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INTRODUCTION 
 

IFN-γ is a key cytokine produced by CD4 T helper cells, 

CD8 cytotoxic T cells [1, 2], natural killer (NK), natural 

killer T cells (NKT) cells [3], and, to a less extent, by B 

cells [4], and professional antigen-presenting cells (APCs) 
in the tumor microenvironment. It plays an important role 

in coordinating tumor related immune response (10). Its 

expression is induced by cytokines, including IL-2, IL-12 

[5], IL-15 [6], IL-18 [7], and type I interferon [8]. 
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ABSTRACT 
 

Interferon-gamma (IFN-γ) plays a complex role in modulating tumor microenvironment during lung 
adenocarcinoma (LUAD) development. In order to define the role of IFN-γ response genes in LUAD progression, 
we characterized the gene expression, mutation profile, protein-protein interaction of 24 IFN-γ response genes, 
which exhibited significant hazard ratio in overall survival. Two subgroups of LUAD from the TCGA cohort, 
which showed significant difference in the survival rate, were identified based on the expression of these 
genes. Furthermore, LASSO penalized cox regression model was used to derive a risk signature comprising 
seven IFN-γ response genes, including CD74, CSF2RB, PTPN6, MT2A, NMI, LATS2, and PFKP, which can serve as 
an independent prognostic predictor of LUAD. The risk signature was validated in an independent LUAD cohort. 
The high risk group is enriched with genes regulating cell cycle and DNA replication, as well as a high level of 
pro-tumor immune cells. In addition, the risk score is negatively correlated with the expression of immune 
metagenes, but positively correlated with DNA damage repair genes. Our findings reveal that seven-gene risk 
signature can be a valuable prognostic predictor for LUAD, and they are crucial participants in tumor 
microenvironment of LUAD. 

mailto:huangxiaoying@wzhospital.cn
mailto:fzhang@tongji.edu.cn
mailto:zhangpeng1121@tongji.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 11382 AGING 

Under physiological conditions, endogenous IFN-γ is 

vital to many biological processes, including regulation 

of immune cell functions [9, 10], maintenance of the 

hematopoietic stem cell niche [10], formation of bone 

[11], anti-viral host defense. IFN-γ upregulates the 

expression of MHC class I and genes required for 

antigen processing to enhance tumor immunogenicity 

[12]. Therefore, IFN-γ enhances tumor recognition  

by tumor-specific cytotoxic T lymphocytes, which 

promotes tumor rejection. Loss of IFN-γ sensitivity is 

associated with an increased tumor incidence in animals 

treated with the chemical carcinogen. In humans, 

functional loss of the tumor suppressor IRF-1, a critical 

mediator of IFN-γ signaling, is associated with 

leukemia or gastric cancer [13, 14]. 

 

IFN-γ can also have inhibitory immune-regulatory 

effects on autoimmune [15], or antitumor responses 

[16]. IFN-γ from lymphocytes enhances the expression 

of PD-L1 and PD-L2 in tumor and stromal cells, which 

bind PD-1 on tumor-infiltrating T cells to suppress the 

cytotoxic response and promotes cancer progression 

[17, 18]. IFN-γ can also drive the up-regulation of other 

negative regulatory immune checkpoint molecules such 

as IDO1 within the tumor microenvironment [19]. 

Tumor is adapted to take advantage of this positive or 

negative immune signaling feedback loop to develop 

and progress. In addition, interferon-stimulated genes 

are involved in cross-resistance to radiotherapy in 

tamoxifen-resistant breast cancer [20]. 

 

IFN-γ pleiotropic functions are mediated by cell-

specific expression of about 200 IFN-γ-regulated genes 

that include inflammatory signaling molecules, 

programmed cell death or cell cycle regulators, proteins 

involved in antigen presentation, and transcriptional 

factors, such as, major histocompatibility complex 

(MHC) class I and class II molecules, IRFs, Fc-gamma 

receptor (FCGR), GBPs (guanylate-binding proteins) 

and antiviral proteins like PKR, OAS proteins [21, 22]. 

Characterizing cellular targets of IFN-γ is critical for its 

prognostic or therapeutic application, particularly in 

cancers where this cytokine can induce both anti- or 

pro-tumorigenic effects. 

 

Lung cancer is the leading cause of cancer-related death 

around the world. Lung adenocarcinoma (LUAD), one 

of the most frequently observed lung cancer subtypes, 

has distinct cellular and mutational landscapes with 

complex immune contexture [23]. Emerging evidence 

supports that tumor microenvironment impacts LUAD 

progression and clinical outcome [24]. Nonetheless, no 

existing study has comprehensively analyzed and 
screened interferon gamma response genes as the risk 

signature for LUAD prognosis, or its correlation with 

various clinical and pathological features. In this study, 

we systematically profiled the expression and mutation 

profile, protein-protein interaction of key interferon 

gamma response genes in LUAD using RNA-seq data 

from The Cancer Genome Atlas (TCGA) database. 

Using consensus clustering based on interferon gamma 

response genes expression profile, we identified and 

characterized 2 clinically and molecularly distinct 

LUAD subtypes; furthermore, using Lasso penalized 

cox regression analysis, a risk signature comprising 

seven interferon gamma response genes was 

constructed. The accuracy and sensitivity of the risk 

signature in prognosis was successfully validated by 2 

independent LUAD cohorts from the GEO database. In 

addition, the high risk group contains immune repressed 

features, and is enriched with biological pathways 

including cell cycle, DNA replication, and DNA 

damage repair. It also has different immune checkpoint 

gene expression profiles, compared to the low risk 

group. Overall, our findings could be valuable in 

predicting clinical outcome and guiding immunotherapy 

of lung cancer. 

 

RESULTS 
 

Transcriptional and genetic alterations of 24 

interferon gamma response genes in LUAD 

 

The flow chart of this study was presented 

(Supplementary Figure 1). We chose the gene set, 

‘HALLMARK_INTERFERON_GAMMA_RESPONSE’, 

for our analysis, which include 200 genes up-regulated in 

response to interferon gamma, from the molecular 

signature database of GSEA (https://www.gsea-

msigdb.org/). We used TCGA LUAD data as our training 

set for the risk signature construction. The clinico-

pathological information of TCGA LUAD patients is 

summarized (Supplementary Table 1A). Based on initial 

univariate cox analysis, 24 interferon gamma response 

genes, which had statistically significant hazard ratio 

(HR) related to patient overall survival, were used in the 

subsequent study. 

 

To characterize these genes, we compared the 

expression profile of 24 interferon gamma response 

genes between tumor and normal samples, and 

presented the results in the heatmap (Figure 1A) and 

box plots (Figure 1B), which showed that, the 

expression of 15 interferon gamma response genes was 

markedly downregulated in tumor samples, including 

CD69, CD74, CD86, CDKN1A, CIITA, CSF2RB, 

IL10RA, IRF8, LATS2, LCP2, MT2A, NOD1, PTPN6, 

SELP, SOD2, while the expression of 9 genes was 

markedly upregulated in LUAD, including IRF4, 

ITGB7, NMI, OAS3, PFKP, PNP, RBCK1, RIPK2, and 

TRAFD1. The differential gene expression analysis 

results were summarized (Supplementary Table 2).

https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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Among TCGA LUAD samples, 101 had mutations in 

these genes, with frequency of 18%. It was found that 

SELP exhibited the highest mutation frequency 

followed by CD86, CSF2RB, LATS2, LCP2, IRF4, and 

IRF8, etc, while CD74 and TRAFD1did not show any 

mutations in these samples (Figure 1C). Further 

analyses revealed a significant mutation co-occurrence 

relationship between SELP and PTPN6, SELP and 

IRF8, OAS3 and CSF2RB1, LCP2 and CSF2RB1, 

along with LCP2 and RBCK1 (Figure 1D). 

 

Overall, the above analyses revealed a highly 

heterogeneous landscape of genetic and transcriptional 

alteration in interferon gamma response genes between 

tumor and normal samples, implying that these genes 

may play a crucial role in the tumor occurrence and 

progression. 

Gene expression correlation and protein-protein 

interaction among 24 interferon gamma response 

genes 

 

For a better understanding of interactions among these 

24 interferon gamma response genes, the correlation in 

gene expression was calculated (Figure 2A). Clearly, 

ITGB7 and IRF4 were positively correlated with each 

other, CD69, IRF8, CD86, LCP2, CSF2RB, IL10RA, 

PTPN6, CD74, CIITA were positively correlated with 

each other. SELP exhibited a significantly positive 

correlation with LATS2. TRAFD1, NMI, and OAS3 

positively correlated with each other. In addition, 

NOD1 were negatively correlated with PFKP, PNP, and 

NMI, while PFKP were negatively correlated with 

CD74, NOD1, and SELP. Of note, the correlation 

between IL10RA and IRF8 (0.8), CD86 (0.7), LCP2 

 

 
 

Figure 1. Differential expression of interferon gamma response genes between tumor and normal tissues in the TCGA LUAD 
cohort. (A, B) Differential expression of interferon gamma response genes between tumor and normal tissues in the TCGA LUAD cohort is 

presented in the heatmap (A) and the box plot (B). ***P<0.001 (normal vs. tumor tissues). N, normal; T, tumor. (C) The mutation landscape of 
24 interferon gamma response genes in 561 patients from the TCGA LUAD cohort. The middle panel depicts the gene mutation patterns 
across each sample with different mutation type colored differently. The mutation frequency in each gene is listed on the right of the middle 
panel, total mutation burden for each sample is shown in the upper barplot, the proportion of each mutation type of genes is shown on the 
right barplot. The fraction of nucleotide conversions in each sample is indicated by the stacked barplot below. (D) The correlation coefficient 
analysis of mutation co-occurrence in 24 interferon gamma response genes from the TCGA LUAD cohort. 
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Figure 2. Correlation and interaction among interferon gamma response genes. (A) Spearman correlation analysis of the 

expression among 24 interferon gamma response genes from the TCGA LUAD cohort. (B) Protein-protein interactions among 24 interferon 
gamma response genes. 
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(0.81) and CSF2RB (0.83), ranked top among all 

correlations. 

 

Protein-protein interaction among them was also analyzed 

(Figure 2B). The interactions between these proteins were 

supported by experimental assays (pink lines), the curated 

databases (blue lines), co-expression (black lines), or text 

mining (olive green lines). In addition, LCP2, CSF2RB, 

CD69, CD86, CD74, IL10RA, IRF4, IRF8, CIITA, 

MT2A are connected with at least four other proteins, 

suggesting that these proteins may regulate each other. 

However, CDKN1A and LATS2 connects only with each 

other, while PNP appears to have no connection. This 

may suggest that they are regulated by proteins other than 

those under study. Overall, the protein-protein interaction 

analysis among 24 interferon gamma response genes 

indicates that interferon gamma response pathway is 

tightly regulated process. 

 

Consensus clustering analysis based on expression of 

interferon gamma response genes 

 

Consensus clustering analysis indicates that LUAD 

patients in the TCGA cohort can be classified into two 

clusters (Figure 3A, 3B), with the range of empirical 

cumulative distribution (CDF) presented for k = 2 to k = 

9 (Supplementary Figure 2A–2J). Therefore, TCGA 

LUAD cohort was grouped into two clusters based on 

two fully distinct expression patterns of 24 interferon 

gamma response genes. 

 

 
 

Figure 3. Two clusters in the TCGA LUAD cohort with distinct clinical outcomes and clinicopathological features identified by 
consensus clustering. (A) Consensus clustering matrix at k=2. (B) Tracking plot at k=2 to k=10 by consensus clustering. (C) Heatmap of 
interferon gamma response gene expression for two clusters (1 and 2) based on consensus clustering of TCGA LUAD tumor samples, together 
with the clinical and pathological features (T, N, M, or stage).  (D) Principal component analysis (PC1 vs. PC2) of 24 interferon gamma 
response gene expression pattern in the TCGA LUAD cohort. Two clusters are marked with colors (green and red). (E) Kaplan-Meier overall 
survival rate curves for two clusters in the TCGA LUAD cohorts. P=0.002 (group 1 vs. group 2). 



 

www.aging-us.com 11386 AGING 

The clinical features between two clusters (clusters 1 

and 2) were presented in the heatmap (Figure 3C). 

Cluster 2 was characterized by the decreased expression 

of IRF4, CD86, LCP2, IL10RA, ITGB7, IRF8, 

CSF2RB, PTPN6, CD74, CIITA, CD69, SELP, and 

NOD1, and the increased expression of other genes, 

including RIPK2, SOD2, TRAFD1, NM1, OAS3, 

RBCK1, PFKP, PNP, MT2A, and CDKN1A. 

Furthermore, cluster 2 was significantly associated with 

late T stage (P < 0.05). 

 

Next, principle component analysis (PCA) was 

carried for comparing gene expression patterns 

between two clusters. Our PCA analysis revealed that 

these two clusters were markedly different (Figure 

3D). finally, cluster 2 had a markedly reduced overall 

survival rate, as compared with that in cluster1 (P = 

0.002) (Figure 3E). 

 

The above analysis indicates that distinct expression 

patterns of interferon gamma response genes may serve 

as prognostic markers in LUAD patient survival. 

 

Identification of a risk signature comprising of 7 

interferon gamma response genes in LUAD 

 

Using the univariate cox regression model, we analyzed 

the prognostic value of 24 interferon gamma response 

genes in the TCGA cohort (P<0.05; Figure 4A). Among 

them, 14 genes, including CD74, CIITA, IRF8, PTPN6, 

CSF2RB, NOD1, ITGB7, LCP2, CD69, IL10RA, 

SELP, IRF4, CD86, and TRAFD1, were the protective 

genes with a hazard ratio (HR) of less than 1, while 10 

genes, including MT2A, PFKP, RIPK2, NMI, OAS3, 

RBCK1, LATS2, CDKN1A, PNP, and SOD2, were the 

risk genes with a HR of more than 1. 

 

For a more precise prediction of LUAD prognosis using 

interferon gamma response genes, the cox regression 

algorithm penalized by LASSO was utilized (Figure 4B, 

4C). After cross validation, seven genes, including 

MT2A, PFKP, NMI, LATS2, CD74, PTPN6, CSF2RB, 

were chosen for calculation of a risk signature. Risk 

score of each patient was calculated with the gene 

expression value of seven genes and corresponding 

LASSO regression coefficient. The detailed formulation 

is: Risk=0.00164* MT2A expression + 0.00279*PFKP 

expression + 0.02065*NMI expression + 

0.02099*LATS2 expression -0.00020*CD74 expression 

-0.00566*PTPN6 expression - 0.01433*CSF2RB 

expression. In addition, Kaplan Meier survival curve 

analysis using the log-rank method was carried out for 

these seven genes. The results showed that high 
expression of CD74 (p = 0.007), CSF2RB (p = 0.0096), 

or PTPN6 (p = 0.0083), showed the favorite prognosis, 

while high expression of MT2A (p = 0.0028), NMI (p < 

0.0001), LATS2 (p = 0.0015), or PFKP (p = 0.0011) was 

associated with poor prognosis in LUAD (Figure 5). 

 

We have also used the two-stage log-rank test to 

perform survival analysis with intersected curves for 

MT2A or CSF2RB gene. For MT2A gene, LRPV (p-

value of the log-rank test) is 0.0028, MTPV (p-value of 

the suggested stage-II test) is 0.8000, and TSPV (p-

value of the two-stage test) is 0.0028. In addition, for 

CSF2RB gene, LRPV is 0.0096, MTPV is 0.0000, and 

TSPV is 0.0096. Therefore, the conclusion is consistent 

with the previous one. 

 

LUAD patients in the TCGA cohort were classified into 

the low or high risk group, based on the median risk 

score of 0.1116, the overall survival probability in the 

high risk group is much lower than that in the low risk 

group (P=2.508e-8; Figure 6A). The risk score 

distribution and associated survival status also indicates 

higher risk score had more chances of death (Figure 6B, 

6C). The expression levels of seven screened interferon 

gamma response genes in these two risk groups are 

presented in the heatmap (Figure 6D). LATS2, PEKP, 

MT2A, and NMI are upregulated in the high risk group, 

while CD74, PTPN6, CSF2RB are down-regulated in the 

high risk group. In addition, the correlation between the 

risk score and each clinical feature was analyzed, the late 

T stage (P<0.001), or stage (P<0.01) showed significant 

association with the high risk group (Figure 6D). 

 

Meanwhile, HR of the risk score was 4.549 based on 

univariate Cox proportional hazards regression analysis 

(95% confidence interval (CI): 3.133–6.605; P<0.001; 

Figure 6E). Furthermore, multivariate Cox proportional 

hazards regression analysis revealed that HR of the risk 

score was 3.613 (95% CI: 2.358–5.536; P<0.001; 

Figure 6F). Finally, the ROC curve analysis showed that 

prognosis prediction had an area under the ROC curve 

(AUC) value of 0.770 when based on the risk score 

alone, or the AUC value of 0.798 when based on the 

combination of the risk score and the stage information 

(1 years; Figure 6G). 

 

These findings indicated that the risk scores calculated 

based on the risk signature could accurately predict the 

prognosis and clinical features of the TCGA LUAD 

cohort. 

 

Validation of the risk signature using an 

independent cohort from the GEO database 

 

To confirm the risk signature independently, we applied 

seven-gene prognostic signature to an independent lung 
cancer cohorts in the GEO database (GSE72094). The 

clinicopathological information of GSE72094 patients 

was summarized here (Supplementary Table 1B).
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The high risk group had a markedly reduced survival 

probability than the low risk group (GSE72094: 

p=7.341e-3; Figure 7A). The increase in the risk scores 

of patients is correlated with more death in patients 

(Figure 7B, 7C), implying the higher risk score carries 

more chance of death for patients. 

The expression levels of seven genes were also 

compared between the high and low risk group, as 

shown in the heatmaps (Figure 7D). PFKP, MT2A, 

LATS2, and NMI expressions were increased, while 

CD74, PTPN6, CSF2RB expressions are decreased in 

the high risk group in the GSE72094 cohort. 

 

 
 

Figure 4. Univariate cox and LASSO Cox regression analysis for overall survival related interferon gamma response genes. (A) 
Forest plots showing the prognostic value detection of various clinical features and the risk score, in which the HRs, corresponding 95% 
confidence intervals, and p values are displayed. (B) LASSO regression analysis was used to calculate the coefficient of interferon gamma 
response genes. (C) Seven genes were selected as active covariates to determine the prognostic value after 10-fold cross-validation for the 
LASSO model. 
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Interestingly, TP53 or EGFR mutation is significantly 

associated with the high risk group. 

 

Univariate and multivariate Cox regression analysis were 

carried out to evaluate whether the risk score can serve as 

an independent prognostic factor compared to other 

clinical features, including gender, age, gene mutations, or 

stage. In univariate cox regression analysis, for 

GSE72094, HR of the risk score is 12.359 (95% CI: 3.715 

to 41.122) with p <0.001 (Figure 7E). In multivariate cox 

analysis, for GSE72094, HR of the risk score is 8.297 

(95% CI: 3.715 to 41.122) with p <0.001 (Figure 7F); 

This analysis indicates that the risk signature could serve 

as independent prognostic factors in this lung cancer data. 

 

The ROC curve analysis was done to assess the 

prognostic accuracy of the risk signature. For GSE72094, 

the prognostic prediction has the AUC value of 0.637 

based on the risk score, which was higher than other 

clinical features, including gender (0.580), age (0.513), 

KRAS mutation (0.552), LKB1 mutation (0.502), but 

was a little lower than stage (0.637). The AUC value 

increased to 0.729 when prognostic predication was 

assessed by the combination of both the risk score and 

stage information (3 years; Figure 7G). 

 

Nomogram of TCGA LUAD and GSE72094 cohorts 

were also presented to quantify the whole risk score for 

seven genes based on the clinical features 

(Supplementary Figure 3A, 3B). 

 

Functional analysis of genes associated with the high 

and low risk group 

 

Genes associated with the high and low risk group of 

LUAD patients from the TCGA cohort were analyzed by 

GSEA for enrichment analysis of KEGG pathways, in 

order to examine the potential biological functions in 

each group. Genes associated with the high risk group are 

enriched in pathways including proteasome, cell cycle, 

DNA replication, spliceosome, DNA mismatch repair, 

etc, while genes associated with the low risk group are 

enriched in pathways including thyroid disease, allograft 

rejection, intestinal immune network for IGA production, 

 

 
 

Figure 5. Kaplan-Meier survival curve analysis of seven genes in the risk signature. The survival curves and risk tables of seven 

genes in the TCGA LUAD cohort were presented with the log-rank test results. Among them, high expression of CD74, CSF2RB, or PTPN6 is 
associated with favorable prognosis, while high expression of MT2A, NMI, LATS2, or PFKP, is associated with poor prognosis in LUAD. 
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or graft versus host disease, which are related to immune 

function (Supplementary Figure 4A). 

 

We carried out similar analysis for the GSE72094 

cohort, genes in the high risk group were enriched in 

pathways including mismatch repair, base excision 

repair, cell cycle, pyrimidine metabolism, and p53 

signaling pathway, etc, and genes in the low risk group 

were enriched in pathways including GnRH signaling 

pathway, Fc epsilon RI signaling pathway, valine, 

leucine and isoleucine degradation, other glycan 

degradation, etc (Supplementary Figure 4B). 

 

 
 

Figure 6. Seven-gene risk signature can predict the prognosis in the TCGA LUAD cohort. (A) Kaplan-Meier curves of overall survival 

probability of the high vs. low risk group. (B) Risk score distribution in the TCGA LUAD cohort. (C) Survival time and survival status distribution 
in the TCGA LUAD cohort. (D) Heatmap showing the expression level for seven interferon gamma response genes among the high or low risk 
group in the TCGA LUAD cohort. (E, F) Univariate (E) and multivariate (F) Cox regression analysis of the association between 
clinicopathological features, the risk score, and patient overall survival confirmed the signature as an independent factor of patient overall 
survival in the TCGA LUAD cohort. (G) ROC curves for 3-year survival prediction and clinical characteristics, including age, gender, stage (T, N, 
or M) in the TCGA LUAD cohort. AUC, area under curve. 
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Overall, genes in the high risk group were more likely 

enriched in pathways including cell cycle, DNA 

replication, mismatch repair pathways, etc, while genes 

in the low risk group were more likely enriched in 

immune function related pathways. Thus, this analysis 

uncovers the underlying difference in cellular pathways 

in the high and low risk groups. 

The risk signature defines distinct immune response, 

immune cell infiltration, and immune checkpoint 

gene expression in lung adenocarcinoma 

 

In order to further investigate the underlying connection 

between risk groups and immune function or cell 

signaling pathways in lung cancer, GSVA analysis was 

 

 
 

Figure 7. Validation of seven-gene risk signature in an independent LUAD cohort. (A) Kaplan-Meier curves of overall survival of the 

high or low risk group in the GSE72094 cohort. (B) Risk score distribution in the GSE72094 cohort. (C) Survival time and survival status 
distribution in the GSE72094 cohort. (D) Heatmap showing the expression level of seven interferon gamma response genes in the low or high 
risk group in the GSE72094 cohort. Association of various clinical features with two groups (high vs. low risk) were determined. *P<0.05, 
**P<0.01 and ***P<0.001. (E, F) Univariate (E) and multivariate (F) Cox regression analysis of the association between clinical features 
(gender, age, stage, KRAS or LKB1 mutation), risk score, and patient overall survival in the GSE72094 cohort. Hazard ratio and associated p 
value are shown. (G) ROC curves for 3-year survival prediction and clinical characteristics, including age, gender, stage, KRAS or LKB1 
mutation in the GSE72094 cohort. 
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used to calculate the enrichment levels of different gene 

sets for each sample. 

 

First, we examined the association between risk groups 

and seven immune metagenes, including interferon, 

STAT1, MHC-I, HCK, LCK, MHC-II, and IgG, 

representing different aspects of immune response [25]. 

GSVA results for the TCGA and GSE72094 cohorts are 

presented in the heatmap (Figure 8A, 8B), revealing 

significant difference in the enrichment level of these 

metagenes between the high and low risk groups. 

 

To quantify their associations, the correlogram was used 

to display correlation between the risk score, and seven 

immune metagenes, based on the Pearson’s correlation 

coefficient between the risk score and seven metagenes 

(Figure 8C). The analysis indicated that the risk score 

was negatively correlated with HCK, LCK, MHC-II, or 

IgG metagenes in the TCGA LUAD cohort. To validate 

these findings, GSVA were also carried out in the 

GSE72094 cohort, and showed that the risk score was 

negative correlated with HCK, LCK, MHC-II, or IgG 

metagenes as well (Figure 8D), indicating that the risk 

score derived from our prognostic gene signature was 

negatively associated with immune activities including 

antigen presentation and T cell activation. 

 

We also extended the GSVA analysis of each sample in 

these two LUAD cohorts to several KEGG biological 

pathways, and found that the high risk group were 

enriched with base excision repair, mismatch repair, or 

nucleotide excision repair pathway in all two LUAD 

cohorts examined (Supplementary Figure 5A, 5B). The 

correlogram confirmed that the risk score is positively 

correlated with three DNA damage repair pathways, 

including base excision repair, nucleotide excision 

repair, and mismatch repair, but negatively correlated 

with PPAR signaling, cell adhesion molecules, and 

basal cell carcinoma related pathways (Supplementary 

Figure 5C, 5D). 

 

Next, we asked whether two risk groups have different 

immune cells infiltration profile by using CIBERSORT 

analysis. The relative enrichment levels of 22 immune 

cells were shown in the radar plots (Figure 9A, 9B). 

Wilcox test was carried out to determine the difference 

 

 
 

Figure 8. Gene set variation analysis (GSVA) and correlation coefficient analysis between immune-related metagenes and 
the risk score in two LUAD cohorts. (A, B) Heatmaps of the enrichment levels of immune-related metagenes, including IgG, Interferon, 
HCK, LCK, MHC-I, MHC-II, and STAT1, in the high or low risk group in the LUAD cohorts: TCGA (A) and GSE72094 (B). (C, D) Correlograms of 
the risk score and seven immune-related metagenes in the LUAD cohorts: TCGA (C) and GSE72094 (D). 
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in the enrichment level of immune cells between the 

high or low risk groups. In the TCGA LUAD cohort, 

the high risk group had the markedly higher levels of 

naïve B cells, activated memory CD4 T cells, 

macrophage M0 cells, activated dendritic cells, and 

neutrophils, but the lower level of memory B cells, 

resting memory CD4 T cells, regulatory T cells, resting 

dendritic cells, and resting mast cells (Supplementary 

Figure 6A). 

 

In the GSE72094 LUAD cohort, the high risk group had 

the markedly higher level of plasma cells, activated 

memory CD4 T cells, macrophage M0 and M1 cells, 

activated dendritic cells, and neutrophils, but the lower 

 

 
 

Figure 9. Comparison of immune cell infiltration and immune checkpoint gene expression between the high and low risk 
groups in two LUAD cohorts. (A, B) Radar plots show the distribution of the enrichment levels of 22 immune cells in the high (red line) or 

low (blue line) risk group in the LUAD cohorts: TCGA (A) and GSE72094 (B). Statistically significant difference in the enrichment level of 
immune cells between the high and low risk groups is indicated by the asterisks. *P < 0.05, **P < 0.01, ***P < 0.001. (C, D) Bar plots show the 
comparison of the expression of 29 immune checkpoint genes between the low and high risk groups in two LUAD cohorts: TCGA (C) and 
GSE72094 (D), by *P < 0.05, **P < 0.01, ***P < 0.001. 
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level of memory B cells, monocytes, resting dendritic 

cells, resting mast cells, eosinophils (Supplementary 

Figure 6B). 

 

We also analyzed the differential expression of 29 

immune checkpoint molecules or related TNF 

superfamily members, including CD274, CD276, 

CTLA4, HHLA2, ICOS, ICOSLG, PDCD1, 

PDCD1LG2, TMIGD2, VTCN1, BTLA, CD27, CD40, 

CD40LG, CD70, TNFRSF18, TNFRSF14, TNFRSF4, 

TNFRSF9, TNFSF4, TNFSF9, ENTPD1, FGL1, 

HAVCR2, IDO1, LAG3, NCR3, NT5E, SIGLEC15 

[26–29] (Figure 9C, 9D). The analysis revealed that, in 

the TCGA LUAD cohort, the high risk group has a 

higher expression of CD276, but the reduced expression 

of CTLA4, HHLA2, ICOS, PDCD1, PDCD1LG2, 

TMIGD2, BTLA, CD27, CD40, CD40LG, TNFRSF14, 

TNFRSF9, ENTPD1, HAVCR2, IDO1, or NCR3 

(Supplementary Figure 7A, p < 0.05). In the GSE72094 

LUAD cohort, the high risk group has a higher 

expression of CD274, CD276, CD70, TNFRSF18, 

TNFRSF9, TNFSF4, LAG3, NT5E, or SIGLEC15, but 

reduced expression of ICOS, BTLA, CD27, CD40LG, 

or NCR3 (Supplementary Figure 7B, p < 0.05). This 

analysis indicates that the high or low risk group has 

distinctive immune checkpoint gene expression profiles. 

 

Consistent with the above analysis, we also found that, 

in the TCGA LUAD cohort, the high risk group has 

higher tumor purity, higher tumor mutation burden 

(TMB), but lower stromal score, lower immune score 

(Supplementary Figure 8A–8C, P < 0.05). 

 

DISCUSSION 
 

The present study examined the expression, mutation 

pattern, and protein-protein interaction of 24 interferon 

gamma response genes in lung adenocarcinoma. To 

screen for interferon gamma response genes with 

prognostic value, first, consensus clustering of lung 

cancer patients was carried out based on 24 interferon 

gamma response gene expression. two LUAD 

subgroups, namely cluster 1 and 2, were identified. 

Specifically, the cluster 2 subgroup has significantly 

lower survival rate and exhibited a close correlation 

with late T stage. Second, univariate cox regression 

analysis was carried out to determine the genes with 

significant HR values for survival analysis; third, 

LASSO-penalized cox regression was used to enhance 

the accuracy of our prognosis model to identifying the 

most significant variables. A risk signature for 

prognosis was generated based on seven interferon 

gamma response genes, which can divide LUAD 

patients into the low or high risk group. Finally, the risk 

signature was successfully validated in an independent 

GEO dataset, and could serve as an independent 

predictor for lung cancer prognosis, indicating the 

general applicability of this risk signature. 

 

The benefits of these approaches are discussed here. 

Consensus clustering is a powerful unsupervised 

machine learning algorithm, which can produce a 

combined clustering unattainable by any single 

clustering method and are less sensitive to noise, 

outliers or sample variations. It can be used to mine 

clinically relevant and previously unknown disease 

classifications in gene expression data. Next, cox 

regression analysis is method for investigating the effect 

of several variables upon the time a specified event 

happening. It generates a better estimate of these 

functions than the Kaplan-Meier method when the 

assumptions of the Cox model are met and the fit of the 

model is strong. In addition, LASSO-penalized cox 

regression produces simpler and more interpretable 

models that incorporate only a reduced set of the 

predictors. 

 

Interestingly, both MT2A and LATS2 were significantly 

down-regulated in the lung cancer samples compared to 

the normal control in the TCGA LUAD cohort (Figure 

1B), but the univariate cox analysis of overall survival 

revealed that both MT2A and LATS2 were the risk genes 

with a HR of more than 1 (Figure 4), which was validated 

by our Kaplan Meier survival curve analysis (Figure 5). 

We validated the accuracy of our analysis by getting the 

same results using the web-based analysis tool 

(http://gepia.cancer-pku.cn/index.html). The discrepancy 

may be due to several reasons, such as: different splicing 

forms of MT2A or LATS2 proteins may have different 

roles in tumor development; different lengths of patient 

follow-up used in the survival analysis may yield 

different HRs, etc. 

 

Among these seven genes, MT2A acts as anti-oxidant, 

protects cells against hydroxyl free radicals, is 

important in homeostatic control of metal in the cell. 

HMBOX1 interacts with MT2A to regulate intracellular 

free zinc level, to inhibit apoptosis and promote 

autophagy in VECs [30]. PFKP encodes a member of 

the phosphofructokinase. A protein family, plays a key 

role in glycolysis regulation. PFKP is up-regulated in 

lung cancer and regulates glucose metabolism [31]. It is 

a prognostic marker in breast cancer [32]. LATS2 

encodes a serine/threonine protein kinase. It can 

phosphorylate and stabilize SNAI1 in the nucleus, 

which promotes epithelial-mesenchymal transition and 

tumor cell invasion. LATS2 is as a poor prognostic 

marker in non-small cell lung cancer [33]. NMI 

interacts with CMYC, NMYC, or STATs, and enhances 
STAT-mediated transcription upon cytokines IL2  

and IFN-gamma stimulation. NMI promotes cell 

proliferation through TGFbeta/Smad pathway by up-

http://gepia.cancer-pku.cn/index.html
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regulating STAT1 in colorectal cancer [34]. CD74 binds 

class II major histocompatibility complex (MHC) and 

serves as a chaperone regulating antigen presentation 

during immune response [35]. It also binds the cytokine 

macrophage migration inhibitory factor (MIF) to 

promote cell survival and proliferation [36]. PTPN6 

encodes a member of the protein tyrosine phosphatase 

(PTP) family, which regulates multiple cellular 

processes, such as cell growth, differentiation, and 

tumorigenesis [37]. CSF2RB is the common beta chain 

of the high affinity receptor for IL-3, IL-5 and CSF. 

Defects in CSF2RB is associated with a lung condition 

called protein alveolar proteinosis (PAP) [38]. 

 

Using the as-constructed risk signature, LUAD patients 

from two different cohorts can be divided into the high 

and low risk group, and the high risk group showed 

significantly poorer survival rate than the low risk 

group. GSEA analysis revealed that genes in the high 

risk group are associated with biological processes, such 

as, cell cycle, DNA replication, base excision repair, 

and mismatch repair, etc, while genes in the low risk 

group are enrichment in immune related pathways, such 

as, allograft rejection, intestinal immune network for 

IGA production, or graft versus host disease, etc. 

Furthermore, GSVA analysis indicates the high risk 

group is negatively correlated with several immune 

profiling signature (including interferon, LCK, HCK, 

etc), but highly correlated with DNA repair pathways, 

including DNA mismatch repair, nuclear excision 

repair, etc. This result indicates that DNA repair 

pathway may be involved in negatively regulating 

immune pathways in lung cancer. Finally, the high risk 

group has higher tumor purity, and higher tumor 

burden, but lower stroma score, immune score, and 

estimate score, which is consistent with our previous 

analysis. 

 

Immune cell infiltration in tumor microenvironment is 

an important regulator of tumor progression, our 

analysis found that there was a significant difference in 

immune cell infiltration between the high and low risk 

group of lung cancer patients in three different cohorts. 

The high risk group has the higher enrichment of 

immune cells including macrophage M0 cells, activated 

dendritic cells, activated memory CD4 T cells; while 

the low risk group has higher enrichment of immune 

cells including memory B cells, resting memory CD4 T 

cells, resting dendritic cells, resting mast cells, 

monocytes, etc. This analysis indicates that the high risk 

score may represent an immunosuppressive micro-

environment. 

 
In addition, several immune checkpoint genes were also 

differentially expressed in the high and low risk group 

of lung cancer patients in the cohorts, the high risk 

group has the higher expression of CD276 in both 

TCGA and GSE72094 LUAD cohorts, while the low 

risk group has the higher expression of CD27, 

CD40LG, or NCR3 in both cohorts, indicating the 

possible use of blockers targeting different immune 

checkpoint genes for different risk groups. 

 

In conclusion, our study comprehensively illustrated the 

expression and mutation patterns, possible role and 

prognostic significance of important interferon gamma 

response genes in lung adenocarcinoma patients, and 

derived a risk signature composed of seven genes, 

which could accurately predict the prognosis in lung 

adenocarcinoma patients. The present study will 

contribute to enhancing our understanding of interferon 

gamma response genes, its role in regulating cellular 

pathways, affecting immune cell-infiltration and 

immune checkpoint gene expression in tumor micro-

environment. This study may help to guide more 

effective immunotherapy strategies again lung cancer. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

Gene expression data, somatic mutation data, and clinical 

data of LUAD patients were downloaded from the TCGA 

dataset (https://tcga-data.nci.nih.gov/) using the GDC Data 

Transfer Tool. A total of 551 LUAD patient samples (497 

tumor and 54 normal samples) were used in this study to 

identify the differentially expressed interferon gamma 

response genes. The GSE72094 dataset was acquired from 

the GEO database (https://www.ncbi.nlm.nih.gov/geo/). 

The clinicopathological information of two LUAD cohorts 

were summarized (Supplementary Table 1). For TCGA 

LUAD cohort, only 476 samples without missing clinical 

features were included in the Supplementary Table 1. 

 

Bioinformatic analysis 

 

Difference comparison between two groups (for 

example, gene expression in tumor vs. normal samples) 

was carried out using Wilcoxon tests, with p value < 

0.05 as statistically significant. Difference comparisons 

of three or more groups were carried out using One-way 

ANOVA and Kruskal-Wallis tests. Correlation 

coefficients between genes were calculated by 

Spearman correlation coefficient analysis using the 

‘corrplot’ R package. In addition, the interactions 

between interferon gamma response genes/proteins 

were obtained from the STRING website 

(http://www.string-db.org/). 

 

LUAD were clustered in various groups based on the 

expression pattern of interferon gamma response genes 

using the ‘ConsensusClusterPlus’ R package. Principal 

https://tcga-data.nci.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://www.string-db.org/
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component analysis (PCA) analysis of LUAD samples 

were investigated using the ‘FactoMineR’ and 

‘factoextra’ R packages. The mutation landscape in the 

TCGA LUAD cohort was presented by the ‘maftools’ R 

package. The ‘estimate’ R package calculates stromal and 

immune scores that represent the presence of stromal and 

immune cells in tumor tissue, respectively. Kaplan Meier 

survival curve analysis was carried out using the 

‘survival’ R package, the optimal cutpoint value for each 

gene was determined by the surv_cutpoint function in the 

‘survminer’ R package. Two-stage log-rank test in the 

‘TSHRC’ R package was used to perform the survival 

analysis with crossed curves. 

 

All statistical P values were two-tailed, and were 

statistically significant when p < 0.05. All data analysis 

was conducted in R software (version 3 .6.1). 

 

Construction of a signature based on interferon 

gamma response genes 

 

A univariate Cox regression model was adopted to 

determine the hazard ratios (HR) of prognosis 

prediction for interferon gamma response genes. 

Univariate or multivariate Cox analysis was employed 

to determine the prognostic value for the risk signature 

or clinical features using the ‘forest’ R package. 

 

Genes were further screened by Least Absolute 

Shrinkage and Selection Operator (LASSO) regression 

analysis, followed by 10-fold cross validation using the 

‘glmnet’ R package. Seven genes with their regression 

coefficient (Coef) were selected, the risk score for each 

patient was calculated through linearly multiplying the 

expression level with Coef of each gene, according to 

the following formula: Risk score =Coef gene1 × 

expression gene1 + Coef gene2 × expression gene2 + · ···· + 

Coef gene n × expression gene n. 

 

Confirmation of the signature based on interferon 

gamma response genes 

 

All patients in the LUAD cohorts were separated into the 

high or low risk group based on the median risk score. 

Survival curves were drawn based on the risk score using 

the Kaplan-Meier method. Student’s t-test and Pearson’s 

test were used to compare the significant association 

between risk scores and various clinical features. 

 

Subsequently, the receiver operating characteristic 

(ROC) curves were performed to assess the sensitivity 

and specificity of survival prediction by the risk 

signature using the ‘survivalROC’ R package. 
Univariate and multivariate Cox proportional hazards 

regression analysis was performed to determine whether 

the risk score is an independent predictor for prognosis. 

Gene set enrichment analysis (GSEA) and gene set 

variation analysis (GSVA) 

 

GSEA for the mRNAs associated with the high or low 

risk group was carried out using c2.cp.kegg.v7.1. 

symbols.gmt as gene sets database at 1,000 random 

sample permutations using JAVA application 

(http://software.broadinstitute.org/gsea/index.jsp). 

 

To investigate the difference on biological pathways 

between high and low risk groups, GSVA enrichment 

analysis was carried out using the “GSVA” R package. 

GSVA, a non-parametric and unsupervised method, is 

used for calculates sample-wise gene set enrichment 

scores [39]. The gene sets for pathways are in the 

“c2.cp.kegg.v7.1.symbols” document from the MSigDB 

database. 

 

Immune cell infiltration estimation 

 

The CIBERSORT method was used to calculate the 

enrichment levels of immune cell infiltration in lung 

cancer cohorts. The difference in the immune cell 

infiltration between the low and high risk groups was 

carried out using Wilcoxon tests, with the p value < 

0.05 as statistically significant. 

 

The gene set for each immune cell signature, as well as 

various pro- or anti-tumor immune cell subtypes, came 

from this study [40]. The enrichment scores 

determined by CIBERSORT were used to represent 

the relative abundance of each immune cell in LUAD 

samples. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 
 

Supplementary Figure 1. Flow chart of the study. 



 

www.aging-us.com 11400 AGING 

 
 

Supplementary Figure 2. Consensus clustering of 24 interferon gamma response genes identified two clusters of LUAD in the 
TCGA LUAD cohort. (A) Cumulative distribution function (CDF) plot displays consensus distributions at k=2 to k=9. (B) Relative changes in 
the area under the CDF curve at k=2 to k=9. (C–J) Consensus matrix display at k=2 (C) to k=9 (J). 
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Supplementary Figure 3. Nomogram of TCGA LUAD and GSE72094 cohorts to quantify the whole risk score for seven genes 
based on the clinical features. (A) LUAD cohort. (B) GSE72094 cohort. 
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Supplementary Figure 4. Gene set enrichment analysis (GSEA) of the mRNAs associated with the high or low risk group in 
two LUAD cohorts. (A, B) Top enriched KEGG pathways in the high risk group are represented by the curves above the x-axis in the graph. 

Top enriched KEGG pathways in the low risk group are represented by the curves below the x-axis in the graph (p-value < 0.05) for two LUAD 
cohorts: TCGA (A) and GSE72094 (B). The names of enriched KEGG pathways are listed on the right side. 
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Supplementary Figure 5. GSVA and correlogram analysis of KEGG biological pathways based on risk groups or risk scores in 
two LUAD cohorts. (A, B) Heatmaps visualizing the enrichment levels of KEGG biological pathways in the high or low risk group in the LUAD 
cohorts: TCGA (A) and GSE72094 (B). Yellow represents enriched pathways, and blue represents repressed pathways. (C, D) Correlograms 
demonstrating the correlation coefficient between the risk score and KEGG pathways in the LUAD cohorts: TCGA (C) and GSE72094 (D). Red 
color depicts the positive correlation, and blue color depicts the negative correlation. 
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Supplementary Figure 6. Comparison of relative immune cell enrichment levels based on the CIBERSORT analysis results. (A, 
B) Bar plots show the statistically significant difference in the enrichment levels of immune cells between the high (red color) and low (blue 
color) risk groups in two LUAD cohorts: TCGA (A) and GSE72094 (B). 
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Supplementary Figure 7. Comparison of gene expression of 29 immune checkpoint genes in the LUAD cohorts. (A, B) Bar plots 

show the statistically significant difference in gene expression levels of immune checkpoint genes between the high (red color) and low (blue 
color) risk groups in two LUAD cohorts: TCGA (A) and GSE72094 (B). 
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Supplementary Figure 8. Comparison of tumor purity, tumor burden, stromal score, or immune score between the high and 
low risk group in the TCGA LUAD cohort. (A, B) Bar plots show the comparison of tumor purity (A) and tumor burden (TMB) (B) between 

the high and low risk groups in the TCGA LUAD cohort. (C) Comparison of stromal score and immune score between the high and low risk 
group in the TCGA LUAD cohort. 
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Supplementary Tables 
 

Supplementary Table 1. Clinical features of two LUAD cohorts. 

 Death (N=154) alive (N=322) Overall (N=476) 

Gender    

  Male 75 (48.7%) 144 (44.7%) 219 (46.0%) 

  Female 79 (51.3%) 178 (55.3%) 257 (54.0%) 

Age (years)    

  Mean (SD) 65.7 (10.7) 65.0 (9.69) 65.2 (10.0) 

  Median [Min, Max] 67.0 [40.0, 88.0] 66.0 [33.0, 87.0] 66.0 [33.0, 88.0] 

Stage    

  I 53 (34.4%) 206 (64.0%) 259 (54.4%) 

  II 46 (29.9%) 70 (21.7%) 116 (24.4%) 

  III 42 (27.3%) 37 (11.5%) 79 (16.6%) 

  IV 13 (8.4%) 9 (2.8%) 22 (4.6%) 

T    

  T1 39 (25.3%) 123 (38.2%) 162 (34.0%) 

  T2 87 (56.5%) 168 (52.2%) 255 (53.6%) 

  T3 18 (11.7%) 24 (7.5%) 42 (8.8%) 

  T4 10 (6.5%) 7 (2.2%) 17 (3.6%) 

(a)Clinical features of the TCGA LUAD cohort. 

 

 Death (N=109) alive (N=280) Total (N=389) 

Gender    

  Male 58 (53.2%) 114 (40.7%) 172 (44.2%) 

  Female 51 (46.8%) 166 (59.3%) 217 (55.8%) 

Age (years)    

  Mean (SD) 70.4 (8.54) 69.1 (9.75) 69.5 (9.43) 

  Median [Min, Max] 72.0 [46.0, 85.0] 70.0 [38.0, 89.0] 70.0 [38.0, 89.0] 

Stage    

  I 51 (46.8%) 201 (71.8%) 252 (64.8%) 

  II 24 (22.0%) 41 (14.6%) 65 (16.7%) 

  III 26 (23.9%) 31 (11.1%) 57 (14.7%) 

  IV 8 (7.3%) 7 (2.5%) 15 (3.9%) 

KRAS    

  Wildtype 64 (58.7%) 190 (67.9%) 254 (65.3%) 

  Mutation 45 (41.3%) 90 (32.1%) 135 (34.7%) 

EGFR    

  Wildtype 105 (96.3%) 244 (87.1%) 349 (89.7%) 

  Mutation 4 (3.7%) 36 (12.9%) 40 (10.3%) 

STK11    

  Wildtype 91 (83.5%) 234 (83.6%) 325 (83.5%) 

  Mutation 18 (16.5%) 46 (16.4%) 64 (16.5%) 

TP53    

  Wildtype 80 (73.4%) 215 (76.8%) 295 (75.8%) 

  Mutation 29 (26.6%) 65 (23.2%) 94 (24.2%) 

(b)Clinical features of the GSE72094 LUAD cohort. 
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Supplementary Table 2. Analysis of 24 significantly differentially expressed interferon gamma response genes in the 
TCGA LUAD cohort. 

Gene conMean treatMean logFC pValue change 

CD69 8.936670479 4.47653308 -0.997355581 3.19E-12 Down 

CD74 1897.142334 1258.20791 -0.592457585 3.76E-10 Down 

CD86 9.607033362 6.223707114 -0.626316828 4.52E-10 Down 

CDKN1A 71.73071206 41.03490112 -0.805739475 6.18E-07 Down 

CIITA 5.058851136 4.29529146 -0.236053757 0.00187674 Down 

CSF2RB 9.875387254 5.517276061 -0.839881155 7.30E-15 Down 

IL10RA 9.701275787 6.926449937 -0.486058378 2.96E-07 Down 

IRF8 10.10959639 5.46877443 -0.88643594 2.31E-15 Down 

LATS2 10.7276258 5.178535474 -1.050714763 1.56E-23 Down 

LCP2 8.387419434 6.207701793 -0.434167749 4.55E-08 Down 

MT2A 171.2990976 107.9445696 -0.666226884 0.000272554 Down 

NOD1 4.764992505 4.034663216 -0.240025692 1.65E-05 Down 

PTPN6 21.23585905 15.13571205 -0.488545923 6.81E-08 Down 

SELP 10.56550028 2.27969876 -2.212445977 1.03E-29 Down 

SOD2 31.28827632 26.96227591 -0.214679901 0.009578905 Down 

IRF4 1.273380295 2.803021931 1.138319688 0.00081257 Up 

ITGB7 1.223934115 1.669670931 0.448037896 0.03900192 Up 

NMI 7.067112293 9.363642417 0.405949008 9.72E-05 Up 

OAS3 8.38112837 16.96725326 1.017536638 1.93E-08 Up 

PFKP 7.575956699 36.9750878 2.287053583 1.61E-24 Up 

PNP 11.79940954 15.63021418 0.405622882 1.59E-05 Up 

RBCK1 21.51999684 26.09297107 0.27798336 0.001820364 Up 

RIPK2 7.642719185 10.60564426 0.472674335 0.000781467 Up 

TRAFD1 13.22724719 16.44497774 0.314134211 3.75E-05 Up 

Differential gene expression was analyzed using the ‘limma’ R package. Information, including gene name, mean gene 
expression in normal (conMean) or cancer (treatMean) samples, log fold change (logFC) of cancer vs. normal, p value (pValue) 
of logFC, and gene expression change pattern in cancer, were listed in the table. 


