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INTRODUCTION 
 

Alzheimer’s disease (AD) is a complex and diverse 

neurodegenerative disease, which is clinically 

characterized by a decline in cognitive abilities and 

behavioral disorders [1, 2]. AD is the most common 

cause of dementia. The risk of AD increases with age, 

and the incidence rate is also increasing in the USA due 

to its aging population [3]. There are about 50 million 

people suffering from dementia in the world and 

Alzheimer’s disease accounts for 60-70% of cases [4]. 

It has been predicted that the incidence rate of AD will 

triple to over 15 million people by 2050, with an annual 
cost of over $ 700 billion [5]. Currently, there is a great 

need for effective preventative and curative treatments 

to either prevent, slow the progression or preferably 

cure AD.  

Biomarkers are expected to promote the development of 

more effective drugs for treating AD and establish a  

more personalized medical treatment method. AD is 

defined by a combination of amyloid and τ proteins, 

accompanied by degeneration of neurons and their 

synapses, glial activation and neuroinflammation [6]. 

Synaptic dysfunction and loss are the events in early-

onset AD [7]. The series of pathophysiological events of 

late-onset AD are not yet fully understood [8]. Microglia 

and astrocytes are the two main types of glial cells in the 

pathogenesis of AD. Inflammation is considered to be a 

factor in the pathogenesis of AD [9]. Microglia are 

immune effector cells of the central nervous system in 

vivo, and they play an important role in the dynamic 

balance of the brain and in immune response [10]. 

Astrocytes are the most abundant type of glial cells in the 

central nervous system. They play an important role in 
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that immune inflammation and immune cells play an important role in AD. 
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homeostasis, synapsis, signal transmission and synaptic 

plasticity, and in providing nutritional and metabolic 

support to neurons [11]. Brain insulin resistance caused 

by insulin-related disorders, is an additional pathological 

mechanism of AD [12]. AD is a multifactor disease 

involving genome, epigenome, and environmental factors 

[13]. Next generation molecular and high flux 

technologies are expected to elucidate the mechanism 

and network behind the complexity of AD. Epigenetic 

processes play a vital role in the central nervous system, 

especially DNA methylation modification [14]. The 

methylation of genes changes significantly with an 

increase in the age of people [15]. 

 

The accuracy of clinically diagnosing AD is generally 

low because of the absence of suitable biomarkers.  

A comprehensive, holistic and systematic analysis 

method is needed to describe and diagnose a complex 

multifactor disease. In the present study, we screened 

for and identified the genes of patients relevant to  

the different developmental stages of AD. The results  

of the present study improved the diagnosis and 

treatment targets of AD. In addition, it deepened  

our understanding of the developmental mechanism  

of AD. 

 

RESULTS 
 

Differentially expressed genes in the development of 

Alzheimer’s disease 

 

The research flowchart of the study is shown in Figure 1. 

To identify the changes in gene expression during the 

development of AD, we compared the differences in the 

GSE63060 and GSE63061 datasets. Among them, 3221 

genes were differentially expressed between people 

with MCI and the control group, and 382 genes were 

differentially expressed between patients with AD and 

MCI (Figure 2A).  

 

To identify the key genes in the process from mild 

cognitive impairment to Alzheimer’s disease, we 

obtained a PPI network composed of 1901 DEGs. These 

network genes were clustered into 12 interacting 

modules (Figure 2B). The trend in the expression of the 

modular gene in the two groups of data was similar, but 

the difference in the GSE63061 data was more obvious 

(Figure 2C). The enrichment analysis showed that the 

module genes were involved in 2107 biological 

processes (BP), 366 cell components (CC) and 385 

molecular functions (MF). The involvement was mainly 

in the biological functions related to the nerves, in 

aging, immunity and inflammation (Figure 2D–2F). The 

results of the KEGG showed that the module genes 

were mainly enriched in the cell cycle, immune 

inflammation related signal pathway (Figure 2G). 

Importantly, in both datasets the results of the subGSEA 

indicated that Osteoclast differentiation and the Toll- 

like receptor signaling pathway showed a continuous 

up-regulation from healthy people to patients with AD 

(Figure 2H). However, Spliceosomes and Proteasomes 

continued to decrease (Figure 2I). It is suggested that 

these signaling pathways can promote or inhibit the 

development of Alzheimer’s disease. 

 

Molecular changes in the progression of Alzheimer’s 

disease 

 

There are different pathological stages in patients with 

AD. As AD worsens, the genes that continuously 

 

 
 

Figure 1. Flow chart. 
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Figure 2. Molecular mechanism in the development of Alzheimer’s disease. (A) Differentially expressed genes between Alzheimer’s 

disease (AD) and mild cognitive impairment, and between mild cognitive impairment and the control. (B) The union of the two groups of the 
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differentially expressed genes constitutes the PPI network. Each color represents a different module. (C) The expression heatmap of module 
genes in GSE63060 and GSE63061. The biological functions (D), cellular components (E) and molecular functions (F) of the modular genes. (G) 
The KEGG pathway of module genes. From control to mild cognitive impairment and then to AD, the signal pathway was continuously up-
regulated (H) or down-regulated (I).  
 

express maladjustment may be involved in this process. 

First, from the GSE84422 database, we obtained the 

DEGs between the patients with moderate and mild AD 

(Figure 3A), and between the patients with severe and 

moderate AD (Figure 3B). Then, by STEM analysis of 

these DEGs, we identified the genes that were 

continuously up-regulated or down-regulated from mild 

to severe AD (Figure 3C). Surprisingly, five genes 

(MED10, MRPL15, NUDT21, PLEC and ZBTB16) 

coincided with the PPI network genes (Figure 3D). We 

also determined the trend in the expression of these five 

genes in different modules of the STEM. The 

expression of the MED10, MRPL15 and NUDT21 

genes were up-regulated, while the PLEC and ZBTB16 

genes were down-regulated. We thought that these genes 

may be AD risk genes. Their specific expression trends 

in three different stages of AD were consistent with the 

up- and down-regulation of the STEM modules (Figure 

3E). The enrichment analysis showed that the persistent 

disordered genes were mainly related to biological 

functions such as immune inflammation, neuro-

regulation, the cAMP signaling pathway, carbon 

metabolism, and neuroactive ligand−receptor inter-

action (Figure 3F, 3G). 

 

Molecular mechanism of Alzheimer’s disease 

 

Potential AD risk genes were identified by analyzing 

the differential expression of genes between the control 

samples and samples of people with AD (Figure 4A). In 

addition, potential AD risk genes, especially MED10 

and MRPL15, were identified as being suitable for the 

clinical diagnosis of AD (Figure 4B). Among them, 

MRPL15 had the same expression direction and higher 

AUC value in the four groups of differentially 

expressed genes, indicating that it may serve as a 

biomarker of AD.  

 

After the previous enrichment analysis, we found that 

immunity played an important role in the process of 

AD. Therefore, we identified the differences of the 24 

kinds of immune cells in AD (Figure 4C). We found 

that Neutrophils and Macrophages were significantly 

up-regulated in all three datasets. We found that T cells 

and T helper cells were significantly down-regulated in 

the blood samples. We calculated the correlation 

between the potential AD risk genes and the immune 
cells. We found that MED10 and NUDT21 had the 

highest positive correlation with Treg cells. MRPL15 

had the highest positive correlation with Tem cells. 

PLEC had the highest positive correlation with B cells. 

ZBTB16 had the highest positive correlation with Th1 

cells (Figure 4D). The results of the GSEA showed that 

the expression of the five potential AD risk genes were 

mainly concentrated in the up-regulated salmonella 

infection, signaling pathways regulating pluripotency of 

stem cells (Figure 4E, 4F). 

 

Regulation of methylation of Alzheimer’s disease 

 

DNA methylation plays an important role in AD by 

further affected DNA function by activating or 

inhibiting gene transcription activity [16]. By analyzing 

the methylation level of genes of AD patients, we 

identified a series of methylation sites (Figure 5A). In 

addition, the methylation level of chromosomes at 

different positions was also different (Figure 5B). The 

expression of MRPL15 was verified by four datasets 

(Figure 5C). The level of methylation of MRPL15 was 

opposite to its level of expression, which means that 

MRPL15 may be a methylation factor regulated by 

methylation (Figure 5D). 

 

DISCUSSION 
 

We systematically studied the occurrence, development 

and deterioration of AD, as well as the related 

knowledge of the modification of DNA by methylation. 

There was evidence that hypomnesia in MCI patients 

was related to hippocampal atrophy and degeneration of 

the basal forebrain [17, 18]. MCI represents the 

transition state between normal aging and dementia 

disorders, especially AD [19]. Therefore, the DEGs 

among AD, MCI and control identified in this study 

may promote the development of AD. During the 

development of AD, Osteoclast differentiation and the 

Toll-like receptor signaling pathway were significantly 

activated, while Spliceosomes and Proteasomes were 

inhibited. Among them, the Toll-like receptor mediated 

important cellular immune responses when activated. 

New evidence suggested that Toll-like receptors were 

involved in the pathological process of AD [20]. The 

Proteasome system was an important intracellular 

protein degradation pathway, and ensures the balance of 

proteins in eukaryotic cells [21]. Proteasome 

dysfunction is a major cause or secondary consequence 

of many neurodegenerative diseases, including AD [22]. 

 

In addition, the spatiotemporal expression of genes in 

different stages of neuropathological diseases may 
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Figure 3. Molecular changes in the progression of Alzheimer’s disease. (A) The differentially expressed genes between moderate 
and mild AD patients. (B) Differentially expressed genes between severe and moderate AD patients. (C) Modules significantly up or down in 
the STEM results. (D) The trend in gene expression in significantly up-regulated or down-regulated modules. (E) The expression trend of 
potential risk genes in different stages of AD in patients. The enrichment results of persistent disorder genes include biological function (F) 
and the KEGG pathway (G).  
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indicate the diagnosis and treatment of the progression 

of a disease [23]. Five potential AD risk genes were 

identified through the study of gene persistent 

expression disorder at different stages of the 

development of AD in patients. Among them, the trend 

in the expression of MRPL15 was simultaneously 

verified by four datasets, and it had a good ability to be 

used to diagnose the occurrence of AD. Interestingly, 

MRPL15 was also methylated in AD. There was 

evidence that DNA methylation may be related to the 

potential risk of neurological diseases [24]. Therefore, 

MRPL15 was identified as a potential biomarker and 

 

 
 

Figure 4. The potential risk genes and immune changes in Alzheimer’s disease. (A) Four data sets were used to verify the 

expression of the potential AD risk genes. (B) The AUC value of potential risk genes in AD patients. (C) The 24 differentially expressed immune 
cells. (D) Correlation between the potential AD risk genes and immune cells. (E) The GSEA results of gene expression in AD patients. (F) Gene 
expression of AD patients involved in the GSEA KEGG pathway. 
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therapeutic target. Consistent with our results, MRPL15 

was down regulated in AD [25]. MRPL15 is a 

mitochondrial ribosomal protein necessary for protein 

synthesis. Mitochondrial dysfunction was found to be 

an important marker of AD [26, 27]. MRPL15 may also 

be related to the closure or disorder of the biological 

function of mitochondria and in the function of energy 

metabolism in schizophrenia [28]. 

In the process of DEG, we also found that the 

development and deterioration of AD were related to 

immune inflammation and neuroregulation and other 

biological effects. The studies of the genome wide 

association had shown that a large number of genes are 

related to the increased risk of AD. Many of these genes 

were expressed by immune cells, indicating that there 

was a major role of multicellular pathogenesis and 

 

 
 

Figure 5. The analysis of DMPs in AD cases and controls. (A) Volcano plot of the top DMPs and position of methylation probes in 
relation to the gene. The percentages of hypermethylated and hypomethylated DMPs are displayed on top. (B) The proportion of 
methylation in different chromosomes. (C) Expression of MRPL15 in four datasets. (D) Methylation level of MRPL15. 
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neuroinflammation in the etiology of AD [29]. In fact, 

neuroinflammation was found to be an innate immune 

response of the nervous system, including microglia, 

astrocytes, cytokines and chemokines, which play a 

central role in the early stage of AD [30]. The 

pathophysiological mechanism of multifactor and 

polygenic AD was found to not only be limited to the 

tissue of neurons, but also related to brain immune 

response [31]. Our analysis showed that macrophages 

were significantly up-regulated in AD. Macrophages in 

the brain were thought to play a key role in the 

pathological immune response under load [32]. The 

number of Tem cells with the strongest correlation with 

MRPL15 was directly proportional to age [33]. 

 

The results of the present study enriched our 

understanding of the molecular mechanism of genetic 

changes in the process of AD development and 

deterioration. The genes found in the present study can 

be used as targets for further functional studies to 

further elucidate their diagnostic and therapeutic roles 

in AD. 

 

CONCLUSIONS 
 

In the present study, we comprehensively analyzed the 

molecular changes in the occurrence and development of 

AD, and provided more biological connotations. We 

identified five potential AD related risk genes (MED10, 

MRPL15, NUDT21, PLEC and ZBTB16). Among  

them, MRPL15 was also the key gene modified by 

methylation. We also found that immunoinflammation 

and neuromodulation played an important role in the 

pathogenesis of AD. Our results showed that MRPL15 

may be used as a molecular target of AD for further study. 

 

MATERIALS AND METHODS 
 

Data source and the identification of Differentially 

Expressed Genes (DEGs) 

 

The following databases, GSE63060, GSE63061, 

GSE84422, GSE5281 and GSE125895, were down-

loaded from the Gene Expression Omnibus (GEO) 

database. The GSE63060 database includes blood 

samples from 104 controls, 80 people with mild 

cognitive impairment (MCI) and 145 AD patients. The 

GSE63061 database includes blood samples from 134 

controls, 109 people with MCI and 139 AD patients. The 

GSE84422 database includes samples of brain tissue 

from 27 controls, and 7, 14 and 13 patients with mild, 

moderate and severe AD respectively. The GSE5281 

database includes samples of brain tissue of 74 controls 
and 87 AD patients. The Illumina 450 K methylation 

array in the GSE125895 dataset includes the samples of 

brain tissue of 49 controls and 24 AD patients. 

Differentially expressed genes (DEGs), including up- 

and down-regulated genes, were identified using the R 

library ‘limma’. The DEGs were ultimately selected 

according to a false discovery rate, P < 0.05. 

 

Protein-Protein Interactions (PPIs) network 

 

A protein-protein interaction (PPIs) network was 

established using the Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING) database. It was 

done by screening for scores greater than 900 and was 

based on the DEGs. The network was visualized using 

the software Cytoscape. The Molecular Complex 

Detection (MCODE) plugin was used to evaluate the 

biological importance of the constructed gene modules 

with an MCODE score greater than 6. 

 

Short Time-series Expression Miner (STEM)  

 

The Java-based software STEM is specifically designed 

for the analysis of short time-series microarray gene 

expression data. Data of the normalized DEGs in each 

group was entered into the program, with all of the 

parameters set to their default values. The correlation 

coefficient was used to assign each gene to the 

closest profile. The p value derived from the STEM 

analysis was adjusted for multiple hypothesis testing, 

using a q value of less than 0.05. The profile boxes that 

were statistically significant were highlighted in 

different colors.  

 

Enrichment analysis and Gene Set Enrichment 

Analysis (GSEA) 

 

To investigate the biological function altered in patients 

with AD, we performed functional annotations of the 

list of DEGs. The functional annotations included the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

and the Gene Ontology (GO) (Biological Processes, the 

Molecular Function, and the Cellular Component) 

enrichment analysis. All of these functional annotations 

were performed with the R library ‘clusterProfiler’ 

using the pvalue Cutoff = 0.01 and qvalue Cutoff = 

0.05. A GSEA was performed to elucidate the key 

pathways involved in the high vs low gene expression 

groups. A nominal P value < 0.05, a false discovery rate 

(FDR) < 0.05, and | NES | ≥ 1 were used to identify the 

significant pathways. 

 

Methylation analysis 

 

The differentially methylated positions (DMPs) were 

estimated for the genes in the cAMP pathway in the 
control and AD patient groups from samples in the 

GSE125895 database. P < 0.05 was used as the cut-off 

standards to find DMGs. 
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