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INTRODUCTION 
 

Aging is currently a source of considerable concern 

worldwide. The prevalence of age-related diseases 

increases rapidly with advancing age; these diseases 

include cardiovascular disease, cognitive impairment, 

cancer, Alzheimer's disease, arthritis, obesity, and 

diabetes [1–3]. Aging has been linked to the 

progressive accumulation of damage and loss of 

function, both of which contribute to the onset of 

chronic disease and eventual death. Thus, there is 

ongoing research concerning the extension of healthy 

life and potentially reversing the aging process. 

Currently, senescent cells have become an increasingly 

important therapeutic target for age-related diseases 

[4]. Importantly, senescent cardiomyocytes contribute 

to cardiac fibrosis, while senescent neurons and glial 

cells led to neurodegenerative diseases [5]. Senescent 

cells exhibit various age-related characteristics, 

including irreversible cell cycle arrest, DNA damage, 

inflammation and oncogenes [6], resistance to 

apoptosis, and the acquisition of a senescence-

associated secretory phenotype [7]. This phenotype 

involves the secretion of multiple signaling molecules, 

including transforming growth factor-β (TGF-β), 

which induce and maintain age-related pathological 

conditions [8]. 

 

TGF-β is a family of pleiotropic cytokines with more 

than 30 members; it includes growth differentiation 

factors, bone morphogenetic proteins, and activins [9]. 

These cytokines regulate multiple cellular biological 

procedures such as embryogenesis, homeostasis, and 

various pathological states [10, 11], implying a 

relationship between TGF-β signaling and the onset of 
age-related diseases. TGF-β signaling impairment and 

elevated TGF-β ligand concentrations in certain cell 

types may contribute to cell degeneration, inflammation, 
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reduced regeneration ability, and metabolic abnormalities 

associated with age-related diseases [8]. 

 

Growth differentiation factor 11 (GDF11), a member of 

the TGF-β superfamily, has recently received attention 

because of its numerous functions in modulating the 

development and differentiation of various tissues and 

organs. It was initially identified by McPherron et al. as 

a new differentiation factor for odontoblasts [12]. 

Studies regarding the role of GDF11 in the development 

of various diseases have been conducted in recent 

decades. GDF11 is reportedly beneficial with respect to 

controlling age-related cardiac hypertrophy, improving 

muscle tone, preventing degeneration in the central 

nervous system, enhancing cognitive function, and 

promoting tissue regeneration [13, 14]. Important 

parabiosis experiments involving two animals of 

different ages, performed in 2013 and 2014, revealed 

that GDF11 levels were disrupted in an age-related 

manner in vascular, neurogenic, and skeletal muscle 

tissues [15, 16]. Those findings suggested that GDF11 

may be regarded as an honorable “rejuvenation” factor 

that could restore regenerative function, thus resisting 

aging and extending longevity. A study in fish 

conducted by Zhou et al. revealed that GDF11 has 

rejuvenation capacity to extend the lifespan [17]. In 

2020, a plasma proteomic dataset from Lehallier et al. 

demonstrated that the GDF11 protein can significantly 

extend the lifespan [18]. The above studies 

demonstrated critical roles for GDF11 in the inhibition 

of aging. However, recent studies have yielded 

conflicting data regarding the ability of GDF11 to 

alleviate dysfunction in age-related diseases [19, 20]. 

Thus, the regeneration ability of GDF11 with respect to 

age-related dysfunction requires further investigation. 

This review provides an overview of GDF11 and its 

functions in age-related diseases. It also discusses 

potential underlying mechanisms for the effects of 

GDF11 in age-related diseases. 

 

Structure and promotor of GDF11 
 

In humans, the GDF11 gene is located on chromosome 

12. The GDF11 protein comprises 407 amino acids; it 

contains a single peptide, an RXXR protein hydrolysis 

processing position, and a C-terminal domain with a 

highly conserved cysteine residue pattern [21]. 

Precursors of TGF-β-like proteins require cleavage at site 

1 to release the mature portion of the growth factor [22]. 

The pro-protein convertase subtilisin/kexin 5 cleaves the 

GDF11 protein into an inactive latent complex, which 

contains an N-terminal inhibitory precursor domain and 

two disulfide-bonded active end domains [23, 24]. Bone 

morphogenetic protein-1/tolloid family astacin 

metalloproteases cleave the propeptide and activate non-

covalently bound potential complexes, which are formed 

by the propeptide and mature protein dimers (disulfide-

linked) in circulation [25, 26] (Figure 1). 

 

Crystallography analysis of GDF11 has revealed a 

standardized homodimeric form; monomeric GDF11 

exhibits constitutive activity. The human GDF11 

protein exhibits a conserved tertiary structure, similar to 

a “hand” with a four-stranded β-sheet that constitutes 

the “fingers,” as well as a cystine-knot structure that 

occupies the “palm” and an α-helix that forms the 

“wrist.” (Figure 2). The interlaced accumulation of 

adjacent dimers results in contact between the β-folded 

fingers of nearby molecules, as well as contact between 

the primary helix wrist of the homodimer chaperone and 

the β-sheet finger of the adjacent molecule [27]. 

 

The promoter regions of the GDF gene contain multiple 

E-box and ROR/REV-ERB response elements, which 

bind to many transcriptional activators to form a 

heterodimer that controls various downstream genes [28]. 

Two transcriptional products of the GDF11 gene have 

been identified, according to Ensembl [29]. Despite GC 

enrichment (77%) in the promoter sequence of human 

GDF11, there are three well-concealed CCAAT boxes 

without a presumed stimulatory protein 1 site. These 

three CCAAT boxes are individually located at +87 bp 

and +171 bp (both downstream of the presumed 

transcription initiation point), and at -66 bp (upstream of 

the putative transcription start site). The CCAAT box at -

66 bp is presumed to be sufficient and necessary for 

trichostatin A (TSA) to activate the GDF11 promoter 

[30]. TSA, an inhibitor of histone deacetylase 3 

(HDAC3), is known to upregulate the expression of the 

gene encoding GDF11 [30]. According to a 

comprehensive survey of human HDAC3, treatment of 

cells with TSA leads to the inactivation of HDAC3 and 

reduction of GDF11 expression, revealing that HDAC3 

is both necessary and sufficient for GDF11 promoter 

activity [30]. A recent study suggested that the 

transcription factor zinc finger protein 740 (ZNF740) 

upregulates the hypoxia-induced expression of GDF11 

[31]. To verify the binding of transcription factors to the 

GDF11 promoter, Yu et al. obtained information 

regarding GDF11 promoter region transcription factors, 

including the nuclear factor of activated T cells 2, 

ZNF740, and specificity protein 1; these factors each 

target a separate motif [31]. ZNF740 is the only factor 

with an upstream site that is present in the GDF11 

initiation subsequence (-753/-744; CCCCCAC); it may 

participate in a growth factor pathway involved in the 

ZNF740/GDF11/Smad signaling axis [31]. 

 

GDF11 signaling pathway 
 

Like other members of the TGF-β superfamily, GDF11 

regulates cell signaling by binding to activin receptor 
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types I (activin receptor-like kinase 4/5/7 [ALK4, 

ALK5 and ALK7]) and II (ActRIIA and ActRIIB) 

(Figure 3). Both types I and II receptors comprise a 

small extracellular ligand-binding domain and an 

intracellular kinase domain. Generally, type II 

receptors phosphorylate and activate type I receptors. 

The activated type I receptors then phosphorylate and 

activate the receptor-regulated SMAD dimer. This 

dimer recruits the co-SMAD, SMAD4, to form a 

trimeric complex, which eventually translocates to the 

nucleus and regulates gene expression [32]. 

Specifically, GDF11 binds to the ectodomains of the 

high-affinity type II receptor ActRIIB and the low-

affinity type I receptor Alk5 to form a class of activin-

type ternary complex crystals [33]. The ternary 

complex structure of GDF11/ActRIIB-

ectodomain/Alk5-ectodomain then phosphorylates 

intracellular SMAD proteins. These SMAD proteins 

transduce the signal to the nucleus and act as 

transcription factors; thus, signal transduction 

outcomes are dependent on the ligand-receptor 

combination [33, 34]. There are two common SMAD 

signaling patterns, including the activation of SMAD 

2/3 and SMAD 1/5/8 [35]. In addition to the typical 

SMAD signals, other non-SMAD pathways have been 

reported [19, 36]. GDF11 activates the adenosine 

monophosphate-activated protein kinase/endothelial 

nitric oxide synthase pathway, but suppresses the c-Jun 

amino-terminal kinase and NF-κB pathways. GDF11 

can also activate p38 and extracellular signal-regulated 

kinase [19]. MitoTEMPO, a mitochondrion-targeted 

ROS inhibitor, inhibits the GDF11-induced activation 

of c-Jun amino-terminal kinase and adenosine 

monophosphate-activated protein kinase; thus, the 

GDF11-induced activation of c-Jun amino-terminal 

kinase and adenosine monophosphate-activated protein 

kinase can be modified by ROS status [37]. Recently, 

ERK1/2 signaling was found to be activated by 

GDF11, which downregulated bone morphogenetic 

protein–SMAD signaling and hepcidin activity [38]. 

 

 
 

Figure 1. Structure and Maturation process of GDF11. GDF11 is cleaved by PCSK5 to form an inactive latent complex, which contains 
an N-terminal inhibitory pro-domain and two disulfide-linked carboxyl-terminal active domains. Then, members of the BMP1/Tolloid family 
of metalloproteinases cleave the latent complex at a single specific site to form the mature GDF11 and pro-peptide. 
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GDF11 is expressed in multiple tissues 
 

After the initial discovery of GDF11 in odontoblasts, its 

distribution and expression were reported in other tissues 

[9]. Analysis of adult rat tissues revealed the expression 

of GDF11 in the skeleton, muscle, mandibular arch, 

hyoid arch, nasal epithelium, eye, spinal cord, olfactory 

system, kidney, testis, dental pulp, heart, brain, lung, 

spleen, and liver [9] (Figure 4). Notably, GDF11 was 

expressed in embryonic and adult brain regions: in 

various nuclei in the anterior hindbrain and ventral 

midbrain, as well as the thalamus, preoptic area, 

hippocampus, striatum, and outer layer of the inferior 

colliculus. In particular, GDF11 was strongly expressed 

in the thalamus and Purkinje cell layer, weakly expressed 

in the hippocampus, and inconsistently expressed in the 

midbrain and hindbrain [9]. Subsequently, GDF11 was 

expressed in the developing pancreatic epithelium, 

stomach, duodenum, and metanephros [39, 40]. Notably, 

GDF11 also comprises a circulating factor in blood [41]. 

However, there is inconsistency in the literature 

regarding circulating concentrations of GDF11 with age: 

reduction [42, 43], elevation [19] or tendency for 

elevation [44], or no change [42]. 

 

Additional contributors to the inconsistent conclusions 

include high structural homology between GDF11 and 

parabiosis resulting in difficulty distinguishing 

circulating GDF11 and GDF8, as well as the 

experimental contexts (e.g., serum sample manipulation, 

models, and assays to detect GDF11). These issues have 

been discussed exhaustively elsewhere [43, 45]. GDF11 

has 90% amino acid sequence identity to GDF8 in its 

mature carboxyl-terminal domain. GDF8, also known as 

myostatin, is a specific negative regulator during skeletal 

muscle growth [12]. Rat GDF11 has 88% identity to 

GDF8 in the mature region [9]. However, the 

prodomains are only 52% identical between GDF8 and 

GDF11; these prodomains aid in the folding of mature 

dimeric ligand [46]. Because there is 90% sequence 

identity between mature active forms of GDF11 and 

GDF8, the SOMAmer technology and western blot 

analysis are not suitable assays for the recognition of 

GDF11 [19]. Importantly, Egerman et al. proposed an 

immunoassay that was specific for GDF11 and did not 

detect myostatin [19]. This immunoassay revealed 

elevated GDF11 levels in aged rats and humans; 

importantly, endogenous GDF11 could not be detected in 

young or old mice when it was below the detection 

threshold [19]. Katsimpardi et al. proposed another assay 

(sandwich ELISA) that demonstrated specificity for 

GDF11 by using recombinant myostatin, which was not 

detected at any concentration [43]; they also performed 

western blotting with an anti-GDF11 antibody that was 

fully validated for sensitivity and specificity to the 

GDF11 antigen [43]. Overall, the antibodies in these 

assays have contributed to differences in the results. We 

conclude that the reagent specificity and sensitivity are 

essential factors in determining the levels of GDF11. 

New and reliable studies can help move the field forward. 

 

 
 

Figure 2. Overall structure of homodimeric human GDF11. 
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GDF11 and age-related diseases 
 

GDF11 expression in cardiovascular disease 

 

With the increasing prevalence of age-related heart 

failure worldwide, there is a critical need for adequate 

prevention and treatment methods [47]. Cardiac 

hypertrophy is a pathological feature of age-related 

heart failure. A recent study revealed that GDF11 could 

reverse age-related cardiac hypertrophy, implying an 

anti-hypertrophic role for GDF11 in age-related cardiac 

hypertrophy [41]. In that study, Loffredo et al. utilized 

 

 
 

Figure 3. The signal transduction of GDF11. The figure displays the canonical signal transduction mediated by R-SMAD (SMAD 2/3, 
SMAD 1,5,8), assisted by the Co-SMAD (SMAD4). The non-canonical pathway is driven mainly by TGF-β activated kinase 1 (TAK1) and Ras. 
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parabiosis experiments involving young and old female 

C57BL/6 mice, in which the mice established a shared 

blood circulation with a “youthful” expression profile. 

The results showed that young circulation containing 

GDF11 reversed the aged hypertrophic cellular 

phenotype. These data and other in vitro evidence 

suggested that a “youthful” level of GDF11 in aged 

mice could reverse age-related cardiac hypertrophy [41, 

48]. Adeno-associated virus carrying GDF11 protected 

against endothelial injury and attenuated atherosclerotic 

lesion formation both in vivo and in vitro, implying the 

potential for beneficial effects of GDF11 in the context 

of age-related cardiovascular diseases [49]. In the Heart 

and Soul study, GDF11 levels decreased in older 

participants, while the levels of GDF11 were associated 

with left ventricular hypertrophy and cardiovascular 

outcomes (e.g., death) [50]. To determine whether 

GDF11 directly prevents heart hypertrophy, the α1-

adrenergic receptor agonist phenylephrine was used to 

promote hypertrophy of neonatal cardiomyocytes in 

vitro [51]. The results suggested that GDF11 prevents 

hypertrophy through the modulation of Ca2+ signaling 

and the Smad2/3 pathway in cultured neonatal rat 

ventricular myocytes treated with norepinephrine or 

phenylephrine [51, 52]. Those findings indicated that 

circulating GDF11 directly protects cardiac myocytes, 

consistent with its role in the prevention of excess 

hypertrophy [51, 52]. And also GDF11 protects against 

hypoxia-mediated apoptosis in cardiomyocytes by 

enhancing autophagy [53]. GDF11 inhibits 

cardiomyocyte pyroptosis in acute myocardial 

infarction mice [54]. Overall, circulating GDF11 has 

been shown to improve the progression of age-related 

cardiac hypertrophy, suggesting a novel treatment for 

this condition. However, previous studies regarding 

GDF11 in normal and diseased hearts have yielded 

disparate findings [55]. Recently, the presence of 

GDF11 at youthful levels, administered through 

injections of recombinant GDF11 (rGDF11), was not 

found to affect heart weight in 2-year-old C57BL/6 

mice [20]. Furthermore, Smith et al. found that GDF11 

did not rescue age-related pathological hypertrophy in 

24-month-old C57BL/6 male mice, while Loffredo et al. 

reported the beneficial effect of rGDF11 in 23-month-

old female mice. Notably, these studies used different 

types and sexes of mice. Loffredo et al. also implied 

that a reversal of cardiac myocyte hypertrophy is sex-

independent. In vivo analyses of cardiac and skeletal 

muscle following the administration of excess GDF11 

(i.e., bioactive GDF11 at supraphysiological levels) 

revealed unsatisfactory findings, including 

compensatory regeneration, skeletal muscle loss, 

cardiac dysfunction, and death [56, 57]; these results 

suggested that the administration of GDF11 at 

supraphysiological levels may cause damage. 

Therefore, GDF11 may be beneficial and serve as a 

promising therapeutic rejuvenation factor in age-related 

cardiovascular disease when its levels are appropriate. 

 

GDF11 expression in neurological disease 

 

Declining neurogenesis and cognitive function with age 

are associated with lower numbers of neural stem cells, 

diminished remyelination, and reduced blood flow [58, 

59]. Aging stem cells exhibited regenerative potential 

upon exposure to a young environment, while young 

stem cells lost their regenerative potential upon 

exposure to an aged environment [60]. Moreover, 

exposure to a youthful systemic environment promotes 

remyelination in aged animals [58]. Contextual fear 

conditioning, spatial learning, and memory skills were 

reportedly impaired when young mice were exposed to 

an aged systemic environment or plasma from an aged 

animal [59, 61]. These findings confirmed that blood-

borne systemic factors could inhibit or enhance the 

growth of neural tissue in an aged environment. 

 

 
 

Figure 4. GDF11 protein expression data. The color-coding is based on tissues with common functional features. The mouse-over 

function shows protein score for analyzed cell types found in a selected tissue (http://www.proteinatlas.org/ENSG00000135414-
GDF11/tissue). 

http://www.proteinatlas.org/ENSG00000135414-GDF11/tissue
http://www.proteinatlas.org/ENSG00000135414-GDF11/tissue
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Importantly, Katsimpardi et al. generated heterochronic 

parabiotic pairs and found that youthful circulating 

factors can restore the self-renewal and differentiation 

potential of aged subventricular zone neural stem cell 

and stimulate endothelial cell proliferation by 88% 

compared to old serum. Then, treating endothelial cells 

with rGDF11 increased their proliferation by 22.9% 

compared to controls. These findings imply that GDF11 

improves vascularity and blood flow in the neurogenic 

niche, thereby enhancing neurogenesis [15]. 

Additionally, the different distributions of circulating 

GDF11 between young and old brain tissues suggests 

that GDF11 may have crucial functions for neurons; it 

may provide novel approaches for the treatment of age-

related neurological diseases (e.g., neurodegenerative 

and neurovascular diseases) [62]. For example, aging 

may cause a decline in hippocampal neurogenesis [63]; 

the injection of GDF11 enhances neurogenesis and 

increases neuronal activity in the hippocampus of 22–

23-month-old mice [64]. 

 

Stroke has been reported to induce angiogenesis in the 

area surrounding the infarction. Furthermore, 

angiogenesis has been reported to deliver growth 

factors/chemokines to facilitate the migration of nerve 

cells and the survival of new neurons, which implies a 

strong relationship between angiogenesis and 

neurogenesis [65]. Therefore, angiogenesis is a crucial 

target for stroke treatment. The proliferation and 

angiogenesis of neuronal precursor cells were improved 

through the TGF-β/Smad2/3 signaling pathway 

following the injection of rGDF11 into stroke models 

[66]; thus, mice treated with rGDF11 exhibited 

remarkable enhancement of neuronal regeneration and 

functional restoration [66]. A recent study highlighted 

that GDF11 can reduce gliosis, improve angiogenesis, 

and attenuate the proliferation of glial cells after 

transient ischemic stroke in 20–22-month-old male mice 

with middle cerebral artery occlusion [67]. GDF11 has 

been proposed to improve nerve function recovery after 

ischemia/reperfusion damage to the brain; this action 

may be partly mediated by the onset of angiogenesis in 

the peri-infarct cerebral cortex, in association with 

ALK5 [68]. Thus, GDF11 and ALK5 may constitute 

novel therapeutic targets for stroke rehabilitation. 

 

Alzheimer's disease is a complex heterogeneous disease 

that is caused by genetic, neurotransmitter, 

immunological, and environmental factors [69]. Nearly 

90% of affected patients have cerebral amyloid vascular 

disease [70], which is characterized by the accumulation 

of β-amyloid peptide within the brain, as well as 

hyperphosphorylated tau protein [71]. In patients with 
Alzheimer's disease, large amounts of β-amyloid 

peptide are generated from amyloid precursor protein 

and accumulate in the brain, leading to acute neuronal 

toxicity [72] and synaptic dysfunction [73]. Classical 

neuropathology may exacerbate cognitive decline. Sub-

chronic treatment of 12-month-old AβPP/PS1 mice (an 

animal model of Alzheimer's disease) with GDF11 has 

been shown to restore cognitive function and improve 

cerebrovascular function [74]. To further assess whether 

GDF11 can protect against the age-related progression 

of cognitive dysfunction, the levels of GDF11 were 

measured in human plasma from healthy adult men, 

healthy aged men, and aged men with distinct extents of 

age-related cognitive impairment. Notably, no 

relationships were found between age-related changes 

in circulating GDF11 levels and cognitive impairment, 

which suggested that circulating GDF11 may not be 

protective of cognitive function during aging [75]. 

 

Excess ROS in the brain has also been reported to 

contribute to human aging. The control of neurovascular 

units is reportedly dependent on the regulation of ROS 

levels. Excessive ROS levels can cause neuronal 

functional decline [76]. Many longevity-related 

signaling pathways are presumed to have essential roles 

in brain function, such as Forkhead box class O 

transcription factors and Sirtuin-1 [77, 78]. The 

manipulation of signaling molecules that affect 

Forkhead box class O and Sirtuin-1 activity has been 

shown to improve the ability of neurons to respond to 

ROS stress and can extend their overall lifespan [79]. 

There is evidence that GDF11 has a direct biological 

effect on capillary endothelial cells in the brain, based 

on the activation of TGF-β signaling following injection 

of rGDF11; thus, GDF11 may serve as a promoter of 

neurogenesis and angiogenesis [15, 80]. 

 

GDF11 expression in skeletal muscle disease 

 

Reduced skeletal muscle mass, strength, and 

physiological endurance are features characteristic of 

aging [81]. Aged muscle contains fewer numbers of 

satellite cells, exhibits impaired satellite cell function, 

and has low regenerative potential [82]. Therefore, the 

elevation of satellite cell numbers and improvement of 

satellite cell function are potential approaches for 

alleviating the effects of aging in muscle. 

 

As a “young” circulating factor, GDF11 has been shown 

to restore skeletal muscle function, improve muscle 

structure, and enhance muscle strength and endurance 

exercise capacity in aged animals [16]. However, GDF11 

has also been shown to reduce satellite cell expansion 

and significantly inhibit muscle regeneration by blocking 

myoblast differentiation via SMAD2/3 phosphorylation, 

p38 and ERK activation, and downstream signaling 
regulation [19]. Furthermore, GDF11 causes reductions 

of mass and function in both heart and skeletal muscle of 

mice treated with GDF11-secreting cells [57]. The 
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Table 1. Effects of GDF11 in cardiac, muscle skeletal and nervous system disease. 

Age- related disease outcome overall effect model Study 

cardiac hypertrophy positive reversed age-related hypertrophy heterochronic 
parabiosis 

Loffredo FS, et al. [41] 

atherosclerosis positive improve endothelial dysfunction, 
decrease endothelial apoptosis, 

reduce inflammation, 
decrease atherosclerotic plaques 

area 

apoE−/− mice Mei W, et al. [49] 

stable ischaemic heart 
disease 

positive lower risk of cardiovascular 
events and death 

prospective cohort 
study 

Olson KA, et al. [50] 

pathological cardiac 
hypertrophy (PCH) 

no no effect on cardiac structure or 
function 

C57BL/6 mice Smith SC, et al. [20] 

Cardiac disease negative decreased cardiomyocyte size and 
decreased cardiac function 

Male athymic nu/nu 
mice 

Zimmers TA, et al. [57] 

the central nervous 
system 

positive rejuvenating synaptic plasticity 
and improving cognitive function 

parabiosis pairs Villeda SA, et al. [59] 

stroke positive promoted neurogenesis and 
angiogenesis and contributed to 

functional recovery 

8–10 weeks old 
male C57BL/6 mice 

Lu L, et al. [66] 

stroke positive improves neurofunctional 
recovery 

cerebral 
ischemia/reperfusion 

(I/R) rat 

Ma J, et al. [68] 

Alzheimer's Disease positive restore cognitive function and 
improve cerebrovascular function 

AD model mice Zhang W, et al.[74] 

ageing cognitive 
disease 

no may not exert a protective effect prospective cohort 
study 

Yang R, et al. [75] 

muscle disease negative significant increase in tissue 
fibrosis, accompanied by 

attenuated functional recovery 

complex rat model 
of skeletal muscle 

injury 

Zhou Y, et al. [83] 

muscle disease positive improved muscle structural and 
functional features and increased 

strength 

heterochronic 
parabiosis 

Sinha M, et al. [16] 

Summary of the specific effects of increased GDF11 activity on cardiac, muscle skeletal and neurofunctional regeneration. 
Although the initial report suggested that GDF11 may have a rejuvenating function, follow up studies demonstrated an 
opposite, or negative effect. 

 

relationship between GDF11 and skeletal muscle 

regeneration in aged rats was explored using a complex 

rat skeletal muscle injury model [83]. The results 

indicated that GDF11 treatment caused considerable 

enhancement of tissue fibrosis, accompanied by the 

reduction of functional recovery [83]. These results 

implied that the effects of GDF11 may be less 

beneficial than expected. 

 

The roles of GDF11 in cardiovascular, neurological, 

and skeletal muscle diseases are confusing, presumably 

because of tissue-specific or species-specific differences 

in its expression [45]. GDF11 levels in different mouse 

strains are presumably affected by their genetic 

backgrounds [84]. Furthermore, a positive quadratic 

correlation was found between GDF11 and the mid-life-

span of a mice strain, such that higher GDF11 levels 

were indicative of longer lifespans and might influence 

experimental results [84]. There are important 

limitations in the treatment of age-related diseases with 

rGDF11. First, lot-to-lot variability is evident in 

commercially available rGDF11 products. Second, there 

are differences in methods of administration, as well as 

bioavailability and dosing. Various circulating and 

tissue-specific factors may alter the effects of GDF11 or 

reduce its bioavailability [85]. In particular, GDF11 has 

a close association with myostatin, so high-quality and 

accurate assays are needed to distinguish these proteins. 

Third, mice used in some published studies were 

younger than in others, which may have introduced bias 

in the results. Finally, no prior studies have examined 

the potential for compensatory regulation of 

endogenous GDF11. Circulating GDF11 has minimal 

physiological relevance because it presumably cannot 

outcompete myostatin for ActRIIB binding sites [86]. In 

summary, the roles of circulating GDF11 in aging 

muscle, heart, and brain phenotypes should be 

reconsidered (Table 1). 

 

GDF11 expression in other age-related diseases 

 

Many studies have explored the relationships of GDF11 

with obesity and diabetes. Early reports showed that 

patients with type 2 diabetes or obesity exhibited higher 

circulating levels of GDF11 [49, 87], while others 

showed that circulating GDF11 levels were unaffected 
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by the presence of obesity or type 2 diabetes [42]. 

Notably, GDF11 has been used to treat metabolic 

diseases, including obesity, insulin resistance, fatty liver 

development, and hyperglycemia. These outcomes 

suggest that GDF11 may be effective in the treatment of 

metabolic diseases [88, 89]. However, a new study 

showed that GDF11 may contribute to pathological 

fibrogenesis in a mouse model of non-alcoholic 

steatohepatitis [90]. There is some controversy 

regarding the roles of GDF11 in cancer biology. A 

recently published study indicated that GDF11 mediated 

tumor suppressor effects in triple-negative breast cancer 

[91], liver cancer [92], and pancreatic cancer [93]; 

however, an opposite effect was observed in colorectal 

cancer [94]. Additionally, some reports have 

demonstrated the pro-tumorigenic properties of GDF11 

in oral squamous cell carcinoma [95, 96]. In patients 

with liver fibrosis and mouse models of experimentally 

induced liver fibrosis, observations regarding the 

upregulation of GDF11 expression imply that 

therapeutic application of GDF11 may resist fibrosis 

onset [97]. 

 

A positive correlation has been observed between the 

serum concentration of GDF11 and the level of thyroid-

stimulating hormone [98]. The relationships of GDF11 

with skin components have been evaluated in various 

skin models. Notably, enhancement of physiological 

GDF11 levels (via rGDF11 administration) led to the 

production of collagen I and hyaluronic acid in those 

models, along with the reduction of melanin, indicating 

potential benefits of GDF11 with respect to skin biology 

[99]. Aplastic anemia is a disease often characterized by 

bone marrow failure and pancytopenia. GDF11 levels 

are negatively correlated with hemoglobin levels in 

patients with aplastic anemia, suggesting a reduced 

response to GDF11 in these patients. Significantly 

higher GDF11 levels have been observed in patients 

with aplastic anemia [100]. Accordingly, the role of 

GDF11 in aplastic anemia requires further investigation. 

 

CONCLUSIONS 
 

In this review, we described the gene structure and 

signaling pathways of GDF11, as well as the roles of 

GDF11 in organ development, aging, cardiovascular 

disease, neurological disease, and other diseases. 

Notably, GDF11 exhibits extensive expression in 

multiple tissues. Because of differences in GDF11 

expression and function in cardiac, neural, muscular, 

and other tissues, further research is needed to elucidate 

the roles of GDF11 in age-related diseases. Current 

theories suggest that various rejuvenation factors in 

young blood have beneficial effects on cognitive and 

cardiovascular functions; the presence of GDF11 in 

many pro-longevity signaling pathways indicates that it 

may possess an ancient role in the regeneration of organ 

function. In this review, we have emphasized that the 

“youthful” expression of GDF11 (demonstrated via 

parabiosis experiments) may have a beneficial function 

in age-related diseases. Therefore, GDF11 may serve as 

a promising therapeutic rejuvenation factor in age-

related diseases when its levels are appropriate.  
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