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INTRODUCTION 
 

Breast cancer is one of the most common cancers and 

the second leading cause of cancer-related deaths in 

women worldwide [1, 2]. The incidence of breast cancer 

in China is approximately 40/100,000, and 70,000 

people have died because of breast cancer in 2015 [3]. 

Breast cancer is a heterogeneous disease, resulting in 

complex clinical characteristics and molecular subtypes. 

Thanks to the development of high-throughput 

sequencing technology, breast cancer is composed of at 

least four molecular-specific diseases with different 

characteristics, clinical behavior, and treatment 

responses. These intrinsic molecular subtypes are 

defined as: basal-like, human epidermal growth factor 

receptor 2 (HER2) enrichment, and luminal A and B 
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ABSTRACT 
 

Considerable efforts have been devoted to exploring the breast cancer mutational landscape to understand its 
genetic complexity. However, no studies have yet comprehensively elucidated the molecular characterization 
of breast tumors in Chinese women. This study aimed to determine the potential clinical utility of peripheral 
blood assessment for circulating tumor-derived DNA (ctDNA) and comprehensively characterize the female 
Chinese population’s genetic mutational spectrum. We used Omi-Seq to create cancer profiles of 273 patients 
enrolled at The First Affiliated Hospital of Wenzhou Medical University. The gene landscape results indicate 
PIK3CA and TP53 as the most frequently detected genes, followed by ERBB2, in Chinese breast cancer patients. 
The accuracy of ERBB2 copy number variations in tissue/formalin-fixed and paraffin-embedded samples was 
95% with 86% sensitivity and 99% specificity. Moreover, mutation numbers varied between different molecular 
cell-free DNA subtypes, with the basal-like patients harboring a higher number of variants than the luminal 
patients. Furthermore, ratio changes in the max ctDNA allele fraction highly correlated with clinical response 
measurements, including cancer relapse and metastasis. Our data demonstrate that ctDNA characterization 
using the Omi-Seq platform can extend the capacity of personalized clinical cancer management. 
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subtypes [4, 5]. Because of intrinsic molecular 

heterogeneity, response to treatment differs between 

different molecular subtypes. Hence, accurately 

characterizing the tumor molecular subtype is necessary 

to guide optimal treatment decisions and determine 

patient prognosis [6]. Despite significant advances in 

treatment, metastasis remains the leading cause of 

breast cancer-related death; this is because of the 

associated tumor heterogeneity, owing to clonal 

evolution, limiting therapeutic efficacy and response 

time [7–9]. Therefore, evaluating tumor clonal 

heterogeneity is of significant value for breast cancer 

patients [10]. However, imaging examination, the main 

traditional diagnostic method for breast cancer, cannot 

determine the patient’s gene mutations and tumor clonal 

heterogeneity and cannot facilitate the development of 

individualized treatment regimens. Of note, next-

generation sequencing (NGS) technologies and 

bioinformatics tools have increased the understanding 

of breast cancer molecular heterogeneity, thereby 

providing an avenue for the identification of targeted 

mutations and subsequent personalized patient 

treatment strategies [11]. 

 

From the first detection of extracellular nucleic acids in 

peripheral blood in 1948 to the detection and 

quantification of cancer-related DNA mutations in 

1994, liquid biopsies are continually evolving in the 

field of patient care [12]. Nucleic acids circulating in 

peripheral blood and originating from tumor masses are 

designated circulating tumor DNA (ctDNA), and their 

detection serves as a framework for the non-invasive 

detection of genomic alterations. Moreover, plasma-

derived ctDNA is suitable for real-time monitoring of 

therapy responses because of its short lifetime 

(approximately 2 hours) [13]. Several studies have 

explored and evaluated the potential clinical value of 

ctDNA in cancer management, including for early 

detection, auxiliary evaluation of minimal residual 

disease, treatment monitoring, and drug resistance 

assessment [14–17]. 

 

Although deep sequencing platforms have been widely 

adopted for investigating subpopulations in complex 

biological samples, certain inherent limitations related 

to the relatively low yield of ctDNA and the errors 

introduced during sample preparation and sequencing 

interfere are their limitations [18]. Moreover, although 

molecular identifiers can theoretically limit the 

prevalence of these associated errors, certain challenges 

remain. First, synthesizing double-stranded adapters 

with randomized molecular identifiers is difficult. 

Second, owing to the difficulty of generating high-
quality single molecular identifier (SMI) adaptors, the 

ligation efficiency may be compromised and require 

large amounts of input DNA [19]. The Omi-Seq 

platform (developed by Omigen, Inc.) may address 

some of these challenges as it calculates digital 

molecular identifiers (DMIs) using a standard adapter 

pool with defined barcodes that can readily synthesize 

high-quality sequence reads. 

 

In the present study, we used Omi-Seq to create cancer 

profiles of female Chinese breast cancer patients. The 

resulting ctDNA genomic mutational profiles were then 

compared between patients with early and metastatic 

cancer and different pathological subtypes. This study’s 

primary aim was to define the potential clinical utility 

of peripheral blood ctDNA detection and analysis and 

characterize the genetic mutation spectrum within the 

female Chinese breast cancer population. 

 

RESULTS 
 

Patients’ characteristics 

 

A total of 273 breast cancer patients were enrolled in 

the study (Supplementary Table 1). All patients were 

women, and the median age was 52 years. The patients 

were categorized based on tumor subtype, with 77 

luminal A (28.2%), 74 luminal B (27.1%), 67 HER2+ 

(24.5%), and 45 basal-like (16.5%) patients included. 

Some of the patients had received monotherapy with an 

aromatase inhibitor (AI), while others had been 

administered combination AI or fulvestrant and 

CDK4/6 inhibitor therapy. However, no patients had 

received prior poly ADP ribose polymerase (PARP) 

inhibitor therapy. 

 

The ctDNA mutational landscape in Chinese women 

with breast cancer 

 

High-frequency molecular variants were analyzed in 

pairs of tumor tissue and plasma. The consistency, 

defined as harboring at least one common gene 

mutation site, was evaluated between the tumor tissue 

and paired plasma samples. The consistency values 

between tissue and plasma samples in stage I, II, III, 

and IV breast cancers were 80% (32/40), 80% (36/45), 

100% (13/13), and 100% (3/3), respectively. The top 

three most prevalent mutated genes were as follows: 

PIK3CA (tissue: 42.31%, plasma: 24.04%), TP53 

(tissue: 32.69%, plasma: 43.27%), and ERBB2 (tissue: 

19.23%, plasma: 14.42%). The top three variants were 

PIK3CA p.H1047R (c.3140A>G), PIK3CA p.E545K 

(c.1633G>A), and PIK3CA p.E542K (c.1624G>A) 

(Figure 1). Our findings were consistent with those 

reported by Andre et al [20]. 

 

Next, matched DMI-tagged cell-free DNA (cfDNA) 

was sequenced using the Omigen 101 genes panel kit at 

a targeted sequencing depth of 40,000×–50,000×. The 
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mutation profile was derived from 205 detected female 

Chinese patients’ cfDNA with an overall mutation 

detection rate of 94.15% (193/205; Figure 2). The allele 

fraction (AF) detected in our cohort ranged from 

0.05%–32.48%. Some of these mutations were 

actionable, including SNVs, such as PIK3CA 

p.H1047L, p.E545K, and p.E542K, BRCA1/2 loss-of-

function oncogenic mutation, and copy number 

mutations, such as ERBB2 amplification. No mutation 

was detected from the panel of the remaining 12 

patients. Moreover, the patients with negative cfDNA 

tests were primarily in stage I or II of disease, including 

six patients in stage I and four in stage II (Figure 2). 

 

These data suggest that somatic mutations with 

frequencies as low as 0.05% could be detected in DMI-

tagged cfDNA of early-stage breast cancer patients with 

a targeted sequencing depth of 40,000×–50,000×. 

 

Mutation landscape across different molecular 

subtypes 

 

The distribution of mutations in patients was further 

analyzed based on four molecular subtypes. The 

prevalence of changes in cancer-related genes/pathways 

was compatible with that reported in previous studies of 

treated advanced breast malignancies, including 

frequent oncogenic mutations in the PI3K pathway and 

loss-of-function mutations in the DNA damage response 

and tumor suppressor pathways [21, 22]. Frequently 

varied genes in all four molecular subtypes are 

presented in Figure 3. The PIK3CA detection rates in 

basal-like (38.24%, 13/34) were higher than in luminal 

B (31.67, 19/60), HER2+ (30.61%, 15/49), and luminal 

A (26.98 %, 17/63) breast cancers (Figure 3A). 

Meanwhile, PTEN mutations were more frequently 

detected in HER2+ and basal-like subtypes and were 

less common in the luminal type, with detection rates of 

14.29% (7/49), 11.76% (4/34), 9.52% (6/63), and 

8.33% (5/60), respectively (Figure 3A). BRCA1/2 

mutations were predominantly detected in basal-like 

patients (14.71%, 11.76%; Figure 3B), while TP53 

mutations were frequently detected in all four 

molecular subtypes (38.24%, 36.73%, 31.75%, and 

25% for basal-like, HER2+, luminal A, and luminal 

B, respectively; Figure 3C). 

 

cfDNA yield and ctF (highest cfDNA allele 

frequency) correlate with cancer stage 

 

To investigate the correlations between cfDNA and 

corresponding clinical characteristics, we analyzed 

cfDNA yield in healthy participants and breast cancer 

patients with different disease stages. Considering that 

tumors generate a certain amount of free nucleotides 

into the peripheral blood, the cfDNA yield could 

represent the amount of released tumor DNA in the 

patient’s body [23, 24]. We found that cfDNA was 

significantly associated with disease stage (p = 0.033, r 

= 0.9; Figure 4A). Meanwhile, ctF, defined as the 

highest cfDNA allele frequency in patients with 

multiple alterations, was found to be significantly 

associated with disease stage (p = 0.032, r = 0.97; 

Figure 4B). 

 

Number of ctDNA mutations in different molecular 

subtypes and disease stages 

 

Cancers with higher tumor mutational burdens (TMBs) 

are at a higher risk of being recognized by immune cells 

[25]. Hence, we used the total number of ctDNA non-

synonymous coding mutations detected per megabase to 

calculate TMB and detected the highest TMB in the 

basal-like subtype, achieving statistical significance in 

comparison with the luminal subtypes (luminal A: p = 

0.0047, luminal B: p = 0.044; Figure 5B). Our data also 

 

 
 

Figure 1. Low-frequency somatic mutations detected in DMI-tagged ctDNA from Chinese breast cancer patients. Mutational 
profiles derived from DMI-tagged ctDNA from stage I (blue), II (deep blue), III (yellow), and IV (red) breast cancers. Each column represents 
one patient. Different colors represent different types of mutations. Green and orange colors represent mutations and CNV, respectively. 
Each row represents one gene. The top bar graph denotes the number of mutations detected in each patient. The sidebar represents the 
proportion of patients with a mutation in a certain gene. CNV, copy number variation; ctDNA, circulating tumor-derived DNA; DMI, digital 
molecular identifier. 
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shows that the total number of ctDNA mutations 

positively correlates with the breast cancer stage (p = 

0.114, r = 0.89; Figure 5A), although this result was not 

statistically significant. 

 

NGS detection using tissue samples better reflects 

ERBB2 copy number amplification than using blood 

samples 

 

We next sought to explore the application of NGS 

detection for predicting ERBB2 copy number 

amplification in breast cancer patients. To this end, we 

applied a 101 gene panel for detecting ERBB2 copy 

number amplification in 123 tissues and 202 blood 

samples. Immunohistochemistry (IHC) and 

Fluorescence in situ hybridization (FISH) were 

performed simultaneously. We then analyzed and 

compared the ERBB2 copy number amplification results 

obtained by all the methods. The NGS results for tissue 

samples were highly consistent with IHC and FISH, 

with a sensitivity of 86%, a specificity of 99%, and 

accuracy of 95% (ratio of ERBB2 duplication 

 

 
 

Figure 2. The genetic landscape of tissue DNA and plasma ctDNA alterations in Chinese breast cancer patients. Green and 
orange colors represent mutations, and CNV detected in tissue samples, respectively; blue and pink colors represent mutations, and CNV 
detected in cfDNA samples, respectively. Each column represents one patient. Each row represents one gene. The top bar denotes the 
number of mutations detected in each patient. The sidebar represents the proportion of patients with a mutation in a certain gene. CNV, 
copy number variation; ctDNA, circulating tumor-derived DNA; cfDNA, cell-free DNA. 

 

 
 

Figure 3. Prevalence of ctDNA oncogenic mutations in the (A) PI3K pathway and loss-of-function mutations in (B) DNA damage response and 
(C) tumor suppressor pathways. ctDNA, circulating tumor-derived DNA. 
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Figure 4. cfDNA in healthy individuals and breast cancer patients. (A) Amount of cfDNA extracted from all healthy individuals and 

cancer patients of different stages. (B) Mutant allele frequency of cfDNA detected in patients with different cancer stages. The means for 
each group are represented by the black lines in each column. cfDNA, cell-free DNA. 

 

 
 

Figure 5. Comparison of ctDNA among patients with different (A) breast cancer stages and (B) molecular subtypes. The means of each group 
are represented by black lines in each column. ctDNA, circulating tumor-derived DNA. 
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region ≥75%, The duplication of ERBB2 is identified 

when the proportion of amplified ERBB2's exon region 

greater than or equal to 0.75). However, the results of 

NGS for blood samples were relatively inconsistent 

with those of IHC and FISH results, presenting a 

sensitivity of only 5.4%, a specificity of 97%, and 

accuracy of 71% (Supplementary Table 2). 

 

For samples with an IHC test result of 2+, an additional 

FISH test was required to determine the final ERBB2 

expression. We analyzed the FISH and NGS results for 

tissue samples simultaneously to evaluate the 

consistency between the two detection methods in IHC 

2+ samples. We obtained 100% consistency in 12 tissue 

samples, implying the perfect accuracy of NGS for the 

detection of ERBB2 copy number amplification in IHC 

2+ samples (Supplementary Table 3). Our findings, 

therefore, support the application of NGS for the 

detection of ERBB2 copy number amplification in tissue 

samples, particularly when combined with NGS and 

IHC, which would serve to improve the accuracy of 

detecting ERBB2 copy number amplification. 

 

Dynamic monitoring and prognosis assessment 

 

The application of ctDNA for dynamic monitoring and 

prognostic assessment of tumor patients was also 

explored. We focused on serial samples of 15 patients 

who underwent two or more ctDNA tests. 

 

Eleven patients presented with decreased ctF ratio (ctF 

ratio: ctF2/ctF1, ctF1 refers to the highest AF in the first 

test, and ctF2 refers to the highest AF in the second test) 

(Figure 6, Supplementary Table 4), which is consistent 

with their imaging findings: 10 patients had 

significantly shrunken tumor size, and 1 patient had no 

significant increase in tumor size. Meanwhile, four 

patients had increased ctF ratios during or after 

treatment, 3 of whom P112, P219, and P86, had 

metastasis or relapse. The remaining patient required 

continued follow-up and observation to determine the 

clinical outcome. 

 

Patient P112 had locally advanced breast cancer, which 

was first diagnosed in December 2015, and received 

chemotherapy, endocrine therapy, and radiotherapy. 

The disease then progressed in March 2017 with liver 

metastasis. The first ctDNA detection (T1) was 

performed in April 2018, and postoperative lumbar 

spine metastasis occurred during treatment. The second 

detection (T2) was performed four months later when 

the disease had continuously progressed. Based on the 

patient’s genetic detection results, we recommended 
alpelisib plus fulvestrant treatment. We tracked the 

PIK3CA p.E545K and TP53 p.E286K mutations and 

found that their frequency increased from 0.64% and 

0.18% to 2.65% and 1.54%, respectively (Figure 7). 

The change in ctDNA in the patient’s plasma was 

consistent with the clinical disease progression, 

resulting in a poor prognosis. A similar situation 

occurred in patient P219 with late-stage breast cancer, 

and the TP53 p.Y220C mutation increased from 0.16% 

to 0.97%, with a ctF ratio of 2.310. Additionally, patient 

p311 was diagnosed with HER2+ breast cancer and 

received neoadjuvant chemotherapy and target therapy. 

The patient presented with decreased ctF ratio and 

tumor size during mutation tracking and reached 

complete clinical response during surgery. 

 

To further understand the molecular characteristics and 

clonal evolution in our study samples, clonal analysis 

was performed for several patients using mutation 

tracking data. Certain clones were undetectable 

following treatment in patients P080, P105, P268, and 

P391. Moreover, ctF values decreased after receiving 

treatment in these patients, suggesting a decreased 

tumor mutational burden or disappearance of specific 

clonal clusters resulting in a relatively better prognosis 

(Figure 8). However, new emerging clones were 

observed following treatment in patient P086. 

 

Patient P086 was diagnosed with triple-negative breast 

cancer (TNBC) in April 2018 and received the first 

ctDNA detection (T1) before standard neoadjuvant 

chemotherapy with no significant change observed in 

the tumor during this period. The patient then 

discontinued our treatment schedule for four months 

and came back with a larger mass. The second ctDNA 

detection was performed in February 2019 (T2), after 

which an additional four rounds of chemotherapy were 

performed. No significant change in the tumor was 

observed during the treatment period. The third ctDNA 

detection and surgery were performed in May 2019. 

The newly emerged mutation at T2 was ERBB2 

p.R678Q, which was also detected at T3 with an 

increase in mutation frequency from 2.81% to 3.9%. 

The ctF value then increased, while the clone analysis 

demonstrated an increase in clones. These analyses 

indicated that the patient exhibited a tendency for 

disease progression, consistent with the patient’s 

clinical manifestations. Studies have shown that liquid 

biopsy is more informative than traditional methods, 

such as the CA-125 test and imaging, capable of 

predicting tumor recurrence 7–10 months earlier [26]. 

 

Moreover, previous reports indicate that ERBB2 
p.R678Q likely represents an oncogenic mutation [27]. 

Herein, the cytological study results showed that anti-

HER antibody drugs, trastuzumab and pertuzumab, as 
well as small molecule kinase inhibitors, lenatinib, and 

lapatinib, elicited inhibitory effects on tumor cells 

harboring ERBB2 p.R678Q mutations [28]. Although
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patient P086 tested negative for HER2 amplification 

using IHC and FISH, an oncogenic missense mutation 

in the HER2 subtype was detected using ctDNA, 

suggesting that HER2-targeted therapy may be an 

effective follow-up treatment option. 

 

Considering that patient P086 was relatively insensitive 

to standard neoadjuvant chemotherapy regimen, we 

next sought to analyze the HRD (homologous 

recombination deficiency) status of several TNBC 

patients, including patient P086, to explore optional 

individualized treatments for TNBC patients with 

different HRD statuses. The HRD score predicts TNBC 

or BRCA1/2-mutated patient response to DNA 

damaging neoadjuvant chemotherapy. Patients with an 

HRD score ≥ 42 were defined as HR deficient and 

tended to be more sensitive to platinum-containing 

regimens [29]. Meanwhile, sequencing data analysis 

revealed that the HRD-sum of patient P086 was 

remarkably high (Supplementary Table 5), which might 

be related to the patient’s relatively poor prognosis. 

Among the five TNBC patients, two were HR deficient, 

accounting for 40% of the tested patients; the result was 

consistent with that reported in previous literature 

(42%) [30]. HRD-positive patients might not benefit 

from conventional chemotherapy, neoadjuvant 

chemotherapy, or targeted therapy; however, PARP 

inhibitors may represent an effective treatment option 

for these patients [31]. 

 

DISCUSSION 
 

Several studies have recently explored the breast cancer 

mutational landscape to better understand its genetic 

complexity [21, 32, 33]. Nevertheless, to the best of our 

knowledge, ours is the first study to fully elucidate the 

comprehensive molecular characterization of breast 

tumors in Chinese women. Specifically, we identified 

the ctDNA profiles of different pathological subtypes, 

evaluated the incidence of clinically operable changes, 

compared the blood and tissue NGS of paired 

sequenced patients, and evaluated the similarity of 

blood and imaging evaluations for disease monitoring. 

 

Hence the key findings of our study are as follows: 

First, ctDNA evaluation effectively captured the 

landscape of breast cancer genetic alterations, including 

SNVs, indels, and CNVs. Second, across the entire 

cohort, genetic alterations were detectable in the blood 

of >90% of the evaluated patients using the 101 gene 

panel. Third, the amount of cfDNA extracted from the 

blood of breast cancer patients and the detected ctF 

positively correlated with the disease stage. Fourth, 

differences in the frequency, number, and distribution 

of gene mutations in the different molecular subtypes of 

breast cancer were demonstrated. 

 

In our cohort, we found that the PIK3CA gene exhibits a 

higher mutational frequency in TNBC patients, while the 

PTEN gene exhibits higher mutations in HER2+ patients. 

We also confirmed that TNBC patients exhibited a higher 

mutation frequency and higher TMB than luminal breast 

cancer patients, indicating their possible sensitive 

response to appropriate targeted therapies. Theoretically, 

tumors with high mutations would generate more proteins 

that could be recognized by T cells; thus, immunotherapy 

drugs, such as immune checkpoint inhibitors, may elicit a 

strong response against these tumors [34]. Therefore, we 

speculated that the proportion of TNBC patients who 

benefited from immunotherapy might be higher for the 

Chinese breast cancer population. 

 

Comparing the test results of paired blood and tissue 

samples, we found a relatively high consistency in all 

stages, particularly within patients with late-stage 

disease. Compared with tissue sampling, ctDNA 

detection has greater potential for accurately assessing 

spatial tumor heterogeneity, reflecting the multiple 

metastatic sites, while also representing a more 

convenient method for continuous sampling.

 

 
 

Figure 6. Scatter diagram for ctF ratio of 15 patients with two or more cfDNA tests. The horizontal line on the abscissa indicates 
that the ctF ratio is 1. Each dot represents one patient. cfDNA, cell-free DNA; ctF, cfDNA allele frequency. 
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Figure 7. Mutation tracking in metastasis and recurrence patients. (A) ctDNA mutation tracking in patient P112. Computed 
tomography scan of P112 patient on (B) T1 and (C) T2 follow-ups. The red arrow indicates the patient’s metastatic foci. ctDNA, circulating 
tumor-derived DNA. 

 

 
 

Figure 8. Clonal analysis of multiple testing in five patients. Five examples of evolutionary trees. The circles represent mutations 
present in both pre-treatment and post-treatment; the triangles represent mutations present only in pre-treatment, and squares represent 
mutations present only in post-treatment. 
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ERBB2 copy number amplification is an essential 

mutation in breast cancer. Several ERBB2 mutation-

targeting therapies have been proven to be effective for 

breast cancer patients [35]. Hence, the Food and Drug 

Administration has approved lapatinib, neratinib, 

trastuzumab, as well as other small molecule inhibitors 

and antibody-drug conjugate drugs for the treatment of 

HER2+ (overexpression/amplification) breast cancer 

patients. Therefore, accurate detection of ERBB2 gene 

amplification is crucial to ensure the effective treatment 

of breast cancer patients. In our study, the NGS ERBB2 

copy number amplification results for tissue samples 

were highly consistent with those of IHC and FISH but 

with poor consistency for blood samples. The low 

consistency observed in blood samples may be due to 

high intratumor heterogeneity, which would cause 

variable amplification of the ERBB2 copy number in 

different tumor tissue sites. Additionally, the proportion 

of examined tumor cells in the tumor tissue samples 

was higher than 20%; however, only low amounts of 

DNA were released by the tumor cells into the blood. 

Hence, the existing NGS analysis platform has certain 

limitations associated with the analysis of copy number 

amplification from tumor blood samples. 

 

The present study has several limitations: First, paired 

sequencing data were only available for a subset of 

patients. Second, baseline blood collection of all 

patients was not performed at the same time. Most of 

our patients have already received multiple treatments; 

their different treatment options may affect the patient’s 

mutation spectrum. Third, the prognostic value of 

frequently altered genes, such as TP53, PIK3CA, and 

ERBB2, requires further confirmation as our cohort’s 

overall survival data was not mature. Finally, our study 

was conducted in a single center with a limited number 

of patients. It is necessary to verify our results through a 

multi-center cooperative study. 

 

In our study, patients with decreased ctF ratios appeared 

more likely to reach complete clinical response or 

present with higher Miller Payne grades than those with 

increased ctF ratios after neoadjuvant chemotherapy. 

Therefore, we postulate that the decreased ctF ratio 

could reflect the tumor degradation rate and the 

effectiveness of minimal residual disease clearance. 

However, further studies with additional statistical 

analyses are needed to confirm this hypothesis. 

 

MATERIALS AND METHODS 
 

Patients and samples 

 

Thirty healthy and 273 breast cancer patients were 

enrolled at The First Affiliated Hospital of Wenzhou 

Medical University. All patient-derived specimens and 

patients’ information were collected and archived under 

protocols approved by the institutional review board of 

the First Affiliated Hospital of Wenzhou Medical 

University. Informed consent was obtained from each 

patient for the use of their blood and tissue samples. All 

patients underwent complete tumor staging according to 

the seventh edition tumor, node, and metastasis (TNM) 

criteria of breast cancer [36]. A 10-mL sample of whole 

peripheral blood was collected at initial diagnosis in 

cfDNA blood collection tubes (Omigen, Hangzhou, 

China) and was processed for plasma and white blood 

cells (WBC) within 72 h, resulting in the collection of 

approximately 4 mL of plasma. The first blood sample 

from each patient was collected before tissue 

biopsy/surgery, and some patients had multiple time 

points of follow-up sampling after therapy. Tumor 

tissues were collected and either analyzed fresh or were 

formalin-fixed and paraffin-embedded (FFPE). Her2 

status was tested using IHC. Samples assigned a value 

of 2+ were further confirmed using FISH. From April 

2018 to September 2019, there were 205 cfDNA and 

131 tissue/FFPE samples; 104 samples were paired with 

tissue/FFPE and cfDNA samples. 

 

DNA extraction 

 

Genomic DNA was extracted from the tumor tissue, 

FFPE, or WBC using an Omigen extraction kit 

(Omigen, Inc., Hangzhou, China), followed by 

fragmentation using an Omigen fragmentation kit 

(Omigen, Inc., Hangzhou, China). cfDNA was extracted 

from plasma using an OMInano isolation kit (Omigen, 

Inc., Hangzhou, China). DNA yield was quantified with 

Qubit HS DNA (Life Technologies, Carlsbad, CA, 

USA). All the procedures were performed according to 

the manufacturer’s instructions. 

 

Library construction 

 

A DNA library was prepared using an Omigen lib prep 

kit (Omigen, Inc., Hangzhou, China). Briefly, DNA was 

end prepared, then ligated with barcoded molecular 

adaptors, followed by polymerase chain reaction (PCR) 

amplification to add indexes. Library yield was 

quantified with Qubit, and the size was measured using 

a 2100 bioanalyzer (Agilent, Santa Clara, CA, USA). 

 

Hybrid capture 

 

To ensure minimal coverage, libraries for each pool 

were prepared according to the Omigen libraries 

pooling guideline (China patent: 201910515833.4). 

Libraries were pooled and target enriched using the 
Omigen 101 genes panel (Supplementary Table 6) and 

Omigen hybrid capture kit (Omigen, Inc., Hangzhou, 

China). The captured pool was then amplified using 
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PCR, and quality control (QC) was performed using a 

2100 bioanalyzer. The enriched pool was sequenced 

using Illumina X10 (Illumina, Inc., USA) with paired-

end reads and average sequencing depth of 8,000×–

13,000× and 40,000×–50,000× for tissue DNA and 

DMI-tagged cfDNA samples, respectively. 

 

Sequence data processing and analysis 

 

Somatic single-nucleotide variant (SNV), fusion, and 

copy number variation (CNV) were analyzed and 

annotated using the Omigen 101 genes panel 

(Supplementary Table 6) and Omigen bioinformatics 

program pipeline including QC, alignment, and variant 

annotation, followed by filtering. Thirty cfDNA 

samples from healthy participants were used as 

background controls. 

 

Exome FASTQ sequences were mapped to the human 

assembly NCBI build 37 (hg19) using the Bowtie2 

alignment software [37]. SAMtools (v0.1.19) was used 

to convert SAM files to compressed BAM files and sort 

the BAM files using chromosomal coordinates [38]. 

PCR duplicates were marked using Picard (v1.131) and 

subsequently sorted. Marked BAM files were realigned 

using a Genome Analysis Toolkit (GATK-3.6) at 

intervals with indel mismatches. GATK was used for 

performing local realignment for indel calls, and 

VarDict was used for detecting SNVs [39, 40]. 

Germline variants were removed by filtering out 

variants in normal blood samples. Gene annotations and 

function prediction scores were performed using 

Annovar, dbSNP build135, 1000Genomes, Polyphen, 

Avsift, and COSMIC [41–44]. Non-synonymous 

somatic mutations were identified in the bulk exome 

sequencing data of five TNBC patients with two or 

three longitudinal samples. Bulk tumor genomic copy 

number profiles were estimated from the pair-end 

exome sequencing depth using the CNV kit [45]. 

Mutation clusters with only one mutation were excluded 

from further analysis. The PyClone cluster frequencies 

were calculated as the mean variant allele frequencies of 

mutations within each cluster and were visualized using 

the R package ‘clonevol’ [46, 47]. 

 

HRD score calculation 

 

A portion of sporadic TNBCs and BRCA1/2-mutated 

tumors have DNA repair defects and are sensitive to 

DNA damage treatment [31]. Based on the loss of 

heterozygosity (LOH), telomere allelic imbalance 

(TAI), and large-scale state transition (LST), three 

independent DNA-based genomic instability 
measurements were developed. The HRD score 

represents the arithmetic sum of LOH (number of LOH 

regions >15 Mb but less than the length of a whole 

chromosome) + TAI (regions of allelic imbalance that 

extend to the subtelomere but do not cross the 

centromere) + LST (breakpoints between regions of 

imbalance >10 Mb after filtering out regions <3 Mb). 

HRD scores range between 0 and 100. Tumors with 

HRD scores ≥42 or BRCA1/2 mutations were defined as 

having an HR deficient status. Tumors with an HRD 

score of <42 that also lacked the BRCA1/2 mutation 

were defined as HR non-deficient. The threshold of 42 

was selected based on the fifth percentile of HRD 

scores in tumors with known BRCA1/2 mutations or 

methylation status [48, 49]. This process was achieved 

using a scarHRD software based on whole-exome 

sequencing data [50]. 

 

Statistical analyses 

 

A t-test was performed to compare ctDNA yield, 

mutation number, and the highest AF between different 

disease stages and different molecular subtypes. 

Moreover, their correlation was tested using Pearson’s 

correlation coefficient. All P values were two-sided, and 

values <0.05 were considered statistically significant. 

All statistical analyses were performed using the R 

language, version 3.6.0. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

 

Supplementary Table 1. Basic clinical, demographic, 
and pathologic characteristics of the breast cancer 
patient cohort (Number = 273). 

Characteristic Number Percent (%) 

Age (years)   

  ≤ 60 202 73.99 

  > 60 71 26.01 

Molecular subtype   

  Unknown 10 3.66 

  Luminal A 77 28.21 

  Luminal B 74 27.11 

HER2-positive 67 24.54 

Basal-like 45 16.48 

TNM1 stage   

  0 7 2.56 

  I 94 34.43 

  II 111 40.66 

  III 31 11.36 

  IV 30 10.99 

1Tumor, node, and metastasis according to the 7th edition. 

 

Supplementary Table 2. Next-generation sequencing detection for the prediction of ERBB2 copy 
number amplification in breast cancer patients. 

1Tissue; 2cfDNA (circulating tumor-derived DNA); 3true positive; 4false positive; 5true negative; 6false negative. 

 

  

Type TP3 FP4 TN5 FN6 Sensitivity Specificity Accuracy 

TS1 30 1 87 5 0.86 0.99 0.95 

CF2 3 5 141 53 0.054 0.97 0.71 
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Supplementary Table 3. Consistency between 
FISH1 and NGS3 methods for the detection of 
ERBB2 CNV4 in IHC2 2+ samples. 

Sample ID IHC FISH NGS 

WY00105 2+ + + 

WY00287 2+ - - 

WY00289 2+ + + 

WY00313 2+ - - 

WY00314 2+ - - 

WY00325 2+ - - 

WY00371 2+ - - 

WY00378 2+ - - 

WY00381 2+ - - 

WY00417 2+ - - 

WY00427 2+ + + 

WY00448 2+ + + 

 

 

Supplementary Table 4. Patient information from multiple ctDNA tests. 

ID Age Stage 
Molecular 

type 
Treatment 

During 

treatment 

Tumor 

size after 

treatment

(cm) 

ctF ratio Note 

P268 69 III A luminal B 
Epirubicin,Cyclophosphamide,Doxorubicin,Docetaxel,Trastuzu

mab 
/ 3.4 0.615  

P164 51 III C luminal B Cyclophosphamide,Epirubicin,Surgery / 0.4 0.182  

P080 61 IV Her2+ Docetaxel,Trastuzumab,Surgery 3.1 0.5 0.04  

P105 47 III C Her2+ 
Cyclophosphamide,Doxorubicin,Docetaxel,Trastuzumab,Surge

ry 
/ 0.5 0.423  

P269 50 I luminal B Cyclophosphamide,Epirubicin,Docetaxel,surgery 1.8 1.3 0.106  

P221 63 III C luminal B Doxorubicin,Cyclophosphamide,Docetaxel / 2 0.075  

P107 46 II B Her2+ Cyclophosphamide,Epirubicin,Docetaxel,Trastuzumab,Surgery / 2.5 0.444  

P321 35 II B luminal B Cyclophosphamide,Epirubicin 2.3 2.1 0.359  

P272 45 III A luminal B Epirubicin,Cyclophosphamide / 0.8 0.588  

P311 45 III C TNBC Cyclophosphamide,Doxorubicin,Docetaxel,Carboplatin / 1.6 0.899  

P391 35 II A TNBC Cyclophosphamide,Epirubicin,Docetaxel,Carboplatin / 2.7 0.101  

P112 69 IV luminal A 
Epirubicin,Cyclophosphamide,Gemcitabine,Cisplatin,Nedaplati

n,Docetaxel,Zoledronic acid,Letrozole,Surgery 
/ 4 4.141 

Metas

tasis 

P219 39 IV luminal B 
Cyclophosphamide,Epirubicin,Toremifene,Carboplatin,Doceta

xel,Surgery 
/ 4.2 2.310 

relaps

e 

P086 44 II B TNBC Carboplatin,Cyclophosphamide, Epirubicin,Docetaxel,Surgery 2.6 2.6 32.500 
Resist

ant 

P188 55 II B luminal B Doxorubicin,Cyclophosphamide,Docetaxel / 0.9 9.545  
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Supplementary Table 5. HRDa score of five TNBC patients. 

 HRD-LOHb HRD-LSTc HRD-TAId HRD-sum 

WY00086 16 24 34 74 

WY00249 2 4 8 14 

WY00254 14 22 13 49 

WY00330 15 14 12 41 

WY00086 16 24 34 74 

WY00385 10 11 5 26 

aHomologous recombination deficiency; bLoss of heterozygosity; cTelomere 
allelic imbalance; dLarge-scale state transition. 

 

Supplementary Table 6. Omigen 101 genes. 

AKT1 CDKN2A GNAS NF1 RICTOR 

AKT2 CRLF2 HNF1A NFE2L2 RIT1 

ALDOA CTNNB1 HRAS NOTCH1 RMRP 

ALK DDR2 IDH1 NOTCH2 RNF43 

APC DNMT3A IDH2 NRAS ROS1 

AR EGFR JAK2 NTRK1 RUNX1 

ARAF ERBB2 KDR NTRK3 SF3B1 

ARID1A ERCC2 KEAP1 PALB2 SMAD4 

ATM ESR1 KIT PDGFRA SMO 

BCOR ETV6 KRAS PDGFRB SRSF2 

BLM EZH2 LEPROTL1 PIK3CA STAG2 

BRAF FBXW7 MAP2K1 PIK3R1 STK11 

BRCA1 FGFR1 MAP2K2 PMS2 TBC1D12 

BRCA2 FGFR2 MAPK1 PTEN TERT 

BRIP1 FGFR3 MET PTPN11 TET2 

CCND1 FLT3 MSH2 RAF1 TP53 

CCND3 FOXA1 MTOR RB1 TSC1 

CDH1 GATA3 MYC RET TSC2 

CDK4 GNA11 NBN RHEB U2AF1 

CDK6 GNAQ NEAT1 RHOA VHL 

    ZNF143 

 


