells) compared to GES cells (Figure 1B). 

 

MSC-AS1 was upregulated in GC specimens 

 

We observed that MSC-AS1 was upregulated in GC 

specimens compared with paired normal specimens 

(Figure 2A). The level of MSC-AS1 was upregulated in 

29 GC specimens (72.5%, 29/40) compared to their 

paired normal specimens (Figure 2B). 

 

miR-142-5p was downregulated in GC specimens 

 

We showed that miR-142-5p was downregulated in GC 

specimens compared to paired normal specimens 

(Figure 3A). The level of miR-142-5p was decreased in 

28 GC specimens (70.0%, 28/40) compared to their 

paired normal specimens (Figure 3B). MSC-AS1 

expression was inversely correlated with miR-142-5p 

expression in GC specimens (Figure 3C). 

 

MSC-AS1 increased cell growth, cell cycle 

progression and inflammatory mediator secretion 

 

The level of MSC-AS1 was significantly overexpressed 

in HGC-27 cells after treatment with the pcDNA-MSC-

AS1 plasmid (Figure 4A). Elevated expression of MSC-

AS1 enhanced the expression of Ki-67 (Figure 4B) and 

CKD2 (Figure 4C) in HGC-27 cells. MSC-AS1 

overexpression induced cell cycle progression in HGC-

27 cells (Figure 4D). Overexpression of MSC-AS1 

increased HGC-27 cell growth, according to the CCK-8 

analysis (Figure 4E). Overexpression of MSC-AS1 

enhanced the secretion of the inflammatory mediators 

IL-1β, IL-6 and TNF-α (Figure 4F–4H). 

 

MSC-AS1 modulated miR-142-5p/DDX5 expression 

 

By utilizing the online tool TargetScan, DDX5 was 

predicted to be a potential target gene of miR-142-5p 

(Figure 5A). DDX5 was significantly overexpressed in 

HGC-27 cells after treatment with the DDX5 mimic 

(Figure 5B). Overexpression of miR-142-5p suppressed 

the luciferase activity of wild-type DDX5, but the 

luciferase activity of mutant DDX5 was not changed 

(Figure 5C). Moreover, DDX5 and miR-142-5p were 

enriched in the Ago2-containing beads compared with 

the input, according to the RIP method (Figure 5D).  

 

 

 

Figure 1. MSC-AS1 and DDX5 were overexpressed and 
miR-142-5p was downregulated in GC cells. (A) The 
expression of MSC-AS1 was detected by qRT-PCR analysis. 
GAPDH was used as the internal control. (B) The expression of 
miR-142-5p was detected by qRT-PCR analysis. U6 was used as 
the internal control. (C) DDX5 was upregulated in GC cells (HGC-
27, MKN-45, SGC-7901 and MGC-803 cells) compared to GES 
cells. GAPDH was used as the internal control. 
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miR-142-5p overexpression decreased DDX5 expression 

(Figure 5E). MSC-AS1 overexpression inhibited miR-

142-5p expression (Figure 5F) and enhanced DDX5 

expression in HGC-27 cells (Figure 5G). 

 

MSC-AS1 induced cell growth, cell cycle progression 

and inflammatory mediator secretion by modulating 

DDX5 

 

The level of DDX5 was significantly decreased in 

HGC-27 cells after treatment with DDX5 siRNA 

(Figure 6A). Knockdown of DDX5 suppressed the 

expression of Ki-67 (Figure 6B) and CKD2 (Figure 6C) 

in MSC-AS1-overexpressing HGC-27 cells. Inhibition 

of DDX5 expression decreased the cell cycle (Figure 

6D) and growth (Figure 6F) of MSC-AS1-over-

expressing HGC-27 cells. Knockdown of DDX5 

suppressed the secretion of the inflammatory mediators 

IL-1β, IL-6 and TNF-α (Figure 6F–6H). 

DISCUSSION 
 

Compelling studies have observed that lncRNAs 

participate in many cell biological processes, including 

carcinogenesis and development [32–34]. For instance, 

Sun et al. [35]. proved that lncRNA LATS2-AS1-001 

suppressed GC development by modulating the 

YAP1/LATS2 pathway by binding to EZH2. Sun et al. 

indicated that AK025387 promoted cell invasion and 

migration in GC [36]. Gao et al. observed that NEAT1 

induced GC development by modulating the miR-365a-

3p/ABCC4 axis. Zhang et al. [37]. showed that NNT-

AS1 knockdown suppressed GC development by 

regulating the miR-142-5p/Wnt/β-catenin/SOX4 signal-

ing pathway. Li et al. [38]. showed that IGF2-AS 

enhanced GC cell migration, invasion and growth by 

regulating the EZH2/miR-937 axis. Recently, a new 

lncRNA, MSC-AS1, was identified as a crucial modula-

tor in the development of tumors [26–30]. Cao et al. [31]. 

 

 
 

Figure 2. MSC-AS1 was upregulated in GC specimens. (A) MSC-AS1 was upregulated in GC specimens compared with paired normal 
specimens. (B) The level of MSC-AS1 was upregulated in 29 GC specimens (72.5%, 29/40) compared to their paired normal specimens. 
GAPDH was used as the internal control. 

 

 
 

Figure 3. miR-142-5p was downregulated in GC specimens. (A) miR-142-5p was downregulated in GC specimens compared to paired 
normal specimens. (B) The level of miR-142-5p was decreased in 28 GC specimens (70.0%, 28/40) compared to their paired normal 
specimens. (C) MSC-AS1 expression was inversely correlated with miR-142-5p expression in GC specimens. U6 was used as the internal 
control. 
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Figure 4. MSC-AS1 increased cell growth, cell cycle progression and inflammatory mediator secretion. (A) The expression of 
MSC-AS1 was detected by qRT-PCR analysis. (B) The expression of Ki-67 was measured using qRT-PCR analysis. (C) The level of CKD2 was 
detected by qRT-PCR analysis. (D) MSC-AS1 overexpression induced cell cycle progression in HGC-27 cells. (E) MSC-AS1 overexpression 
increased HGC-27 cell growth, based on CCK-8 analysis. (F) MSC-AS1 overexpression enhanced IL-1β secretion. (G) MSC-AS1 overexpression 
promoted IL-6 secretion. (H) Elevated expression of MSC-AS1 increased the secretion of TNF-α. GAPDH was used as the internal control. 
*p<0.05, **p<0.01 and ***p<0.001. 

 

 
 

Figure 5. MSC-AS1 modulated miR-142-5p/DDX5 expression. (A) By utilizing an online tool, TargetScan, DDX5 was predicted to be a 
potential target gene of miR-142-5p. (B) The expression of DDX5 was measured by using qRT-PCR analysis. (C) Overexpression of miR-142-5p 
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suppressed the luciferase activity of wild-type DDX5, but the luciferase activity of mutant DDX5 was not changed. (D) DDX5 and miR-142-5p 
were enriched in the Ago2-containing beads compared with the input, according to the RIP method. (E) miR-142-5p overexpression 
decreased DDX5 expression. (F) MSC-AS1 overexpression inhibited miR-142-5p expression. (G) The expression of DDX5 was measured by qRT-
PCR assay. **p<0.01. 

Found that MSC-AS1 enhanced hepatocellular 

carcinoma progression by enhancing PGK1 expres-

sion. Yao et al. [30]. showed that MSC-AS1 increased 

nasopharyngeal carcinoma development by regulating 

miR-524-5p/NR4A2. Hu et al. [28]. showed that 

MSC-AS1 regulated renal carcinoma cell migration 

and growth by modulating the miR-3924/ 

WNT5A/Wnt/β-catenin axis. In the present study, we 

conducted tests to examine the functional role of 

MSC-AS1 in GC. We first showed that MSC-AS1 

was overexpressed in GC cells (HGC-27, MKN-45, 

SGC-7901 and MGC-803 cells) compared to GES 

cells. We observed that MSC-AS1 was upregulated in 

GC specimens compared with paired normal 

specimens. MSC-AS1 increased cell growth and cell 

cycle progression. Moreover, the overexpression of 

MSC-AS1 enhanced the secretion of the inflammatory 

mediators IL-1β, IL-6 and TNF-α. 

 

Numerous studies have shown that lncRNAs regulate 

cell biological processes by sponging miRNA 

expression [39–41]. For example, Deng et al. [42]. 

showed that DLGAP1-AS1 induced GC aggressiveness 

by sponging miR-628-5p and regulating the miR-628-

5p/AEG-1 axis. Liu et al. [43]. showed that SNHG1 

enhanced GC cell EMT progression via modulation of 

the miR-15b/Notch1/DCLK1 axis. Liu et al. proved that 

TONSL-AS1 modulated CDK1/miR-490-3p to regulate 

ovarian carcinoma cell growth [44]. Liu et al. [45]. 

indicated that HNF1A-AS1 induced GC metastasis, 

angiogenesis, invasion and lymphangiogenesis by 

sponging miR-30b-3p. Shi et al. [46]. demonstrated that 

OIP5-AS1 induced hepatocellular carcinoma angio-

genesis, cell migration and cell growth by modulating 

miR-3163/VEGFA. Furthermore, Zhang et al. showed 

that knockdown of MSC-AS1 induced sensitivity  

to cisplatin and suppressed the development of 

osteosarcoma by sponging miR-142 [29]. We also 

showed that MSC-AS1 overexpression inhibited miR-

142-5p expression in HGC-27 cells. We observed that 

DDK5 was a target gene of miR-142-5p. The over-

expression of miR-142-5p suppressed the luciferase 

activity of wild-type DDX5, but the luciferase activity 

of mutant DDX5 was not changed. We showed that 

miR-142-5p was downregulated in GC specimens 

compared to paired normal specimens. MSC-AS1 

expression was inversely correlated with miR-142-5p 

expression in GC specimens. MSC-AS1 induced cell 

 

 
 

Figure 6. MSC-AS1 induced cell growth, cycle and inflammatory mediators secretion via modulating DDX5. (A) The level of 

DDX5 was measured by qRT-PCR analysis. (B) The expression of ki-67 was measured by qRT-PCR assay. (C) The expression of CKD2 was 
detected by qRT-PCR assay. (D) Inhibition expression of DDX5 decreased cell cycle in MSC-AS1-overexpressing HGC-27 cell. (E) Cell 
proliferation was measured by analyzed with CCK-8 assay. (F) The expression of IL-1β was measured by ELISA. (G) The expression of IL-6 was 
measured by ELISA. (H) The expression of IL-6 was detected by ELISA. *p<0.05, **p<0.01 and ***p<0.001. 
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growth, cell cycle progression and inflammatory 

mediator secretion by modulating DDX5. 

 

In summary, we observed that MSC-AS1 was 

overexpressed in GC cells and specimens and that 

ectopic expression of MSC-AS1 enhanced cell growth, 

cell cycle progression and inflammatory mediator 

secretion by modulating miR-142-5p/DDX5. These 

results showed that MSC-AS1 acts as a key oncogene in 

the development of GC. 

 

MATERIALS AND METHODS 
 

Clinical specimens and cell transfection 

 

A total of forty pairs of GC specimens and control 

specimens were acquired from GC patients who 

underwent surgery at The Fourth Hospital of China 

Medical University (Liaoning, Shengyang). Cell lines 

(HGC-27, MKN-45, SGC-7901, MGC-803 and GES 

cells) were acquired from ATCC, USA and cultured in 

DMEM (Gibco, BRL, UK) supplemented with 

streptomycin/penicillin and FBS (Gibco, BRL, UK). 

miR-142-5p mimic, pcDNA-MSC-AS1, siRNA-DDX5 

and their controls (20 nM) were obtained from Shanghai 

GenePharma. Cell transfections were carried out with a 

Lipofectamine kit (Invitrogen, CA, USA). 

 

RT-qPCR 

 

RNA was extracted from GC cells or specimens using a 

TRIzol kit following the manufacturer’s protocol 

(Invitrogen, CA, USA). We utilized SYBR Green reagent 

(NEWBio) to study miR-142-5p, DDX5 and MSC-AS1 

expression with the CFX96 system (VisonBio Scientific). 

The data were normalized to GAPDH or U6. The 2-ΔΔCt 

method was carried out to calculate relative fold changes. 

Primer sequences were noted: MSC-AS1, F, TCAAG 

AAATG GTGGC TAT and R, GCTCT GAGAC TGGCT 

GAA; miR-142-5p, F, TCAAG AAATG GTGGC TAT 

and R, CATAA AGTAG AAAGC ACTACT; U6, F, 

GCTTC GGCAG CACAT ATACT AAAAT and R, 

CGCTT CACGA ATTTG CGTGT CAT; GAPDH, F, 

GTCAA CGGAT TTGGT CTGTA TT and R, AGTCT 

TCTGG GTGGC AGTGAT.  

 

Luciferase assays 

 

The DDX5 3’-UTR and mutated DDX5 3’-UTR were 

cloned into the pGL3 plasmid as wild-type or mutant 

type 3’-UTRs, respectively. GC cells were treated with 

the wild-type or mutant DDX5 3’-UTR together with 

miR-142-5p scramble or mimic using a Lipofectamine 

kit. After transfection for 2 days, the luciferase activity 

was determined by Dual-Glo luciferase analysis 

(Promega, WI, USA). 

CCK-8 assay, cell cycle analysis and ELISA 
 

Cell growth was detected with a CCK-8 assay kit 

(Dojindo, Japan) according to the manufacturer’s 

instructions. These cells were plated in 96-well plates 

and cultured for 0, 24, 48 and 72 hours. Ten microliters 

of CCK-8 were added to each well, and the cells were 

cultured for an additional 3 hours. The absorbance was 

detected at 450 nm at different time points. To analyze 

cell cycle progression, GC cells were stained with cell 

cycle reagent (Thermo) following a standard protocol. 

The cell cycle was measured with flow cytometry on a 

Beckman flow cytometer (Dickinson, USA). The 

protein levels of IL-1β, IL-6 and TNF-α in the cell 

suspension were detected by ELISA following the 

manufacturer’s protocol. 
 

RNA Immunoprecipitation (RIP) analysis 
 

The RIP assay was conducted utilizing the Magna 

RNA-Binding Protein Immunoprecipitation of the RIP 

Kit (Millipore) following standard instructions. The 

cells were harvested and then lysed in RIP lysis buffer 

containing RNase and protease inhibitor, and then, the 

lysates were treated for 2 hours with buffer containing 

magnetic beads coated with antibodies against Ago2. 

IgG served as the negative control. Coprecipitated 

RNAs were determined by RT-qPCR assay. 
 

Statistical analysis 
 

All the statistical assays were analyzed using SPSS 19.0 

(Chicago, IL, USA), and the graphs were generated by 

Prism 5.0. Student’s t-test was used to compare 

significant differences between two groups, and the 

correlation between miR-142-5p and MSC-AS1 in GC 

was analyzed by Pearson correlation assay. p<0.05 was 

defined as statistically significant. 
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