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INTRODUCTION 
 

Glioma mainly occurs in the brain and glial tissue, and 

is the most common primary malignant brain tumor in 

adults [1, 2]. Gliomas are astrocytes, oligodendrocytes, 

or a mixture of these two cell types. Gliomas are 

classified into four categories (grades I~IV) based on 

malignancy and overall survival (OS) by the 

International Classification of Diseases–Oncology, 

version 3 (ICD-O-3) and the World Health Organization 

(WHO). Among them, grade IV glioma (glioblastoma) 

has a very poor prognosis, with a median survival 

between 14.5 and 16.6 months [3, 4]. Even after 

surgery, radiotherapy and chemotherapy, the survival 

time of patients with glioma is only extended by a few 

months [5]. Therefore, there is an urgent need for 

accurate prognostic prediction and new therapeutic 

targets for glioma treatment. 

 

Glioblastoma is the most common primary malignancy 

in the central nervous system and is fast-growing (grade 

4 glioma) [6, 7]. The new classification of GBM 

(glioblastoma multiforme) tumor subtypes is based on 

The Cancer Genome Atlas (TCGA) on related genetic 

mutations, changes in the associated recurrent gene copy 

number and comprehensive genome sequence analysis. 
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ABSTRACT 
 

Malignant glioma with a mesenchymal (MES) signature is characterized by shorter survival time due to 
aggressive dissemination and resistance to chemoradiotherapy. Here, this study used the TCGA database as the 
training set and the CGGA database as the testing set. Consensus clustering was performed on the two data 
sets, and it was found that two groups had distinguished prognostic and molecular features. Cox analysis and 
Lasso regression analysis were used to construct MES signature-based risk score model of glioma. Our results 
show that MES signature-based risk score model can be used to assess the prognosis of glioma. Three methods 
(ROC curve analyses, univariate Cox regression analysis, multivariate Cox regression analysis) were used to 
investigate the prognostic role of texture parameters. The result showed that the MES-related gene signature 
was proved to be an independent prognostic factor for glioma. Furthermore, functional analysis of the gene 
related to the risk signature showed that the genes sets were closely related to the malignant process of 
tumors. Finally, FCGR2A and EHD2 were selected for functional verification. Silencing these two genes inhibited 
the proliferation, migration and invasion of gliomas and reduced the expression of mesenchymal marker genes. 
Collectively, MES-related risk signature seems to provide a novel target for predicting the prognosis and 
treatment of glioma. 
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GBM is divided into proneural, neural, classical and 

mesenchymal subtypes according to different biological, 

imaging and clinical characteristics [8, 9]. High-grade 

glioma (HGG) can also be divided into three subtypes: 

proneural (PN), mesenchymal (MES) and proliferative 

(Prolif) because of their different molecular charac-

teristics, including CHI3L1 / YKL40, SERPINE1 and 

PDPN. The MES subtype is a more malignant form with 

a higher tendency for relapse, metastasis, and increased 

vascularity [10–12]. MES related to a consistently poor 

prognosis with a median survival time of 1.2 years [11]. 

GBM relapse has been verified to be closely associated 

with mesenchymal, stem-like phenotypes that are 

resistant to treatment [13, 14]. Mesenchymal GBMs 

showed the highest percentage of microglia, 

macrophage, and lymphocyte infiltration, which was 

connected with a worse prognosis [15]. 

 

In recent years, central nervous system tumors have been 

reclassified, which has produced a paradigm shift in 

personalized therapeutics and prognostic factor-guided 

treatment decisions [6]. Recently, it has been proposed 

that the prognosis of glioma is closely related to 

immune-related lncRNAs, N6- methyladenosine-related 

lncRNAs and energy metabolism-related genes [16–18]. 

Therefore, we speculate that the detection of MES-

related genes is of great significance for evaluating 

prognosis. In addition, these findings may contribute to 

the discovery of prognostic biomarkers for glioma and 

the development of more accurate treatment processes. 

 

This study used TCGA and Chinese Glioma Genome 

Atlas (CGGA) RNA sequencing data to study the clinical 

value of MES-related genes from the TCGA and Ivy 

Glioblastoma Atlas Project (Ivy GAP) databases. 

According to the expression levels of MES-related genes, 

the patients were divided into two groups by consensus 

clustering analysis, and there were significant differences 

in prognosis and molecular characteristics. Then, Lasso 

regression was used to calculate the regression 

coefficient, and the risk score was calculated based on the 

regression coefficient and the gene expression level. The 

patients were graded into high-risk and low-risk groups 

of the median risk score, in which the low-risk group had 

a better prognosis than the high-risk group. The MES-

related signature is closely related to the prognosis of 

patients and could act as an independent pathological 

predictive factor. Furthermore, functional analysis 

showed that gliomas with a higher risk score for MES-

related genes were associated with many aspects of 

glioma progression, including epithelial-mesenchymal 

transition, angiogenesis, hypoxia and inflammatory 

response. Subsequent cell function test results showed 

that inhibition of FCGR2A or EHD2 significantly 

represses proliferation, migration, and invasion of glioma 

cells, and reduces the expression of mesenchymal marker 

genes. Therefore, these results suggest that MES-related 

genes will be better for predicting the prognosis of 

glioma and provide novel targets for glioma treatment. 

 

RESULTS 
 

Fifteen MES-related genes from the TCGA and Ivy 

GAP databases 

 

The MES-related genes were obtained from the TCGA 

and Ivy GAP databases. As shown in Figure 1A, the 

Venn diagram showed a total of 21 intersecting genes, 

including EFEMP2, CHI3L1, TIMP1, EMP3, NRP1, 

EHD2, HK3, RRAS, FES, PTRF, MYH9, MVP, 

 

 
 

Figure 1. Acquisition and verification of MES-related genes. (A) Venn diagram indicating that 21 MES-related genes were selected 
from the Ivy GAP and TCGA databases. (B) The heat map shows that 15 of the MES-related genes were significantly different between the 
normal and tumor groups. **P <. 01; ***P < 0.001. 
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SERPINA1, S100A11, THBD, FCGR2A, SLC16A3, 

ITGA5, and PLAU. Then, we used differential gene 

analysis to identify differentially expressed genes 

between the normal and tumor groups, 15 of which had 

significant differences between the two groups, including 

NRP1, EMP3, FCGR2A, PLAUR, SERPINA1, 

SERPINE1, MYH9, S100A11, MVP, RRAS, ITGA5, 

SLC16A3, EHD2, PLAU, and HK3, and all had a 

positive correlation (Figure 1B and Table 1). 

 

Stratification of gliomas based on the fifteen MES-

related genes 

 

Consensus clustering of 650 samples identified two 

clusters. In the TCGA data set, the cluster stability 

increased between k = 2 and k = 9. Next, we observed 

significant differences in the clinical and molecular 

characteristics of the two clusters identified by 

consensus clustering (Figure 2A–2C and Supplementary 

Figure 2A). In the training cohort, cluster 1 was closely 

related to the age at diagnosis and grade of glioma, as 

well as the type of glioma (p<0.001) (Figure 2D). 

Similarly, these results were verified in the CGGA 

database (Supplementary Figure 2B–2F). In addition, we 

observed that the overall survival (OS) of cluster 2 was 

significantly shorter than cluster 1 (Figure 2E). At the 

same time, the CGGA validation set clearly showed the 

same results in the two different prognostic subgroups 

(Figure 2F). These results indicate that the MES-related 

gene set is related to the survival time of patients with 

glioma, and cluster 2 is much shorter than cluster 1. 

 

Establishment of the MES-related gene risk signature 

 

The predictive value of the risk score model was 

evaluated using the TCGA data set as the training set. 

To establish the MES-related gene signature, first, 

univariate Cox regression analysis of all data from the 

training and testing cohorts was used to select six genes 

from 15 MES-related genes. We chose six genes as risk 

coefficients in the model because these six genes had 

higher hazard ratios (Figure 3A). Then, through the 

Lasso regression algorithm, six genes were designated 

as active covariates to gauge the prognostic value and 

obtain the correlation coefficients of each gene (Figure 

3B). Next, the risk score of the patients was calculated 

by the correlation coefficients and gene expression. The 

training set was segmented into high-risk and low-risk 

groups based on their median risk score to verify the 

performance of the risk score as a classifier for 

evaluating characteristic genes. We found clinically 

significant differences and different molecular 

characteristics between the high- and low-risk groups 
(Table 2). The high-risk group had an older age, a 

higher glioma grade, and a more malignant glioma type 

than the low-risk group (Figure 3C). 

To verify whether the MES-related risk characteristics 

are equally applicable in another sample, we developed 

a risk score for each patient in the CGGA database 

according to the risk score of the training set. Consistent 

with the above results, compared with low-risk groups, 

high-risk groups tend to have more malignant clinical 

features. In general, we still found important differences 

between the two clusters in the independent verification 

group (Supplementary Figure 3A–3C). 

 

The 6-gene signature shows strong prognostic power 

 

The overall survival rate of patients in the low-risk 

group was significantly longer than that of patients in 

the high-risk group by Kaplan-Meier analysis (Figure 

4A). In addition, patients in the low-risk group had a 

significantly positive progression-free survival time 

compared to the high-risk group (Supplementary Figure 

4A). To verify whether the risk coefficient is an 

independent prognostic factor for the prognosis of 

glioma, we carried out univariate and multivariate Cox 

regression analyses. The risk score was not associated 

with age, sex, grade, or subtype, but it was significantly 

related to the patient’s OS and was an independent 

prognostic factor (Figure 4C, 4D). Additionally, the 

ROC curve was used to further evaluate the specificity 

and sensitivity of the risk score as a predictor by 

calculating the AUCs (areas under the curve) of the risk 

score for 1-, 3- and 5-year OS. The AUC values of the 

risk score were 0.844, 0.882 and 0.863, which showed 

its powerful ability to predict prognosis (Figure 4E). 

 

In CGGA, the same results were obtained. Overall 

survival analysis showed that low-risk patients also had 

a better prognosis (Figure 4B). We performed univariate 

and multivariate Cox regression analyses of the CGGA 

data set, which revealed that the risk score was as an 

independent prognostic factor (Supplementary Figure 

4B, 4C). The ROC curve analysis also showed good 

specificity and sensitivity for one-, three-, and five-year 

survival predictions, and the one-, three-, and five-year 

AUC values were 0.813, 0.815 and 0.723, respectively 

(Figure 4F). 

 

Functional analysis of the 6-MES related genes 

 

To explore the functional characteristics of potential 

changes associated with the 6-gene signatures, gene set 

enrichment analysis (GSEA) was performed between 

the high- and low-risk score groups. We discovered that 

the high-risk group was closely related to epithelial-

mesenchymal transition, angiogenesis, inflammation, 

and hypoxia compared to the low-risk group (Figure 
5A–5D). Additionally, we performed GO analysis to 

explore the correlation of the difference function 

between the high- and low-risk groups. Similarly, we 
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Table 1. Full names of the 15 related genes and their p-values. 

Gene symbol Gene name p value 

SERPINE1 Serpin Family E Member 1  9.48E-98 

S100A11 S100 Calcium Binding Protein A11  8.36E-82 

ITGA5 Integrin Subunit Alpha 5 3.54E-69 

HK3 Hexokinase 3  3.55E-04 

RRAS RAS Related 9.32E-03 

FCGR2A Fc fragment of IgG receptor IIa  2.84E-108 

PLAU Plasminogen Activator, Urokinase 2.72E-114 

SERPINA1 Serpin family A member 1 1.53E-74 

MYH9 Myosin Heavy Chain 9 1.44E-47 

NRP1 Neuropilin 1 2.71E-71 

PLAUR Plasminogen Activator, Urokinase Receptor 1.73E-23 

EHD2 EH Domain Containing 2 1.87E-30 

EMP3 Epithelial Membrane Protein 3 2.35E-03 

MVP Major Vault Protein 1.00E-39 

SLC16A3 Solute Carrier Family 16 Member 3 2.29E-32 

 

discovered that the positively related genes were mainly 

enriched in cell adhesion molecule binding, tumor 

necrosis factor receptor superfamily binding, and 

tubulin binding (Figure 5E), which are closely 

associated with the epithelial-mesenchymal transition 

process. Next, KEGG analysis verified that the high-

risk group was closely related to focal adhesion and cell 

adhesion molecules (Figure 5F). We found that these 

genes may be involved in these processes. Leading to a 

worse prognosis for patients with glioma. 

 

Inhibiting FCGR2A or EHD2 expression could 

significantly suppress glioma proliferation, migration, 

and invasion 

 

Using the database to analyze the gene differences 

between the normal group(n=1108) and glioma 

group(n=650), it was also found that these six genes are 

different except for EMP3. Next, TCGA database was 

utilized to analyze the overall survival and disease-free 

survival rate of the six genes between the high-

expression group and the low-expression group. We 

found that glioma patients with high expression levels of 

these genes had a worse prognosis than those with low 

expression levels (Figure 6 and Supplementary Figure 

5). Subsequently, we analyzed these six genes and found 

that among them, FCGR2A and EHD2 have rarely been 

studied in glioma, and there are no functional tests. 

Hence, we chose these two genes for functional analysis 

in glioma. Using five existing glioma cell lines in the 
research group to carry out qRT-PCR, it was found that 

FCGR2A was expressed at a relatively high level in 

LN18 and T98G cells, whereas EHD2 was expressed at 

a high level in U251 and SNB19 cells (Figure 7A, 7B). 

To verify the effects of these two genes on the 

proliferation, migration and invasion of glioma cells, the 

genes were silenced with siRNAs. Three fragments of 

siFCGR2A (siFCGR2A(pro)) and siEHD2-2 were 

selected to silence genes in LN18 and U251 cells (Figure 

7C, 7D) and were verified in T98G and SNB19 cells 

(Supplementary Figure 6A, 6B). Functional tests were 

performed on the cell lines corresponding to these two 

genes, including the MTT assay, colony formation assay, 

Transwell assay and Matrigel invasion assay. The MTT 

assay showed that cell proliferation viability was 

significantly inhibited at 24 h, 36 h, 48 h and 72 h after 

transfection (Figure 8A, 8B and Supplementary Figure 

7A, 7B). After the colony formation assay was carried 

out for approximately ten days, it was found that in 

glioma cells, the cloning ability of cells strikingly 

decreased after silencing, but it was difficult for U251 

cell lines to form colonies (Figure 8C, 8D and 

Supplementary Figure 7C–7F). The Transwell and 

Matrigel invasion assays showed that glioma cells' 

ability to migrate and invade was significantly reduced 

after siRNA silencing of the target gene (Figure 8E–8J). 

These results revealed that silencing FCGR2A or EHD2 

reduced glioma cell proliferation, migration and 

invasion. Through mechanistic studies, it was found that 

silencing the FCGR2A or EHD2 gene can inhibit the 

expression of the GBM mesenchymal marker genes 

CHI3L1 and CD44 (Figure 9A–9D). Further research on 

MES marker proteins. In our study, we found that CD44, 
BMI1 and ZEB1 showed different degrees of expression 

inhibition after FCGR2A and EHD2 were silenced, but 

VIM did not change significantly (Figure 9E, 9F). We 
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Figure 2. MES-related gene sets could classify the clinical and molecular features of gliomas. (A) Relative change in the area 
under the CDF curve for k = 2 to k = 9. (B) Consensus clustering CDF for k = 2 to k = 9. (C) Consensus clustering matrix of 650 samples from the 
TCGA dataset for k = 2. (D) Heat map of MES-related genes between cluster 1 and cluster 2 of the TCGA cohort. (E) Survival analysis of 
patients in cluster 1 and cluster 2 based on TCGA clinical data. (F) Survival analysis of patients in cluster 1 and cluster 2 based on CGGA clinical 
data. CDF, cumulative distribution function; ***P <0.001. 
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further verified that these genes play an important role in 

glioma. 

 

DISCUSSION 
 

Human brain glioma is the most common primary 

malignant tumor. But the prognosis for patients with 

these tumors remains poor despite standard care  

of surgery, radiation therapy and temozolomide 

chemotherapy [19]. Therefore, it is imperative to 

identify potential prognostic and therapeutic targets for 

glioma. For those facing prognostic evaluation and 

treatment, many genes have been explored as 

biomarkers [20], but they are still not enough to predict 

the convoluted prognosis of glioma alone. 

 

MES is a type of glioblastoma that can be transformed 

from other types of gliomas [21, 22]. The MES 

transition can be induced by master transcription factors 

(TFs), STAT3, C/EBPb, and TAZ through the NF-kb 

 

 
 

Figure 3. Identification of the 6-gene risk signature by Lasso regression analysis in the TCGA dataset. (A) The hazard ratio and P 
value of the 6 MES-related genes. (B) Coefficient values for each of the 6 selected genes. (C) Heat map showing the association of risk scores 
and clinicopathological features. ***P < 0.001. 
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Table 2. Correlation between 6-gene-based risk scores and 
clinicopathological factors of glioma patients in the two cohorts. 

Training set RNA-seq cohort (n =665) 

Features 
Low-risk score High- risk score  

P- value 
n=333 n=332 

Age    

≤ 65 320 258 <0.0001 

> 65 13 74  

Gender    

Male 189 194 ns 

Female 144 138  

Grade    

II 186 59 <0.0001 

III 145 115  

IV 2 158  

Vital status    

Alive 294 152 <0.0001 

Dead 39 180  

 

Testing set RNA-seq cohort(n=280) 

Features 
Low-risk score High- risk score  

P- value 
n=165 n=115 

Age    

≤ 65 163 112 ns 

> 65 1 2  

Gender    

Male 96 71 ns 

Female 69 44  

Grade    

II 98 13 <0.0001 

III 30 22  

IV 37 77  

Vital status    

Alive 90 21 <0.0001 

Dead 75 94  

The training set RNA-seq cohort comes from the TCGA database and testing 
set RNA-seq cohort comes from the CGGA database. Ns: no significance; Bold 
type indicates a statistically significant difference (P value < 0.05). 

 

pathway [23]. MES is the most malignant glioblastoma 

and has a worse prognosis [24]. On the one hand, it has 

stronger resistance to treatment than other types of 

gliomas [25]. This therapeutic resistance may be related 

to the high expression of inflammation-related genes 

and NF-kB activation [8], which is consistent with our 

results. On the other hand, MES is related to recurrent 

tumors; in recurrent tumors, classic markers of 

mesenchymal tissues were upregulated, including 

CHI3L1, CD44, and STAT3 [22]. Moreover, MES is 

also related to a growth advantage conferred by either a 

rapid rate of cell division or enhanced survival of tumor 

cells afforded by neovascularization [22, 26]. In short, 

MES is often associated with poor prognosis. Therefore, 

considering the malignant behaviors of MES GBMs and 

the analysis of the different results in this paper, we 

selected MES-related genes as factors to evaluate 

prognosis. 



 

www.aging-us.com 12438 AGING 

 
 

Figure 4. Outcome prediction of the 6-gene signature in stratified patients of the TCGA cohort and CGGA cohort. (A) Kaplan-

Meier overall survival analysis between the high- and low-risk groups in the TCGA cohort. (B) Kaplan-Meier overall survival analysis between 
the high- and low-risk groups in the CGGA cohort. (C, D) Univariate (C) and multivariate Cox regression (D) analyses of clinical features and 
the 6-gene-based risk score for OS in the TCGA dataset. (E) ROC curves indicating the sensitivity and specificity of predicting 1-, 3- and 5-y 
survival with the MES-related signature in the TCGA dataset. (F) ROC curves indicating the sensitivity and specificity of predicting 1-, 3- and 5-
y survival with the MES-related signature in the CGGA dataset. 
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As previously reported using a model, immune-related 

genes were successfully selected to predict the 

prognosis of glioma with a protein expression and 

mRNA data set from The Cancer Genome Atlas [27]. 

At the same time, m6A methylation, immune-related 

lncRNA and amino acid metabolism-related genes were 

used to assess the prognosis of glioma [28–30]. 

Therefore, we used this model to explore whether 

 

 
 

Figure 5. Functional analysis of the 6-gene signature. (A–D) GSEA revealed that the two cohorts were enriched for hallmarks of 
malignant tumors. (E) GO annotations based on the top 4400 genes positively associated with the 6-gene signature. (F) KEGG pathways 
associated with the risk score. 
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MES-related genes play a more important role in the 

prognostic evaluation of glioma. The identification of 21 

intersecting genes related to prognosis in the TCGA and 

Ivy GAP databases was performed as the first step by 

using the mesenchymal gene set. Then, fifteen genes that 

were differentially expressed between normal and glioma 

samples were analyzed and found to be upregulated in 

the poor prognosis group. Based on a highly reliable 

survival model, consensus clustering and Lasso 

regression, which are widely used to generate prognostic 

genes in the context of high-dimensional data, were 

applied in this study. We first used the univariate Cox 

model to screen OS-related genes and applied the Lasso 

regression model to obtain the regression coefficients. 

The six genes were obtained to construct a risk score 

model from the Lasso regression coefficients [31]. The 

integration of multiple gene markers into a single model 

was used because the predictive performance of such 

models can be improved compared to that of a single 

predictive biomarker. The study found that the risk score 

model constructed based on TCGA can accurately predict 

the prognosis of glioma. 

Hypoxia-inducible factor-1α (HIF-1α), as the main 

transcription factor during hypoxia, is significantly 

upregulated in the MES subtype and plays an important 

role in tumor angiogenesis and proliferation [32]. 

Inflammation-related genes are also highly expressed  

in the MES subtype [8, 33–35]. Epithelial-to-

mesenchymal transition is a common pattern of 

increased malignant behavior and disease progression of 

epithelial tumors, and the MES phenotype is closely 

related to this change [25]. This finding supports our 

GSEA results. Compared with the low-risk group, the 

high-risk group showed enrichment in the biological 

processes of epithelial-mesenchymal transition, angio-

genesis, inflammation and hypoxia. Similarly, GO and 

KEGG analyses showed that MES-related genes are 

closely related to cell adhesion-related processes. These 

processes are closely related to cancer progression and 

involve EMT, tumor angiogenesis and the development 

of an inflammatory tumor microenvironment [35–37]. 

Consequently, MES-related genes are associated with a 

higher degree of malignancy and poorer prognosis in 

gliomas. 

 

 
 

Figure 6. FCGR2A and EHD2 were selected from the six MES-related genes. (A) Differences in FCGR2A expression between the 
normal group and the glioma group from the TCGA and GTEx data sets. (B, C) Overall survival analysis (B) and disease-free survival analysis (C) 
of the relationship between FCGR2A expression level and survival time from the TCGA database. (D) Differences in EHD2 expression between 
the normal group and the glioma group from the TCGA and GTEX data sets. (E, F) Overall survival analysis (E) and disease-free survival 
analysis (F) of the relationship between EHD2 expression level and survival time from TCGA database. ***P<0.001. 
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Although studies have confirmed that the six selected 

genes used to construct the signature are related to 

glioma, they are functionally independent of each other. 

In particular, EMP3 has been found to upregulate the 

surface expression of αvβ3 integrin, activate focal 

adhesion kinase and Src kinase, promote cell migration 

and invasion, promote tumor growth in vivo, and serve 

as a prognostic evaluation factor for glioma [38, 39]. 

PLAUR can promote cell survival, migration and 

resistance to targeted cancer therapeutics in cultured 

glioblastoma cells, and PLAUR expression is inversely 

proportional to patient survival [40]. MVP enhances 

glioma aggressiveness through the epidermal growth 

factor receptor (EGFR)/phosphatidylinositol 3-kinase 

(PI3K) signaling axis [41]. Moreover, compared with 

normal tissues, RRAS is highly expressed in gliomas. 

Its overexpression is associated with the early stage of 

cancer and positively related to the degree of 

malignancy [42]. The remaining two genes, FCGR2A 

and EHD2, have not been studied in gliomas. In our 

research, we found that silencing these genes can inhibit 

the proliferation, migration and invasion of glioma 

cells. Simultaneously, silencing these genes suppresses 

the expression of mesenchymal marker genes. Overall, 

the six genes used to construct the risk coefficient 

model promote the proliferation, migration and invasion 

of glioma by affecting the EMT process, indicating that 

they are of particular significance for the prognostic 

evaluation and treatment of glioma. 

 

In summary, we identified MES-related genes that can 

be distinguished from the clinical and molecular 

characteristics of glioma. We believe these 6 MES-

related genes are potential prognostic markers or 

therapeutic targets for glioma patients. Furthermore, we 

developed a six-MES-related gene expression-based 

risk signature that could better predict OS for glioma. 

Functional analysis was carried out, and the effects of 

two of the genes on the proliferation, migration and 

invasion of glioma were studied. Nonetheless, the exact 

mechanism of how these MES-related genes impact the 

prognosis of glioma is still obscure. Therefore, further 

research to clarify the underlying mechanism of MES-

related genes in glioma is urgently needed. 

 

 
 

Figure 7. Selection of cell lines and verification of the silencing effect. (A) Relative expression of FCGR2A in five cell lines. (B) Relative 
expression of EHD2 in five cell lines. (C) The LN18 cell line was transfected with three siRNA fragments separately and in combination (pro), 
and the relative silencing level of FCGR2A. (D) The U251 cell line was transfected with three siRNA fragments separately and in combination 
(pro), the relative silencing level of EHD2. KONG stands for untreated cell; Control stands for Negative control group. **P<0.01; ***P<0.001. 
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Figure 8. The effect of glioma cell clone, proliferation, migration and invasion ability after silencing FCGR2A or EHD2. (A, B) 

Cell proliferation was measured by the MTT assay for 24 hours up to 72 hours. (C, D) Representative imaging (C) or counting (D) of the 
colonies formed by LN18 cells after silencing with FCGR2A for 7 days. (E–G) Representative imaging (E) or counting (F, G) of migration assays 
after silencing FCGR2A and EHD2 in glioma cells. (H–J) Representative imaging (H) or counting (I, J) of invasion assays after silencing FCGR2A 
and EHD2 in glioma cells. *P<0.05; **P<0.01; ***P<0.001. 
 

 
 

Figure 9. The relative expression of GBM mesenchymal markers and MES protein markers after FCGR2A or EHD2 silencing. 
(A, B) The relative mRNA expression of CHI3L1 and CD44 after silencing FCGR2A. (C, D) The relative mRNA expression of CHI3L1 and CD44 
after silencing EHD2. (E) The western blot analysis of CD44, BMI1, VIM and ZEB1 protein markers after silencing FCGR2A. (F) The western blot 
analysis of CD44, BMI1, VIM and ZEB1 protein markers after silencing EHD2. Ns: no significance; *P<0.05; **P<0.01; ***P<0.001. 
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MATERIALS AND METHODS 
 

Data sources 

 

Mesenchymal-related gene sets were downloaded  

from TCGA (https://xena.ucsc.edu) and Ivy GAP 

(http://glioblastoma.alleninstitute.org). 1108 normal 

brain tissue samples were downloaded from GTEx, and 

patients with glioma were downloaded from the TCGA 

data portal as a training set, which contained 650 glioma 

samples after excluding incomplete cases. These data 

include matched clinical information such as age, gender, 

survival time and cancer type. To from the testing set, 

data points with insufficient clinical information were 

removed from the CGGA (http://www.cgga.org.cn/ 

index.jsp) database, and 280 clinical data points in total 

were obtained. The workflow of this study is shown in 

Supplementary Figure 1. 

 

Consensus clustering 

 

We carried out genetic difference analysis with the R 

programming language (http://cran.r-project.org) to 

obtain the intersecting genes of MES-related genes from 

the Ivy GAP and TCGA datasets. Twenty-one over-

lapping MES-related genes were selected, and then 

differentially expressed genes were identified between 

normal and glioma samples. Finally, a data set of 15 

significant genes was obtained from 21 genes. We used 

the R package "Consensus Cluster Plus" to perform 

consensus clustering. The cumulative distribution 

function (CDF) and consensus matrix were used to 

evaluate the optimal number of subgroups. 

 

Bioinformatics analysis 

 

We used univariate and multivariate Cox analyses to 

screen prognosis-related genes and assess the prediction 

model of independent prognostic factors. The R 

programming language was used to perform Lasso 

regression analysis to obtain the risk score. Through the 

regression coefficient weighted by the linear combination 

of genes, the risk score was obtained, and the high-risk 

group and the low-risk group were obtained based on the 

median risk score. Kaplan-Meier survival curves were 

used to analyze the relationship between different groups 

and survival time. ROC curves were used to judge the 

sensitivity and specificity of the predictive models to 

assess prognosis with the R package. 

 

Functional analysis 

 

The hallmark gene sets, which are part of the MSigDB 

gene set, were downloaded from the Molecular 

Signatures Database. Gene set enrichment analysis 

(GSEA) was used to reveal the signaling pathways most 

likely to be affected by the six MES-related genes by 

using GSEA software (4.0.1) (http://www.broadinstitute. 

org/gsea/index.jsp). Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analyses 

used the R programming language to study the cell 

functions associated with the risk factors composed of six 

genes in the TCGA database. 

 

Cell and cell culture 

 

Human glioma cell lines including LN18, U251, T98G, 

SNB19 and SF126, which were all purchased from the 

Chinese Academy of Sciences (Shanghai, China). 

Glioma cells were cultured in Dulbecco’s Modified 

Eagle’s medium (DMEM, Hyclone, GE Healthcare Life 

Sciences) containing 10% fetal bovine serum (FBS, 

Gibco, Thermo Fisher Scientific, Inc.) in an incubator at 

37° C and a carbon dioxide concentration of 5%. After 

the cells have grown to more than 90%, digest with 

0.25% enzyme (C0201; Beyotime, China) to passage 

cell. Based on this culture state, the medium of the cells 

was changed every 2 days. 

 

Cell transfection 

 

FCGR2A and EHD2 siRNAs were designed by 

RIBOBIO (Guangzhou RiboBio Co.). FCGR2A siRNA 

included three sequences (siFCGR2A-1 AGGCTGTGC 

TGAAACTTGA, siFCGR2A-2 GGTCATTGCGACTG 

CTGTA, and siFCGR2A-3 CTTCAACCATTGAC 

AGTTT), and the EHD2 siRNA also included three 

sequences (siEHD2-1 AGACCAGCTTCATCCAGTA, 

siEHD2-2 GCACGACTTCACCAAGTTT, and siEHD2-

3 TGCGAAGATTCAGCTGGAA). Then, we used the 

siRNAs to silence FCGR2A in LN18 and T98G cell 

lines and to silence EHD2 in U251 and SNB19 cell 

lines with the transfection reagent jetPRIME (Poly plus-

transfection®). Continue to cultivate for 24 h, then 

change the medium. 

 

Total RNA isolation and quantitative real-time 

polymerase chain reaction (qRT-PCR) 

 

Total RNA was extracted by TRIzol reagent 

(Invitrogen, Thermo Fisher Scientific) according to the 

manufacturer’s instructions. PrimeScript RT Master Mix 

(Perfect Real Time) (RR036A; Takara) was used for 

RNA reverse transcription, and quantitative real-time 

PCR (qRT-PCR) was performed with TB Green™ 

Premix Ex Taq™ II (Tli RNaseH Plus) (RR820A; 

Takara). The total volume of each PCR reaction mixture 

is 10ul, 45 cycles are performed, denaturation at 95° C 

for 15 seconds, annealing at 60° C for 30 seconds, and 
extension at 72° C for 30 seconds. The relative mRNA 

expression of each gene was calculated using the 2−ΔΔCt 

method. The following PCR primers were used: 

https://xena.ucsc.edu/
http://glioblastoma.alleninstitute.org/
http://www.cgga.org.cn/index.jsp
http://www.cgga.org.cn/index.jsp
http://cran.r-project.org/
http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
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FCGR2A forward: 5'-ACTATGGAGACCCAAATGTC 

TCAG-3'; reverse:5′-GCAAAACTGTCAATGGTTGA 

AGC-3'. 

 

EHD2 forward: 5'-AACCCTTTCGGAAACACCTT-3'; 

reverse: 5'-TCGATGATGCTGATGCTCTC-3'. 

 

CHI3L1 forward: 5'-CCCTGGACGGAGAGACAAAC-

3'; reverse:5′-GCCTCAACATGTACCCCACA -3′. 

 

CD44 forward: 5'-CGCCAAACACCCAAAGAAGA-

3'; reverse: 5′-TTCCTGCTTGATGACCTCGT -3′. 

 

GAPDH forward: 5'-AGCAAGAGCACAAGAGGAA 

G-3'; reverse:5′-GGTTGAGCACAGGGTACTTT -3′. 

 

Methyl thiazolyl tetrazolium (MTT) assay 

 

By comparison, 2000 and 4000 cells were plated onto 

96-well plates in triplicate for the MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) 

assay. After incubation for 24 h, 36 h, 48 h and 72 h, the 

medium was replaced, and 10% of the medium volume 

of MTT dye (ST316; Beyotime, China) was added. 

Then, the cells were incubated for 4 h. After that, the 

medium was thoroughly removed, 150 µl of dimethyl 

sulfoxide (DMSO; D8370; Solarbio, China) was added, 

and the cells were shaken for 10 minutes. After it was 

fully dissolved, the absorbance at 570nm was measured 

with Varioskan LUX Multifunctional Microplate 

Reader (Thermo Scientific, MA, USA). 

 

Colony formation assay 

 

The cells were seeded at a density of 200, 400, and 600 

cells per well, repeated at least 3 times in a 6-well plate, 

and incubated at 37° C for seven days. After that, the 

cells were fixed with 4% paraformaldehyde (P0099; 

Beyotime, China) for 25 minutes. Next, the cells were 

stained with 0.5% crystal violet (C8470; Solaribio) for 15 

minutes. Then, the crystal violet was absorbed as much 

as possible, and the excess crystal violet was gently 

washed off with PBS. Finally, we observed and took 

photos on the light microscope at ×100 magnification 

(Olympus IX71, Japan). 

 

Transwell migration assay and Matrigel invasion 

assay 

 

Twenty-four-well Transwell chambers (29017037; 

Corning) were used for the Transwell migration assay 

and invasion assay. Briefly, the upper chamber contained 

200 µl of serum-free DMEM, and 2×104 transfected cells 
were added. Meanwhile, 600 µl of DMEM with 30% 

FBS was placed in the lower well and cultured at 37° C 

for 24 h, but SNB19 needs to be cultured for 36 h. 

Furthermore, an invasion assay was performed by using 

Matrigel (356234; BD Biosciences) inserts precoated for 

Matrigel, and 1×105 cells were plated in each chamber 

and cultivated at 37° C for 48 h. After incubation, the 

chambers were fixed with 4% paraformaldehyde for 25 

minutes and then stained with 0.5% crystal violet for 15 

minutes. Cells remaining on the upper surface of the 

chamber were gently removed with a cotton swab. The 

remaining cells were counted under a light microscope at 

100X magnification (Olympus IX71, Japan) in four 

random fields. 

 

Western blot analysis 

 

The protein of glioma cells LN18 and U251 were isolated 

by RIPA buffer (P0013B; Beyotime) with protease 

inhibitors cocktail (C00001; TargetMol). Get an equal 

amount of protein sample from RIPA lysate for Western 

blot analysis. The protein was separated by SDS-PAGE, 

and then electro-transfer onto poly-vinylidene difluoride 

membranes (IPVH00010; Millipore). Then 5% skim milk 

was blocked for 1.5 hours, and then the primary 

antibodies were incubated overnight with anti-β-

actin(1:10,000; #66009-1-Ig; Proteintech Group), anti-

BMI1(1:2,000; #66161-1-Ig; Proteintech Group), anti-

CD44(1:5,000; #60224-1-Ig; Proteintech Group), anti-

Vimentin(1:5,000; #10366-1-AP; Proteintech Group), 

anti-ZEB1(1:1,000; 21544-1-AP; Proteintech Group), 

anti-bodies, respectively, at 4° C. Then incubate with the 

secondary antibody for 1 hour. Protein observation was 

done using ECL-Chemiluminescence kit (ECL-plus, 

Thermo Fisher Scientific, Inc.), and then detect the 

luminescence with a Protein Imager (Find-Do×6; Tanon). 

The relative gray level of western blot was measured by 

the ImageJ software for Microsoft Windows (National 

Institute of Health, Bethesda, MD, USA). 

 

Statistical analysis 

 

GraphPad Prism 8 was used for graphing and statistical 

analysis. ImageJ software for Microsoft Windows was 

used for the cell number and clone formation counts. R 

programming language was used to perform the 

univariate and multivariate Cox regression analyses. 

Kaplan-Meier curves were used to statistically analyze 

the difference in survival between the two groups. 

Student's t-test and the chi-square test were used to 

assess differences in clinical characteristics between 

samples grouped by the risk score, and Pearson 

correlation was used to calculate correlations. Statistical 

significance was defined as a 2-tailed p value <0.05. 

 

Data availability statement 

 

All data included in this study are available upon 

request by contact with the corresponding author. 
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Editorial note 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The workflow of this study: data collection, analysis, and validation. 
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Supplementary Figure 2. Stratification and verification of glioma based on 15 MES-related genes in the CGGA cohort.  
(A) Consensus clustering matrix of 650 TCGA samples for k = 3. (B) Relative change in the area under the CDF curve for k = 2 to k = 9 in the 
testing set. (C) Consensus clustering CDF for k = 2 to k = 9 in the testing set. (D, E) Consensus clustering matrix of 280 CGGA samples for k = 2 
and k = 3. (F) Heat map of MES-related genes between CGGA cluster 1 and cluster 2 used to verify consensus clustering based on TCGA. CDF, 
cumulative distribution function; **P <0.01; ***P <0.001. 
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Supplementary Figure 3. Verification of the 6-gene risk signature in CGGA datasets. (A) Heat map shows the expression difference 
of six MES-related genes between the high-risk group and the low-risk group. (B) Risk curve represents the risk score and distribution of 280 
cases from the CGGA database. (C) The survival status graph shows the difference in survival time of 280 cases from the CGGA database 
(each point represents a sample, B, C). 
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Supplementary Figure 4. CGGA confirms the independent prognostic value of the risk score. (A) Progression-free survival analysis 
between the high- and low-risk groups in the TCGA cohort. (B) Univariate Cox regression analysis of clinical pathologic features for OS in the 
CGGA cohort. (C) Multivariate Cox regression analysis of clinical pathologic features for OS in the CGGA cohort. 
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Supplementary Figure 5. RRAS, PLAUR, EMP3 and MVP gene expression differences and survival rate differences. (A) 
Differences in RRAS expression between the normal group and the glioma group from the TCGA and GTEX data. (B, C) Overall survival analysis 
(B) and disease-free survival analysis (C) of the relationship between RRAS expression level and survival time from the TCGA database. (D) 
Differences in PLAUR expression between the normal group and the glioma group from the TCGA and GTEX data. (E, F) Overall survival 
analysis (E) and disease-free survival analysis (F) of the relationship between PLAUR expression level and survival time from the TCGA 
database. (G) Differences in EMP3 expression between the normal group and the glioma group from the TCGA and GTEX data. (H, I) Overall 
survival analysis (H) and disease-free survival analysis (I) of the relationship between EMP3 expression level and survival time from the TCGA 
database. (J) Differences in MVP expression between the normal group and the glioma group from the TCGA and GTEX data. (K, L) Overall 
survival analysis (K) and disease-free survival analysis (L) of the relationship between MVP expression level and survival time from the TCGA 
database. Ns: no significance; ***P<0.001. 
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Supplementary Figure 6. The effect of FCGR2A being silenced by siFCGR2A (pro) in T98G (A) and the effect of EHD2 being silenced by 
siEHD2 (2) in SNB19 (B). KONG stands for untreated cell; Control stands for Negative control group. *P<0.05; ***P<0.001. 
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Supplementary Figure 7. The effect of glioma cell clone and proliferation ability after silencing FCGR2A or EHD2. (A, B) Cell 
proliferation was measured by MTT assay for 24 hours up to 72 hours. (C, D) Representative imaging (C) or counting (D) of the colonies 
formed by T98G cells after silencing with FCGR2A for 9 days. (E, F) Representative imaging (E) or counting (F) of the colonies formed by SNB19 
cells after silencing with EHD2 for 7 days. Ns: no significance; *P<0.05; **P<0.01; ***P<0.001. 


