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INTRODUCTION 
 

Liver cancer is the third global leading cause of cancer-

related death globally with a high mortality rate [1]. As 

the main histologic type of liver cancer, hepatocellular 

carcinoma (HCC) accounts for approximately 90% of 

all liver cancers and causing approximately 750,000 

deaths annually [2, 3]. In most developing countries, 

hepatitis B virus (HBV) and hepatitis C virus (HCV) 

infections are the main risk factors of HCC, while in 

most developed countries, alcohol abuse and metabolic 

syndrome-related diabetes and obesity are the main 

underlying disorders [4]. Surgical resection, liver 

transplantation, and radiofrequency ablation remain the 

mainstay of treatment for HCC [5, 6]. Although an 

increasing number of diagnostic and therapeutic 

strategies have been developed, the prognosis of HCC 

patients remains poor due to the elusive molecular 

mechanisms. It is therefore necessary to gain further 

insights into the molecular mechanisms underlying 

HCC progression and seek novel prognostic biomarkers 

and therapeutic strategies for this fatal disease. 

 

Focal adhesion, as the main connection between cells 

and the extracellular matrix (ECM), helps maintain the 
tension of cells during movement and signal 

transmission of cell survival [7, 8]. Of various 

microenvironmental factors affecting cancer cell 

www.aging-us.com AGING 2021, Vol. 13, No. 7 

Research Paper 

A novel focal adhesion related gene signature for prognostic 
prediction in hepatocellular carcinoma 
 

Zhuo Lin1,2,*, Dan Miao3,*, Qian Xu3, Xiaodong Wang1,2, Fujun Yu3 
 
1Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 
China 
2Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 
Zhejiang, China  
3Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China 
*Co-first authors 
 
Correspondence to: Fujun Yu, Xiaodong Wang; email: yufujun@wmu.edu.cn, wangxiaodong@wmu.edu.cn 
Keywords: hepatocellular carcinoma, focal adhesion, gene signature, overall survival, immune status 
Received: December 21, 2020 Accepted: March 14, 2021 Published: April 13, 2021 

 
Copyright: © 2021 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Hepatocellular carcinoma (HCC) is a highly heterogeneous disease. Reduced expression of focal adhesion is 
considered as an important prerequisite for tumor cell invasion and metastasis. However, the prognostic value 
of focal adhesion related genes in HCC remains to be further determined. In this study, RNA expression profiles 
were downloaded from public databases. A five focal adhesion related gene signature model was established 
by the least absolute shrinkage and selection operator Cox regression analysis, which categorized patients into 
high- and low-risk groups. Multivariate Cox regression analysis showed that the risk score was an independent 
predictor for overall survival. Single-sample gene set enrichment analysis revealed that immune status was 
different between the two risk groups, and tumor-related pathways were enriched in high-risk group. The risk 
score was significantly associated with tumor grade, tumor stage, immune scores, and immune infiltrate types. 
Pearson correlation showed that the expression level of prognostic genes was associated with anti-tumor drug 
sensitivity. Besides, the mRNA and protein expression of prognostic genes was significantly different between 
HCC tissues and adjacent non-tumorous tissues in our separate cohort. Taken together, a novel focal adhesion 
related gene signature can be used for prognostic prediction in HCC, which may be a therapeutic alternative. 

mailto:yufujun@wmu.edu.cn
mailto:wangxiaodong@wmu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 10725 AGING 

resistance, cell adhesion to the ECM has recently been 

identified as a key determinant [9]. Reduced expression 

of focal adhesion promotes the process of epithelial-

mesenchymal transition and is considered as an 

important prerequisite for tumor cell invasion and 

metastasis [10–14]. Focal adhesion molecules including 

integrins, focal adhesion kinases, and growth factor 

receptors have been shown to be associated with cancer 

progression [15–17]. Besides, more and more research 

has demonstrated that focal adhesion related genes such 

as ITGA [18, 19], NEK2 [20–22], and cPLA2α [23, 24] 

all play a promoting role in HCC. However, whether the 

focal adhesion related genes are associated with the 

prognosis of HCC patients remains unclear. Given the 

most upstream localization, receptors within focal 

adhesions were supposed to be an ideal starting point 

for therapeutic intervention [9], suggesting that focal 

adhesion may prove to be the prognostic indicator and a 

novel therapeutic target in HCC patients. 

 

In this study, we developed a prognostic signature for 

HCC patients based on focal adhesion related genes. 

We also investigated the correlation of the prognostic 

model risk score with the clinicopathological 

characteristics. In addition, we analyzed the role of 

prognostic model risk scores in immune infiltrate types, 

tumor stemness features, and prognostic gene 

expression in drug chemoresistance. Also, the stability 

and reliability of the model were demonstrated 

in an independent and external validation cohort, and 

the mRNA and protein expressions of the prognostic 

genes between HCC and adjacent non-tumorous tissues 

were verified by our laboratory experiments. It is our 

hope that the findings of the present study could provide 

a novel prognostic model and therapeutic targets for 

HCC. 

 

RESULTS 
 

The flow chart of this study is demonstrated in Figure 1. 

Altogether 365 HCC patients from The Cancer Genome 

Atlas hepatocellular carcinoma cohort (TCGA-LIHC) 

and 231 HCC patients from the International Cancer 

Genome Consortium hepatocellular carcinoma cohort 

(ICGC-LIRI-JP) were eventually recruited for analysis. 

The clinicopathological characteristics of these patients   

are detailed in Table 1. 

 

Identification of DEGs in the TCGA cohort 

 

More than 50% of focal adhesion related genes 

(131/199, 65.8%) were identified as differentially 

expressed genes (DEGs) between the tumor and adjacent 

non-tumorous tissues using the "limma" R package, and 

Univariate Cox regression analysis showed that 38 of the 

131 DEGs were correlated with overall survival (OS) 

(Figure 2A). As the expression level of ACTN3 was 0 in 

more than 80 samples, it was excluded from this 

analysis. Finally, 37 focal adhesion related DEGs were 

preserved (Figure 2B–2C). The protein-protein 

interaction network and correlation network between 

these DEGs are shown in Figure 2D–2E. 

 

Construction of a prognosis model in the TCGA 

cohort 

 

The least absolute shrinkage and selection operator 

(LASSO) Cox regression analysis was performed to 

construct a prognosis model based on the expression 

profiles of the above-mentioned 37 DEGs. Using the 

optimal value of λ, a 5-gene signature was identified 

(Supplementary Figure 1). The risk score was 

calculated by using the following equation: 

Score = ˗0.031 * expression level of FYN + 0.170 * 

expression level of PPP1CB + 0.003 * expression 

level of PPP1CC + 0.084 * expression level of 

RAC1 + 0.045 * expression level of SPP1. The 

patients were categorized into a high-risk group and a 

low-risk group based on the median cut-off value 

(Figure 3A). The tumor grades were higher and the 

TNM stages were more advanced in the TCGA cohort 

of high-risk group as compared with those in low-risk 

group (Table 2). PCA and t-SNE analyses showed that 

patients in these different risk groups were distributed 

in two directions (Figure 3E–3F). As shown in Figure 

3B, death usually occurred earlier in high-risk group 

than that in low-risk group (P = 0.007). Conformably, 

the Kaplan-Meier curve indicated that the prognosis of 

high-risk patients was significantly poorer than that of 

low-risk patients (P < 0.001) (Figure 3I). The 

predictive performance of the risk score for OS was 

evaluated by time-dependent ROC curves. The area 

under the curve (AUC) of the prognosis model at 1, 2 

and 3 years was 0.738, 0.681 and 0.652, respectively, 

indicating a good predictive performance (Figure 3J). 

Survival analysis using the optimal cut-off expression 

value of each prognostic gene showed that high 

expressions of PPP1CB, PPP1CC, RAC1 and SPP1 

were correlated with poor prognoses, 

whereas FYN showed an opposite correlation 

(P < 0.05) (Supplementary Figure 2A–2E). The 

different expression of each prognostic gene between 

HCC and adjacent non-tumorous tissues in the TCGA 

cohort is shown in Supplementary Figure 3. 

 

Confirmation of the 5-gene signature in the ICGC 

cohort 

 

The predictive stability of this prognosis model was 
further verified by using HCC samples from the ICGC 

database. Consistent with the above results, the HCC 

patients categorized into a high-risk group and a 



 

www.aging-us.com 10726 AGING 

low-risk group based on the median value from the 

TCGA cohort (Figure 3C). The TNM stage was more 

advanced in in the ICGC cohort of high-risk group 

(Table 2). PCA and t-SNE analyses demonstrated that 

patients in the two subgroups were distributed discretely 

(Figure 3G–3H). Patients in high-risk group died earlier 

(Figure 3D) and had shorter survival durations (Figure 

3K) than patients in low-risk group (both P < 0.05). 

Additionally, the AUC of the 5-gene signature at 1, 2 

and 3 years was 0.681, 0.661 and 0.673, respectively 

(Figure 3L). The result of survival analysis of each 

prognostic gene with high or low expression is shown in 

Supplementary Figure 2F–2J. 

The independent prognostic value of the 5-gene 

signature 

 

Univariate and multivariate Cox regression analyses 

were performed to confirm whether the risk score was 

independent of traditional clinicopathological 

characteristics for OS. Univariate Cox regression 

showed that the tumor stage (TCGA cohort: HR = 

2.500, 95% CI = 1.721–3.363, P < 0.001; ICGC cohort: 

HR = 2.492, 95% CI = 1.351–4.599, P = 0.003) and the 

risk score (TCGA cohort: HR = 2.181, 95% CI = 1.486–

3.202, P < 0.001; ICGC cohort: HR = 3.921, 95% 

CI = 1.539–9.993, P = 0.004) were independent factors 

 

 

Figure 1. Flow chart of data collection, analysis and experiment. 
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Table 1. Clinical characteristics of the HCC patients used in this study. 

 TCGA-LIHC cohort ICGC-LIRP-JI cohort 
No. of patients 365 231 
Age (median, range) 57 (16–90) 67 (31–89) 
Gender   
Female 119 (32.6%) 61 (26.4%) 
Male 246 (67.4%) 170 (73.6%) 
Grade   
Grade 1 55 (15.1%) NA 
Grade 2 175 (47.9%) NA 
Grade 3 118 (32.3%) NA 
Grade 4 12 (3.3%) NA 
Unknown 5 (1.4%) NA 
Stage   
I  170 (46.6%) 36 (15.6%) 
II 84 (23.0%) 105 (45.5%) 
III 83 (22.7%) 71 (30.7%) 
IV 4 (1.1%) 19 (8.2%) 
Unknown 24 (6.6%) 0 (0%) 
Survival status   
Alive 235 (64.4%) 189 (81.8%) 
Deceased 130 (35.6%) 42 (18.2%) 

 

 
 

Figure 2. Identification of candidate focal adhesion related genes in the TCGA cohort. (A) Venn diagram to identify DEGs between 

HCC and adjacent normal tissues. (B) Expression of the 37 overlapping genes between HCC and adjacent normal tissues. (C) Forest plots 
showing the results of the univariate Cox regression analysis between the expression of 37 overlapping genes and overall survival. (D) The 
protein-protein interaction network indicated the interactions between the candidate genes. (E) The correlation network of candidate genes. 
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Table 2. Baseline characteristics of the patients in different risk groups. 

Characteristics 
TCGA-LIHC cohort ICGC-LIRP-JI cohort 

High risk Low risk P value High risk Low risk P value 

Age       

< 60 year 74 (20.3%) 91 (24.9%) 0.082 28 (12.1%) 16 (6.9%) 0.540 

≥ 60 year 108 (29.6%) 92 (25.2%)  128 (55.4%) 59 (25.5%)  

Gender       

Female 61 (16.7%) 58 (15.9%) 0.710 40 (17.3%) 21 (9.1%) 0.703 

Male 121 (33.2%) 125 (34.2%)  116 (50.2%) 54 (23.4%)  

Grade       

G1+G2 104 (28.5%) 126 (34.5%) 0.016 – –  

G3+G4 76 (20.8%) 54 (14.8%)  – –  

unknown 2 (0.5%) 3 (0.8%)  – –  

Stage       

I + II 116 (31.8%) 138 (37.8%) 0.023 86 (37.2%) 55 (23.8%) 0.008 

III + IV 52 (14.2%) 35 (9.6%)  70 (30.3%) 20 (8.7%)  

unknown 14 (3.8%) 10 (2.7%)  0 (0%) 0 (0%)  

 

 

 

Figure 3. Prognostic analysis of the 5-gene signature model in the TCGA cohort and ICGC cohort. TCGA cohort (A, B, E, F, I, J), 

ICGC cohort (C, D, G, H, K, L). (A, C) The distribution and median value of the risk scores. (B, D) Distributions of the overall survival (OS) 
status. (E, G) PCA plot. (F, H) t-SNE analysis. (I, K) Kaplan-Meier curves for OS of patients in the high-risk group and low-risk group. (J, L) 
Time-dependent ROC curves for OS. 
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for predicting the OS prognosis (Figure 4A–4B). With 

other confounding factors adjusted, the results were 

consistent with the above (Figure 4C–4D). Furthermore, 

the AUC of the risk score combined with the tumor stage 

at 3-year OS (TCGA set: AUC = 0.726; ICGC set: AUC 

= 0.726) demonstrated that the combined model worked 

the best for predicting OS (Figure 4E–4F). 

 

Relationship between the clinical characteristics and 

risk score 

 

The correlation between the risk score and various clinical 

characteristics in HCC patients based on TCGA and 

ICGC data is indicated in Figure 5A–5G, respectively. 

Higher risk score was observed in patients with the higher 

tumor grades (P < 0.001) and more advanced tumor stage 

(P = 0.004) in the TCGA cohort. However, the risk score 

had no significant correlation with age and gender. The 

same analysis in the ICGC cohort showed the similar 

results (There were no data about the grade of LICH in 

the ICGC cohort). Further analysis of the correlation of 

the expression level of the prognostic genes with age, 

gender, tumor stage and tumor grade of HCC patients 

showed that the expression of FYN, PPP1CC, RAC1, and 

SPP1 was significantly correlated with the tumor grade 

(P < 0.05). In addition, the expression of PPP1BC, 

PPP1CC and RAC1 was correlated with the tumor stage 

(P < 0.05) (Supplementary Figure 4C–4D); the expression 

of PPP1CC and SPP1 was correlated with age (P < 0.05) 

(Supplementary Figure 4A); the expression of PPP1CB 

was correlated with gender (P < 0.05) (Supplementary 

Figure 4B). 

 

 
 

Figure 4. Results of the univariate and multivariate Cox regression analyses regarding overall survival (OS) and AUC of the 
risk score, tumor stage, and the risk score combined with tumor stage at 3-year OS. TCGA cohort (A, C, E), ICGC cohort (B, D, F). 
(A, B) Univariate Cox regression analyses to screen OS-related factors. (C, D) Multivariate Cox regression analyses to screen OS-related 
factors. (E, F) AUC of the risk score, tumor stage, and the risk score combined with tumor stage at 3-year OS. 
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Analysis of the immune status and tumor 

microenvironment  

 

To further explore the immune status in different risk 

groups, the enrichment scores of diverse immune cell 

subpopulations and related functions were quantitated 

by single-sample gene set enrichment analysis 

(ssGSEA). The ratios of aDCs, DCs, iDCs, 

macrophages, Th2 cells, and Treg were high in 

patients of high-risk group, and vise versa for the score 

of Mast cells (P < 0.05) (Figure 6A–6B). Similarly, 

the score of immune-related functions such as APC co-

inhibition, APC co-stimulation, Check point, HLA, 

MHC class I, Parainflammation, T cell co-inhibition, 

and T cell co-stimulation was significantly higher in 

high-risk group, and vise versa for the score of Type II 

IFN (P < 0.05) (Figure 6C–6D). All these results 

suggest that the immune status and tumor 

microenvironment might contribute to the prognosis of 

HCC patients with high expressions of focal adhesion 

related genes. 

 

Subsequently, we examined the risk score distribution 

in different immune subtypes in HCC patients. Of the 

six types of immune infiltrates identified in human 

tumors [C1 (wound healing), C2 (INF-γ dominant), C3 

(inflammatory), C4 (lymphocyte depleted), C5 

(immunologically quiet), and C6 (TGF-β dominant)] 

[25], and no patient sample belonged to the C5 immune 

subtype in HCC. The value of the risk score from C1 to 

C6 subtype decreased gradually. As shown in Figure 

6E, the high-risk score was significantly correlated with 

C1 and C2, and the low-risk score was correlated with 

C3, C4 and C6 (P < 0.05). Furthermore, the high levels 

of PPP1CB, PPP1CC, RAC1, and SPP1 were positively 

correlated with C1, suggesting their promoting roles in 

HCC. On the contrary, the high level of FYN was 

negatively correlated with the C1 (P < 0.05) 

(Supplementary Figure 5), suggesting its tumor-

suppressive role in HCC. 

 

To explore whether the risk score was related to tumor 

stem cells and the immune microenvironment, the result 

of correlation analysis was showed that the risk score 

was positively correlated with immune scores, 

suggesting an association of the prognostic model with 

immune composition (P < 0.001). On the contrary, the 

risk score had no significant correlation with stemness 

score based on mRNA expression (RNAss), DNA 

methylation based stemness score (DNAss), and stromal 

score (Figure 6F). Moreover, the correlations of tumor 

stem cells and the immune microenvironment with 

prognostic gene expression were analyzed. It was found 

that FYN, PPP1CB, and PPP1CC were correlated with 

RNAss, while FYN, PPP1CC, and SPP1 were 

correlated with the stromal score (P < 0.05), 

where FYN exhibited strongest correlation (R = 0.55) 

(Supplementary Figure 6). Furthermore, FYN, RAC1, 
and SPP1 were found to be positively correlated with 

the immune score which measures the presence of 

infiltrating immune cells (P < 0.05) (Supplementary 

Figure 6). 

 

 
 

Figure 5. The risk score in different groups stratified by clinical characteristics. TCGA cohort (A–D), ICGC cohort (E–F). (A, E) Age. 
(B, F) Gender. (C) Tumor grade. (D, G) Tumor stage. 
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Analysis of biological functions and pathways  

 

Using gene set enrichment analysis (GSEA), gene 

ontology (GO) enrichment and Kyoto encyclopedia of 

genes and genome (KEGG) pathways were analyzed in 

high- and low-risk groups. It was found that 20 main 

GO functions were enriched in high-risk group with a 

false discovery rate <0.05. The enriched GO functions 

showed that the risk score was significantly associated 

with the activations of regulation of autophagic 

regulation, cell cycle phase transition, intrinsic 

apoptotic signaling pathway, and positive regulation of 

Wnt signaling pathway (Figure 7A). As shown by 

KEGG pathway analysis, the pathway enrichment was

 

 
 

Figure 6. Immune status between different risk groups and the association of risk score with the tumor microenvironment. 
TCGA cohort (A, C), ICGC cohort (B, D). (A, B) The scores of 16 immune cells. (C, D) The boxplots showing the 13 immune-related functions. 
(E) Comparison of the risk scores between different immune infiltrate subtypes. (F) The relationship of risk score with RNAss, DNAss, 
Stromal Score and Immune Score. P values are showed as: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001. 
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correlated with the cancer procession including cell 

cycle, MAPK signaling pathway, mismatch repair, 

mTOR signaling pathway, notch signaling pathway, 

P53 signaling pathway, pathways in cancer, VEGF 

signaling pathway, and Wnt signaling pathway. Of note, 

the focal adhesion pathway was also enriched in high-

risk group (Figure 7B). These results indicate that the 

prognostic model had an extensive influence of on the 

global transcriptome of HCC tissues. 

 

Chemotherapy sensitivity analysis 

 

Then we investigated the association between focal 

adhesion related genes and chemotherapy sensitivity 

in the NCI-60 database. The results showed that all 

the prognostic genes were to some extent correlated 

with chemotherapy drug sensitivity (Figure 8, 

Supplementary Table 4). We also found that the 

increased expression of PPP1CB, RAC1, and SPP1 

was correlated with increased drug resistance of 

cancer cells to several chemotherapy drugs, such as 

Tegafur, Dabrafenib, Entinostat, Fluorouracil, By-

Product of CUDC-3, Denileukin Diftitox Ontak, 

Bisacofyl (active ingredient), Acetalax and 

Tyrothricin (cor > 0.27 and P < 0.05). Furthermore, 

increased PPP1CC and FYN expression was 

correlated with increased drug sensitivity to cancer 

cells, such as PX−316, Ifosfamide, okadaic acid, 

Chelerythrine, AT-13387, and Amonafide (cor > 0.29 

and P < 0.05). These results demonstrate that the 

model could serve as a potential predictor for 

chemotherapy sensitivity. 

 

 
 

Figure 7. Gene set enrichment analysis of biological functions and pathways. (A) GO, Gene Ontology. (B) KEGG, Kyoto 

Encyclopedia of Genes and Genomes. 

 

 
 

Figure 8. Scatter plots of the association between prognostic gene expression and drug sensitivity.  (A) FYN. (B) PPP1CB. (C) 

PPP1CC. (D) RAC1. (E) SPP1. 
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Verification of the expression of prognostic genes 

between HCC and adjacent non-tumorous tissues  

 

To validate the different expression of the five 

prognostic genes (FYN, PPP1CB, PPP1CC, RAC1, and 

SPP1) between HCC and adjacent non-tumorous 

tissues, real-time quantitative-polymerase chain reaction 

(qRT-PCR) and immunohistochemistry (IHC) were 

performed to analyze the mRNA and protein 

expression, respectively. As shown in Figure 9A, 

PPP1CB, PPP1CC, RAC1, and SPP1 were highly 

expressed in HCC tissues vs. adjacent non-tumorous 

tissues, while FYN was at a low level in HCC tissues. 

Immunohistochemical staining showed the same results 

(Figure 9B). The validation results were consistent with 

the RNA sequencing results of the five prognostic genes 

in the TCGA cohort (Supplementary Figure 3). 

 

DISCUSSION 
 

HCC is one of the most frequent cancer type worldwide 

[26]. Although multiple molecular mechanisms have 

been found to be involved in HCC progression [27], the 

underlying mechanism remains unclear. Our study 

provided a systematical analysis of the different 

expression of 199 focal adhesion related genes between 

HCC and adjacent non-tumorous tissues and their 

relationships with OS. Then, a 5-gene signature model 

was constructed by the LASSO algorithm. Both the 

internal and external validation cohorts demonstrated 

that the model worked stably and exhibited consistent 

predictive performance. More importantly, it could be 

used as an independent risk factor for predicting the 

prognosis of HCC patients. 

Among the prognostic genes, PPP1CB, PPP1CC, RAC1, 
and SPP1 were found as risk factors, and FYN was found 

as a protective factor. FYN is a member of the Src family 

kinases, which is involved in the focal adhesion signaling 

pathway. It was reported to be related to numerous solid 

tumors, and increased expression of FYN was found to 

play a promoting role both in cancer occurrence and 

progression, as well as be a mechanism of resistance to 

anticancer agents [28] such as breast cancer [29], and 

pancreatic cancer [30]. PPP1CB is a regulator of 

endothelial cell migration and plays a critical role in the 

angiogenic process. Lacobazzi et al. reported that 

PPP1CB inhibition could inhibit endothelial cell 

migration through focal adhesion turnover via the actin 

polymerization pathway [31]. Besides, recent studies 

have demonstrated that PPP1CC encodes protein 

phosphatase 1c, which may promote cancer cell 

proliferation through activating mutations in p53 [32]. 

RAC1 is identified as a master regulator of cell migration  

and anchorage-independent growth [33]. Earlier studies 

reported that SPP1 could promote cancer progression 

through modulating the expression of VEGF and 

regulating ECM protein [34, 35]. Interestingly, all the 

five genes that we analyzed above were all enriched in 

the focal adhesion signaling pathway which is the 

molecular bridge mediating two-way crosstalk between 

ECM and cytoskeleton [36]. But other studies argued that 

focal adhesion signaling pathway promoted tumor 

progression and metastasis [37, 38]. Therefore, we 

subjected the 5-gene signature model to predict the 

prognosis for HCC, anticipating that it could become a 

target for cancer drug therapy. We demonstrated that the 

5-gene signature model could add prognostic value to the 

clinicopathological prognostic characteristics. 

 

 
 

Figure 9. The expression of prognostic genes between HCC and adjacent non-tumorous tissues. (A) mRNA expression analysis 

by qRT-RCR. (B) Protein expression analysis by IHC. 
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GSEA enrichment analysis suggested the existence of 

potential biological processes and pathways in high-risk 

group. Consistently, our study identified the enrichment 

in the high-risk-score group including the MAPK, 

notch, P53, VEGF and Wnt signaling pathways. All 

these pathways are classical signaling pathways that 

have been identified to be involved in cancer process 

[39–41]. The Wnt signaling pathway is severely 

dysregulated in solid and non-solid malignant tumors, 

acting as part of the proliferation pathway that 

characterizes cancer cells [42]. Pérez-Plasencia et al. 

reported that the Wnt signaling pathway, as a common 

pathway in many cancer types, was a main  attractive 

target in cancer therapy [43], including HCC [35]. 

Dysregulation of the MAPK cascade is linked  to some 

key signaling components and phosphorylation events 

which can activate the process of tumorigenesis [44]. At 

least three different MAPK signal transduction 

pathways participate in the modulation and transduction 

of extracellular signals into the nucleus to induce 

response genes in such mammalian cells as ERK1/2, 

JNK1/2/3, and p38 [44, 45], and all of them have 

proved to be correlated with HCC [46–48]. The Notch 

signaling pathway plays a key regulatory role in cellular 

fate, survival, and injury response in HCC cells [49, 

50]. Increasing evidence demonstrates that inhibition of 

the Notch signaling can enhance the therapeutic efficacy 

of antitumor agents in HCC cells [51, 52]. As one of the 

most frequently mutated genes in HCC and other 

cancers, the tumor suppressor p53 modulates cellular 

stress conditions and responses to DNA damage and 

other cytotoxic stresses [53–57]. VEGF, one of the most 

prominent regulators involved in vasogenesis, was 

found to be highly expressed in human HCC specimens 

[58, 59]. Interestingly, we found that the focal adhesion 

pathway was also enriched in HCC. Activation of the 

focal adhesion pathway mediated cancer cell survival, 

invasion, proliferation, and drug resistance [60–62]. 

And it has been shown to activate different cytoplasmic 

signaling pathways and co-regulate the pro-survival 

mechanisms [61, 63, 64]. Integrins are key mediators of 

cell adhesion molecules which control critical cell 

functions such as survival and migration by activating 

certain signaling mechanisms [65, 66]. Given these 

findings, it is plausible to assume that focal adhesion 

has a close connection with HCC procession. However, 

more research is needed to clarify the specific role of 

the Focal Adhesion Pathway in HCC procession. 

Indeed, it is essential to further explore the efficacy of 

the combination of focal adhesion related genes with the 

long-term survival of HCC patients. 

 

It is an urgent task to seek new biomarkers for early 
detection, prognostic assessment and decision making 

in the treatment of HCC. It was found that the abnormal 

expression of focal adhesion related prognostic genes 

was associated with poor prognosis of HCC patients 

[67], suggesting that these abnormally expressed genes 

may prove to be prognostic biomarkers in HCC. The 

tumor microenvironment and dysregulation of immune 

status also impact tumor progression. Increased 

numbers of studies suggest that the integration of 

tumor-infiltrating immune cells and clinicopathological 

characteristics may prove to be a potential prognosis 

model for predicting the response of patients to immune 

therapy [68]. In the present study, we found a positive 

correlation between the risk score and tumor-infiltrating 

immune cells suggesting that the prognostic genes for 

predicting the clinical outcomes of HCC patients may 

be associated with immune cell infiltration. Moreover, 

our data have also documented that the risk score is 

associated with the enrichment scores of diverse 

immune cell subpopulations and related functions, such 

as aDCs, DCs, iDCs, APC co-stimulation, HLA, and 

MHC class I, suggesting that the risk score may 

potentially affect the antigen presentation. Furthermore, 

we observed that the risk score was relevant to T cell 

subsets, like Th2 cells and Treg cells, indicating its 

potential role in regulating the secretion of cytokines 

from the Th cells.  

 

Knowing that cancer stem cells (CSCs) are highly 

resistant to conventional chemotherapeutic drugs and 

radiation therapy, and promote cancer progression 

owing to their potent self-renewal and invasion 

capabilities [69, 70], selection of CSCs with specific 

markers or signaling pathways could be an effective 

therapeutic strategy for the treatment of chemotherapy-

resistant HCC [71]. Of various microenvironmental 

factors affecting chemotherapy resistance, cell-cell 

adhesion and communication have recently been 

identified as key determinants [9, 72]. In the present 

study, we investigated the expression of prognostic 

genes with stem-cell-like features measured by RNAss 

and DNAss. We found that FYN and PPP1CB were 

negatively correlated with RNAss, while PPP1CC was 

positively correlated with RNAss, which indicated that 

prognostic genes might have a relationship with cancer 

cell sensitivity or resistance to chemotherapy treatment. 

Moreover, our data showed that increased expression of 

the prognostic genes was associated with increased drug 

resistance or sensitivity to a number of chemotherapy 

drugs. Based on these observations, we preliminarily 

concluded that overexpression of the prognostic genes 

could decrease cancer cell sensitivity or resistance to 

drug treatment and be used as therapeutic targets. 
 

CONCLUSIONS 
 

In summary, the focal adhesion related gene signature 

identified in this study showed good performance in 

different cohorts and could be used to improve the 
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prediction accuracy of OS in HCC patients, though the 

action mechanism between the focal adhesion related 

genes and tumor immunity in HCC needs to be further 

explored. Taken together, would help gain deeper 

insights into the prognostic value and biological function 

of focal adhesion related genes in HCC and provide new 

possibilities for HCC therapeutic intervention. 

 

MATERIALS AND METHODS 
 

Data collection  

 

The RNA sequencing expression profile and 

corresponding clinical information were retrieved from 

two public cohorts: TCGA-LIHC and ICGC-LIRI-JP. A 

total of 365 HCC patients with liver cancer datasets 

were collected from the TCGA portal 

(https://portal.gdc.cancer.gov/repository). Additional 

231 tumor samples were obtained from the ICGC portal 

(https://dcc.icgc.org/projects/LIRI-JP). The current 

research follows the access policies and publication 

guidelines of the TCGA and ICGC cohorts. The 199 

focal adhesion related genes were retrieved from the 

Molecular Signatures Database (MsigDB, 

https://www.gsea-msigdb.org/gsea/index.jsp) 

(Supplementary Table 1). 

 

Establishment of a focal adhesion related gene 

signature 

 

Using the "limma" R package, DEGs between tumor 

and adjacent non-tumorous tissues were identified with 

a false discovery rate of <0.05 in the TCGA cohort. The 

prognosis genes in HCC patients were screened buy 

univariate Cox analysis. A protein-protein interaction 

network of the overlapping prognostic DEGs was 

constructed with similar interaction patterns grouped. 

The possibility of interactions between genes was 

further screened by LASSO algorithm. A prognostic 

model was constructed with the "glmnet" R package. 

The basic aim of LASSO was variable selection and 

some regression coefficients could be strictly equal to 0, 

thereby obtaining an interpretable model. The response 

variables were OS and the status of patients in the 

TCGA cohort, and the independent variables in the 

regression were the normalized expression matrix of 

candidate prognostic DEGs. The penalty parameter (λ) 

for the model following the minimum criteria (i.e. the 

value of λ corresponding to the lowest partial likelihood 

deviance) was determined by 10-fold cross-validation, a 

standard method to estimate the adjustment parameter λ. 

The risk score of the patients was calculated based on 

the expression level of each gene and its corresponding 

regression coefficient by using the following equation: 

Score = esum (each gene’s expression × corresponding coefficient). The 

median risk score was used to classify patients into a 

high- risk group and a low-risk group. OS of the HCC 

patients was determined by survival analysis using the 

"survminer" R package. The predictive power of the 

model was assessed by time-dependent ROC curve 

analysis using the "survivalROC" R package. Based on 

the expression of the prognostic genes, we performed 

PCA and t-SNE with the "Rtsne" R package to explore 

the distribution of different groups. Furthermore, 

univariate and multivariate Cox regression analyses 

were performed to explore the independent prognostic 

value of the 5-gene signature. 

 

Enrichment analysis 
 

To further understand the immune function, ssGSEA 

was performed to calculate the score of immune cell 

infiltration and the activity of immune-related pathways 

between high-risk and low-risk groups using the 

"GSVA" R package. GO and KEGG analyses in high-

risk and low-risk groups were performed using GSEA 

by GSEA software 4.1. 

 

Tumor microenvironment and immune response 

analysis 

 

The infiltration level of immune cell score and stromal 

cell score was obtained by using the "estimate" R 

package. The immune score and stromal score 

associated with the risk score or prognostic model were 

analyzed by Spearman correlation. Stem-cell-like 

features with risk score or prognostic model were 

measured by tumor stemness features extracted from the 

TCGA tumor samples. Six immune subtypes were 

defined to measure immune infiltrates. In tumor 

immune response, differences in prognostic model risk 

scores between the immune infiltrate subtypes obtained 

from the TCGA-LIHC were calculated by ANOVA 

analysis. 

 

Chemotherapy sensitivity analysis 

 

The NCI-60 database was accessed using the CellMiner 

interface (https://discover.nci.nih.gov/cellminer/) 

containing 60 different cancer cell lines from 9 different 

tumor types. Pearson correlation was used to analyze 

the association between the prognostic gene expression 

and drug sensitivity by using 263 drugs approved by the 

FDA or obtained from clinical trials (Supplementary 

Table 2). 

 

Verification of mRNA expression of prognostic genes 

between HCC and adjacent non-tumorous tissues by 

qRT-PCR 

 

The qRT-PCR experiments were performed to validate 

the mRNA expression levels of the five prognostic 

https://portal.gdc.cancer.gov/repository
https://www.gsea-msigdb.org/gsea/index.jsp
https://discover.nci.nih.gov/cellminer/
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genes in 20 paired HCC and adjacent non-tumorous 

tissues recruited from the First Affiliated Hospital of 

Wenzhou Medical University (Wenzhou, China). This 

study was approved by the Review of Ethics Committee 

in Clinical Research of the First Affiliated Hospital of 

Wenzhou Medical University. Total RNA from the 

HCC and adjacent normal liver tissue specimens was 

prepared with the Trizol reagent following the 

manufacturer’s protocol (Servicebio). Using the 

RevertAid First Strand cDNA Synthesis Kit (Thermo), 

RNA was reverse-transcribed into cDNA. Gene 

expression was normalized to GAPDH. RT-PCR 

analysis was quantitated with FastStart Universal SYBR 

Green Master (Roche) by ABI StepOne (Applied 

Biosystems). The primer sequences were detailed in 

Supplementary Table 3. Each RNA sampling was 

performed in triplicate. To compare the expression 

levels between different samples, the relative expression 

of focal adhesion related genes was detected by the 

2−ΔΔCt method. 

 

Verification of the protein expression of prognostic 

genes between HCC and adjacent non-tumorous 

tissues by IHC 

 

IHC experiments were performed to validate the protein 

expression levels of the five prognostic genes in 10 

paired HCC and adjacent non-tumorous tissues. All 

specimens were fixed with 10% formalin at room 

temperature, embedded in paraffin, and consecutively 

sliced into 4 µm sections. In brief, the tissue slices were 

firstly deparaffinized, and boiled in 10 mmol/L citrate 

buffer (pH = 6.4) for 10 min to retrieve the antigen. 

Then, the sections were treated in methanol containing 

3% hydrogen peroxide to inactivate the endogenous 

peroxidase, and then with citrate buffer (pH = 6.0) to 

optimize antigen retrieval. The sections were incubated 

with 1% bovine serum albumin (BSA) in phosphate-

buffered saline (PBS) for 30 min to block the unspecific 

binding. Besides, primary antibodies and HRP-

conjugated secondary antibodies were respectively 

applied to stain the slides. The detail information of 

antibodies is provided in Supplementary Table 5. After 

that, the slices were stained diaminobenzidine and 

counter-stained with hematoxylin. Finally, the sample 

was sealed, observed, and photographed.  

 

Statistical analysis 

 

Gene expressions between tumor and adjacent non-

tumorous tissues were compared by Wilcoxon test. 

Differences in proportions were compared by the Chi-

squared test. OS in different groups was detected by 
log-rank test and compared by Kaplan-Meier analysis. 

Independent predictors of OS were screened by both 

univariate and multivariate Cox regression analyses. 

The ssGSEA scores of immune cells or immune 

pathway activities between high- and low-risk groups 

were compared by Mann-Whitney test. Spearman or 

Pearson correlation was used to explore the correlation 

between prognostic model risk scores or prognostic 

gene expression levels and stemness score, stromal 

score, immune score and drug sensitivity. Plots were 

created using R software (Version 3.6.3) with 

packages venn, igraph, ggplot2, pheatmap, ggpubr, 

corrplot, and survminer where appropriate. A two-

tailed p-value of <0.05 was considered to be 

statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Construction of a 5-gene signature model in the TCGA cohort. (A) LASSO coefficient profiles of the expression 

of 37 candidate genes. (B) Selection of the penalty parameter (λ) in the LASSO model via 10-fold cross-validation. 

 

 

 
 

Supplementary Figure 2. Survival analysis of each prognostic gene according to the optimal cut-off expression value. TCGA cohort  

(A–E), ICGC cohort (F–J). All adjusted P < 0.05. 
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Supplementary Figure 3. Expression of each prognostic gene between HCC and adjacent non-tumorous tissues in TCGA. 

 

 

 
 

Supplementary Figure 4. Expression level of prognostic genes in different groups stratified by clinical characteristics. (A) Age. (B) 

Gender. (C) Tumor grade. (D) Tumor stage. 
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Supplementary Figure 5. Expression level of prognostic genes in different immune infiltrate subtypes. 

 

 

 
 

Supplementary Figure 6. Correlation matrixes between the prognostic gene expression and RNAss, DNAss, Stromal Score, 
and Immune Score. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 
 

Supplementary Table 1. The 199 focal adhesion related genes. 

Supplementary Table 2. The 263 chemotherapy drugs by the FDA or obtained from clinical trials. 

 

Supplementary Table 3. The primer sequences of the five prognostic genes. 

Primers for detection prognostic genes 

Gene Forward Primer Reverse Primer 

FYN CCCAACTACAACAACTTCCACG GCTGGGAATGTAACCTGTCTCTC 

PPP1CB GTCGTCCAGGAAAGATTGTGC AAGATAGTTGGCTTCTGGTGGG 

PPP1CC AACGGCTGCTGGAAGTGAGA CACATAGTCCCCAAGAAACAGGTA 

RAC1 AGGCCATCAAGTGTGTGGTG AAGAACACATCTGTTTGCGGA 

SPP1 CGAAGTTTTCACTCCAGTTGTCC AGGTGATGTCCTCGTCTGTAGC 

beta-actin CACCCAGCACAATGAAGATCAAGAT CCAGTTTTTAAATCCTGAGTCAAGC 
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Supplementary Table 4. The results of correlation analysis of the prognosis gene expression and chemotherapy drug 
sensitivity. 

Gene Drug cor P value 

PPP1CC Chelerythrine 0.441276 0.000417 

PPP1CC AT-13387 0.387333 0.002232 

FYN 8-Chloro-adenosine -0.37588 0.00308 

SPP1 Gefitinib 0.375562 0.003107 

FYN PX-316 0.365799 0.00405 

PPP1CC Amonafide 0.36321 0.00434 

FYN Afatinib -0.35729 0.00507 

SPP1 Erlotinib 0.354486 0.005454 

SPP1 Lapatinib 0.349174 0.006249 

FYN AFP464 -0.34638 0.006706 

FYN AP-26113 -0.3443 0.007065 

FYN Erlotinib -0.34236 0.007416 

FYN Nitrogen mustard -0.34175 0.007529 

PPP1CC Fenretinide 0.340414 0.007782 

PPP1CC Everolimus -0.33663 0.00854 

RAC1 Fluorouracil -0.33528 0.008826 

PPP1CC Parthenolide 0.334771 0.008936 

FYN Dasatinib -0.32779 0.010567 

FYN SR16157 -0.3271 0.010741 

SPP1 bisacodyl, active ingredient of viraplex -0.32687 0.010801 

SPP1 Vandetanib 0.325235 0.011225 

FYN Bosutinib -0.32482 0.011335 

PPP1CC Hydroxyurea 0.323699 0.011638 

FYN Ifosfamide 0.321856 0.01215 

FYN AZD-9291 -0.32021 0.012624 

FYN Fluorouracil -0.31794 0.013304 

FYN Fulvestrant -0.31674 0.013675 

SPP1 Ibrutinib 0.314877 0.01427 

PPP1CC Obatoclax 0.312132 0.015186 

SPP1 O-6-Benzylguanine 0.310572 0.01573 

PPP1CC Fludarabine 0.309772 0.016015 

PPP1CC Vorinostat 0.307914 0.016694 

SPP1 AZD-9291 0.305134 0.017755 

SPP1 Acetalax -0.30066 0.019585 

RAC1 By-Product of CUDC-305 -0.29558 0.021854 

FYN Nelarabine 0.295181 0.022042 

FYN okadaic acid 0.294564 0.022334 

PPP1CC RH1 0.293265 0.022961 

FYN PD-98059 0.293151 0.023017 

PPP1CB Tegafur -0.29263 0.023272 

RAC1 Simvastatin 0.29189 0.02364 

FYN Elesclomol -0.29039 0.024402 

FYN Chelerythrine 0.289922 0.024641 

PPP1CC 8-Chloro-adenosine 0.288427 0.025426 

SPP1 Cordycepin -0.28794 0.025684 
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FYN Ibrutinib -0.28792 0.025698 

PPP1CC Pyrazoloacridine 0.286543 0.026444 

RAC1 Denileukin Diftitox Ontak -0.28369 0.02805 

SPP1 Afatinib 0.283317 0.028267 

PPP1CC Palbociclib 0.280656 0.029849 

FYN BML-277 -0.28028 0.030081 

SPP1 Dabrafenib 0.278976 0.030886 

FYN Pipamperone 0.278767 0.031018 

FYN Aminoflavone -0.27842 0.031235 

FYN Salinomycin -0.27837 0.031268 

PPP1CB Dabrafenib -0.27821 0.031371 

PPP1CB Entinostat -0.27667 0.032358 

FYN Vemurafenib 0.276352 0.032566 

FYN Allopurinol -0.27561 0.033052 

SPP1 Tyrothricin -0.27432 0.033919 

PPP1CB Ixabepilone -0.27379 0.034277 

PPP1CC Nelarabine 0.273062 0.034778 

PPP1CC Imexon 0.271078 0.036171 

FYN Gefitinib -0.27104 0.036199 

PPP1CC Cladribine 0.268455 0.038085 

PPP1CC Allopurinol 0.267602 0.038725 

PPP1CB 6-Mercaptopurine -0.26759 0.038735 

FYN Tegafur -0.26681 0.039326 

PPP1CB Vemurafenib -0.26558 0.040278 

FYN Sonidegib -0.26506 0.040684 

PPP1CC Belinostat 0.264338 0.041257 

FYN Everolimus -0.26137 0.043673 

FYN Vandetanib -0.2582 0.046388 

FYN 1st Precursor Intermediate to TDP 665759 -0.25774 0.04679 

SPP1 Cobimetinib (isomer 1) 0.25733 0.047155 

FYN Itraconazole -0.25568 0.048637 

PPP1CC Cytarabine 0.254939 0.049319 

SPP1 Trametinib 0.254883 0.04937 
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Supplementary Table 5. The detail information of the antibodies used in immunohistochemistry. 

Protein Antibody Name Antibody Number Company 

FYN Anti-FYN antibody [D2-A10] EM1709-88 HUABIO 

PPP1CB Anti-PPP1CB antibody [A7-C7] EM1706-97 HUABIO 

PPP1CC PPP1CC Polyclonal Antibody 11082-1-AP Proteintech 

RAC1 RAC1 Monoclonal Antibody 66122-1-Ig Proteintech 

SPP1 Osteopontin Polyclonal Antibody 22952-1-AP Proteintech 
 

 


