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INTRODUCTION 
 

Glioma is the most prevalent primary malignancy in the 

human brain and is characterized by high recurrence 

and lethality rates [1]. According to WHO guidelines, 

glioma is typically divided into low-grade glioma 

(LGG; grade II and III) and glioblastoma (GBM; grade 

IV) based on the degree of malignancy [2]. The overall 

prognosis for glioma patients, especially those with 

GBM, is poor; median survival is less than two years 

even after standard treatments, which include surgical 

resection, chemotherapy, and radiation therapy [3]. 

More recent studies have investigated the use of novel 

therapeutic modalities like immunotherapy to treat 

glioma due to success achieved in several other solid 

tumors. However, glioma is resistant to monotherapy 

with immune checkpoint inhibitors (mainly PD-1/PD-

L1 blockade), indicating an urgent need to explore the 

mechanisms of resistance and to identify additional 

targets for combination therapy [4]. 

 

Recent reports suggest that type I interferon signaling, 

which is regulated by interferon regulatory factors 

(IRFs), plays an important role in glioma resistance to 

immune checkpoint blockade [5, 6]. The IRF family 

consists of nine members, IRF1 to IRF9, all of which 

possess a well-conserved N-terminal DNA-binding 

domain (DBD) [7]. They participate in a variety of 

biological processes including antiviral inflammation, 

cell proliferation, cell apoptosis, and immune cell 

maturation, and therefore can participate in both 

immunity and oncogenesis [8, 9]. IRFs are presumed to 

play a complex and essential role in glioma pathology 
and immune microenvironment. Among the nine 

members, IRF7, the master regulator of transcriptional 

activation of type I interferon genes, was found to be 
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over-expressed in glioma cells and specimens, 

promoting microglia recruitment and tumor growth by 

increasing expression of inflammatory cytokines [10]. 

In contrast, IRF3, activation of which exerts strong 

effects on IL-1/IFNγ-induced inflammatory gene 

expression and suppresses glioma migration and 

invasion, is downregulated in glioblastoma cells [11]. 

Furthermore, Liang et al. reported that IRF1 deletion 

decreased autophagy and increased apoptosis in glioma 

cell lines, which increased glioblastoma resistance to 

antiangiogenic therapy [12]. However, the overall 

expression profile of all nine IRFs, as well as their 

potential functions in glioma development and distinct 

clinical significance, has not been fully characterized.  

 

Recent advances in gene sequencing technology have 

enabled comprehensive analysis of IRF family members 

with existing bioinformatic tools. In this study, we 

performed an in-depth exploration of the expression 

patterns of IRF family members in glioma and 

evaluated their potential as prognostic biomarkers with 

the goal of improving molecular diagnosis and 

prognostic prediction for glioma patients.  

 

RESULTS 
 

Gene expression of IRF family members in glioma 

patients 

 

IRF family member transcript levels were evaluated in 

glioma patients using ONCOMINE and GEPIA. As 

shown in Figure 1, expression of IRF mRNAs was 

generally upregulated in 20 common human cancers 

compared to normal tissues according to ONCOMINE 

data. IRF1, IRF2, IRF4, IRF5, IRF7, IRF8, and IRF9 

expression was higher in brain and CNS tumors than in 

normal brain tissue; no differences were observed for 

IRF3 and IRF6. In particular, IRF1 expression was 

33.893-fold higher in malignant glioma (p = 0.008); two 

additional studies by Liang and Bredel found that IRF1 

expression was increased 2.225- and 2.151-fold, 

respectively, in glioblastoma. IRF2 transcript levels 

were also higher in glioblastoma than normal brain 

tissues in two datasets from TCGA (fold change = 3.705 

and 2.448, respectively; p = 0.002 and 7.92E-9, 

respectively). The results of Sun’s study suggested that 

IRF5 was increased 2.125-fold in diffuse astrocytoma  

(p = 1.33E-4) and 2.180-fold in anaplastic astrocytoma 

(p = 3.20E-5). Moreover, studies by Lee, Ramaswamy, 

and Bredel all found that IRF8 and IRF9 levels were 

significantly increased in glioblastoma or anaplastic 

oligoastrocytoma (Table 1). 

 

We next examined IRF expression in the different 

glioma subtypes, i.e., LGG and GBM, using GEPIA 

analysis. IRF1, IRF2, IRF5, and IRF8 expression was 

significantly higher in both LGG and GBM than in 

normal tissues, while IRF7 levels were significantly 

upregulated in GBM tissues only (Figure 2A–2B). 

Among the nine IRF family genes, IRF4 and IRF6 

expression were lowest in LGG and GBM (Figure 2C).  

 

Correlations between IRF expression and 

pathological and prognostic parameters of glioma 

 

Relationships between IRF family member expression 

and clinicopathological parameters of glioma patients 

were examined using data from the TCGA database. 

Among the 260 grade II, 267 grade III, and 173 grade 

IV glioma patients, significant correlations were 

observed between IRF1 (p = 8.00E-61), IRF2 (p = 

6.80E-18), IRF3 (p = 1.70E-23), IRF5 (p = 2.30E-08), 

IRF7 (p = 1.90E-29), IRF8 (p = 0.029), IRF9 (p = 

4.80E-05) expression and pathological grade (Figure 3). 

There was also a trend towards a correlation between 

IRF4 expression and pathological grade (p = 0.064). No 

correlation between IRF6 expression and pathological 

grade was observed (p = 0.49). For all of the identified 

correlations, expression increased as tumors progressed, 

suggesting that IRFs may play a role in glioma 

tumorigenesis and progression. 

 

We further explored associations between IRF expression 

and survival in glioma patients using Kaplan-Meier 

analysis. Overall survival curves indicated that glioma 

patients with lower IRF1 (p = 4.42E-33), IRF2 (p = 

2.22E-16), IRF3 (p = 1.43E-15), IRF4 (p = 0.004), IRF5 

p = 5.84E-12), IRF7 (p = 6.85E-28), IRF8 (p = 0.001), 

and IRF9 (p = 0.000) transcript levels had significantly 

longer overall survival times (Figure 4). 

 

Genetic alteration, co-expression, and interaction 

analysis of IRF family members in glioma 

 

To understand the molecular characteristics of IRF 

family members in glioma, we systematically evaluated 

genetic alteration, co-expression, and protein interaction 

networks using multiple tools, including cBioPortal, 

TCGA, STRING, and GeneMANIA. First, genetic 

alterations of IRFs in glioma patients were examined 

using cBioPortal. Among 5504 samples from 5300 

patients in 14 glioma datasets, the overall alteration 

frequency of IRF genes ranged from 1.97% (4/203) to 

20.48% (17/83); mutations, deep deletions, and 

amplification were the most common types of alteration 

(Figure 5A). For each individual gene, alteration 

frequencies varied from 0.5% to 2.3% (IRF1, 0.5%; 

IRF2, 1.5%; IRF3, 1.1%; IRF4, 1.5%; IRF5, 2.3%; 

IRF6, 0.9%; IRF7, 2.3%, IRF8, 0.5%; IRF9, 1%) 
(Figure 5B). We further assessed the impact of IRF 

gene alterations on prognosis and found that glioma 

patients with alterations exhibited a longer overall 
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Table 1. Significant changes in IRF mRNA expression among various types of glioma and normal brain tissues 
(ONCOMINE). 

Gene Type of glioma vs. normal Fold Change t-test p-value Study  

IRF1 Malignant Glioma 33.893 3.136 0.008 Pomeroy 

 Glioblastoma 2.225 4.455 0.005 Liang 

 Glioblastoma 2.151 6.682 3.01E-5 Bredel 

IRF2 Glioblastoma 3.705 5.493 0.002 TCGA Brain 

 Brain Glioblastoma 2.448 15.072 7.92E-9 TCGA Brain 

IRF3 NA     

IRF4 NA     

IRF5 Diffuse Astrocytoma 2.125 5.056 1.33E-4 Sun 

 Anaplastic Astrocytoma 2.180 4.539 3.20E-5 Sun 

IRF6 NA     

IRF7 NA     

IRF8 Glioblastoma 5.471 11.360 6.64E-5 Lee 

IRF9 Glioblastoma 2.420 5.460 3.18E-5 Ramaswamy 

 Anaplastic Oligoastrocytoma 2.256 4.830 0.002 Bredel 

Abbreviation: NA = not applicable. 
 

 
 

Figure 1. Transcript levels of the nine IRF family members in different types of cancer (ONCOMINE). The value inside each box 

indicates the number of datasets with statistically significant IRF hyper- (red) or hypo-expression (blue). Differences were compared using 
STUDENT’S t-test. p-value: 0.05, fold change: 2, gene rank: 10%, data type: mRNA. 
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survival compared with those without alterations (p = 

2.237E-6) (Figure 5C). 

 

We next explored potential co-expression among IRF 

family genes using data from TCGA glioma dataset. 

Pearson's correlation results revealed significant 

positive correlations between the following IRFs: IRF1 

with IRF2 (r = 0.48) and IRF7 (r = 0.52); IRF2 with 

IRF1, IRF5 (r = 0.54), and IRF8 (r = 0.43); IRF3 with 

IRF7 (r = 0.41); IRF5 with IRF7 (r = 0.41) and IRF8 (R 

= 0.73); IRF7 with IRF9 (r = 0.74) (Figure 5D). Little 

correlation was observed between IRF4, IRF6, and the 

rest of genes in the family. 

 

Next, we conducted a network analysis to examine 

potential internal interactions among IRF family genes 

 

 
 

Figure 2. Transcript levels of IRF family members in LGG and GBM (GEPIA). The expression profiles (A) and box plots (B) show that 

IRF1, IRF2, IRF5, and IRF8 expression were significantly elevated in both LGG and GBM, while IRF7 expression was increased in GBM only. (C) 
IRF4 and IRF6 are the lowest among all IRFs in both LGG and GBM. 
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as well as external interactions with other functionally 

related genes. PPI network analysis using STRING 

software revealed close protein-protein associations 

among the IRF family genes with 9 nodes, 32 edges, 

and an average node degree of 7.11 (p < 1.0E-16; 

Figure 5E). Also, GeneMANIA analysis revealed that 

PRDM1, PNKP, RFX3, TIFAB, FHAD1, SLMAP, 

TIFA, CEP170, CEP170B, MCRS1, PPP1R8, SNIP1, 

APTX, FOXK1, FOXK2, CHFR, SMAD6, APLF, 

RNF8, and SMAD4 were primarily associated with the 

modulation and function of IRF genes in glioma (Figure 

5F). Additionally, GeneMANIA analysis indicated that 

all IRF family members shared protein domains, and 

IRF1, IRF2, IRF3, IRF7, IRF8, and IRF9 were 

colocalized within cells. 

 

Functional enrichment analysis of IRF family 

members in glioma 

 

DAVID software was used to analyze the biological 

functions of differentially expressed IRF family 

members and their functionally related genes. A total of 

55 GO items (BP: 32; CC: 7; MF: 16) and 11 KEGG 

items were enriched. Figure 6A–6D shows the top 10 

most highly enriched items for each category. Among 

the 10 most highly enriched functions in the BP 

category, type I interferon and interferon-gamma-

mediated signaling pathways, transcription from RNA 

polymerase II promoter, positive regulation of 

transcription, DNA-templated, cellular response to DNA 

damage stimulus, and negative regulation of cell 

proliferation were associated with glioma tumorigenesis 

and progression (Figure 6A). In the CC category, IRFs 

and their functionally related genes were mainly 

enriched in the nucleoplasm, nucleus, cytoplasm, and 

transcription factor complex (Figure 6B). The most 

enriched GO terms in the MF category were regulatory 

region DNA binding, transcription factor activity, and 

protein binding (Figure 6C). The main pathways 

enriched in KEGG analysis were several virus infection 

pathways, viral carcinogenesis pathways, the toll-like 

receptor signaling pathway, and the TGF-beta signaling 

 

 
 

Figure 3. Correlations between differentially expressed IRF family members and pathological grade in glioma patients. *P < 

0.05, **P < 0.01, ***P < 0.001. (A) IRF1, (B) IRF2, (C) IRF3, (D) IRF4, (E) IRF5, (F) IRF6, (G) IRF7, (H) IRF8, (I) IRF9.  
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pathway (Figure 6D). We also examined predicted roles 

of the IRF family in noted cancer-related pathways using 

GSCALite. The results showed that the IRF family may 

modulate glioma by activating apoptosis, activating the 

EMT, hormone ER, RAS/MAPK, and RTK pathways, 

and by inhibiting cell cycle, DNA damage response, and 

the PI3K/AKT pathway (Figure 6E). 

 

Immune infiltrate analysis of IRF family members in 

glioma 

 

Since the IRF family may regulate glioma progression 

and prognosis by participating in a wide range of 

inflammatory and immune responses, we undertook a 

comprehensive analysis of tumor immune infiltrates 

using the TIMER database. The results are shown in 

Table 2. In LGG, the expression of all IRF family 

members was positively correlated with infiltration of B 

cells, CD4+ T cells, macrophages, neutrophils, and 

dendritic cells (all p < 0.01). Similar results were 

obtained for GBM. In addition, IRF1, IRF2, IRF6, and 

IRF9 were positively correlated with CD8+ T cell 

infiltration in LGG. However, IRF1, IRF5, IRF6, IRF7, 

IRF8, and IRF9 expression were negatively correlated 

with CD8+ T cell infiltration in GBM. 

 

We also examined correlations between clinical 

outcome, immune cell abundance, and IRF expression 

using the Cox proportional hazard model. After 

correcting for confounding factors, we found that B 

cells (p = 0.002), CD8+ T cells (p = 0.042), IRF1 

expression (p = 0.001), and IRF8 expression (p = 0.000) 

were significantly associated with the prognosis of LGG 

patients, while CD4+ T cells, dendritic cells (p =0.002), 

IRF1 expression (p = 0.01), IRF7 expression (p = 

0.007), and IRF8 expression (p = 0.028) were 

associated with the prognosis of GBM patients  

(Table 3). 

 

 
 

Figure 4. The prognostic value of IRF family members in predicting overall survival of glioma patients (OS). The survival curves 

for (A) IRF1, (B) IRF2, (C) IRF3, (D) IRF4, (E) IRF5, (F) IRF6, (G) IRF7, (H) IRF8, and (I) IRF9 in glioma using the Kaplan-Meier method. *P <0.05. 
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DISCUSSION 
 

IRF family members are important mediators of 

inflammatory and immune microenvironment signaling 

pathways that are necessary for cancer development and 

progression. Dysregulation of IRF family members has 

been observed in several types of malignancies, 

including leukemia [13], melanoma [14], breast cancer 

[15], and hepatocellular carcinoma [16]. However, there 

is a paucity of evidence regarding the overall role of 

IRFs in glioma. In this study, we set out to analyze the 

expression profile, prognostic value, and biological 

function of individual IRF members in glioma. The goal 

of the study was to advance our current understanding 

 

 
 

Figure 5. Genetic alterations, co-expression, and interaction analysis of IRF family members in glioma patients. (A) Summary of 

genetic alterations in IRF family members in glioma. (B) OncoPrint visual summary of alterations in a query of IRF family members 
(cBioPortal). (C) Kaplan-Meier plot comparing overall survival in cases with/without IRF alterations (cBioPortal). (D) Correlation heat map of 
differentially expressed IRF family members in glioma (TCGA glioma dataset). (E) Protein-protein interaction network among the nine 
differentially expressed IRF family members (STRING). (F) Top 20 external genes functionally related to IRF family members and the 
interaction network (GeneMANIA). 
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of the glioma microenvironment and to identify 

potential improvements in treatment strategies and 

prognostic accuracy for glioma patients. 

 

We first explored the expression profiles of IRF family 

members and their correlations with pathological grade 

and patient outcomes. We found that IRF1, IRF2, IRF5, 

IRF7, IRF8, and IRF9 were upregulated in glioma 

compared with normal tissue. Moreover, IRF1, IRF2, 

IRF3, IRF4, IRF5, IRF7, IRF8, and IRF9 expression 

increased as tumors progressed, and glioma patients 

with low expression of these genes had significantly 

better overall survival. Some of these findings are 

consistent with previous results. For example, Liang et 

al. found that IRF1 expression was significantly 

elevated in glioma cell lines and IRF1 knockdown 

increased apoptosis and enhanced the efficacy of anti-

VEGF therapy in an animal model of glioma [12]. In 

addition, Jin et al. reported that IRF7 was overexpressed 

in both glioma cell lines and human glioma specimens 

and was associated with reduced patient survival. 

Furthermore, IRF7 depletion could suppress glioma 

progression and decrease cellular heterogeneity in vivo 

through interleukin-6 and Notch signaling [10]. In 

contrast with our present results, a prior study by Dr. 

Tarassishin and colleagues reported that IRF3 inhibited 

glioma proliferation, migration, and invasion in vitro 

[11]. This inconsistency may be the result of inherent 

differences between transcriptomics studies and 

experimental validation studies or could reflect the 

heterogeneous nature of glioma, demonstrating the need 

for additional studies. Together, our study and previous 

 

 
 

Figure 6. Functional enrichment and cancer-related pathway analysis of IRF family members in glioma. Bar plots of GO 

enrichment terms in (A) biological process, (B) cellular component, and (C) molecular function. (D) Bar plot of KEGG enrichment terms. (E) 
Heat map of cancer pathway activity of IRF family members in glioma (GSCALite). 
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Table 2. Correlation between differentially expressed IRF family members and six types of tumor-infiltrating immune 
cells in LGG and GBM (TIMER). 

Gene 
LGG GBM 

B_cell CD8_T 

cell 

CD4_T 

cell 

Macrophage Neutrophil Dendritic B_cell CD8_T 

cell 

CD4_T 

cell 

Macrophage Neutrophil Dendritic 

IRF1 0.423 0.299 0.478 0.473 0.543 0.605 0.131 －0.201 0.024† －0.022† 0.199 0.457 

IRF2 0.483 0.323 0.514 0.62 0.51 0.506 0.083† 0.025† 0.15 0.180  0.26 0.281 

IRF3 0.325 －0.072† 0.481 0.408 0.437 0.422 0.062† 0.049† 0.058† 0.149 0.125 0.175 

IRF4 0.158 0.063† 0.311 0.242 0.282 0.274 0.050† －0.119† －0.151 －0.077 －0.167 －0.095† 

IRF5 0.64 0.052† 0.886 0.784 0.761 0.819 0.116 －0.309 0.13 0.091† 0.098 0.134  

IRF6 0.181 0.236 0.146 0.162 0.248 0.215 0.089† －0.26 0.060† 0.140† 0.068 † 0.103a 

IRF7 0.333 0.010† 0.563 0.492 0.475 0.539 0.252 －0.167 0.096† 0.039† 0.143 0.214 

IRF8 0.7 0.079† 0.792 0.631 0.683 0.77 0.253 －0.369 0.251 0.151 0.457 0.298 

IRF9 0.293 0.144 0.401 0.361 0.323 0.427 0.248 －0.15 0.19 0.111 0.268 0.159 

Note: †P ≥ 0.05  

 

Table 3. Cox proportional hazard model of IRF family members and six types of tumor-infiltrating immune cells in 
LGG and GBM (TIMER). 

Variable 
LGG GBM 

Coef HR 95%CI_L 95%CI_U P-value Sig Coef HR 95%CI_L 95%CI

_U 

P- value Sig 

B_cell 10.843 51189.065 55.429 47273219.787 0.002 ** 0.242 1.274 0.186  8.739 0.806  

CD8_Tcell 7.374 1593.545 1.284 1977201.523 0.042 * –0.127 0.881 0.236 3.283 0.850  

CD4_Tcell 5.869 353.828 0.089 1399115.433 0.165  2.947 19.048 1.814 200.025 0.014 * 

Macrophage 3.359 28.764 0.46 1792.334 0.111  0.540 1.715 0.137   21.455 0.675  

Neutrophil –6.858 0.001 0.000 1.749 0.070  –0.977 0.377 0.017 8.373 0.537  

Dendritic –2.367 0.094 0.002 5.295 0.250  2.005 7.426 2.131 25.882 0.002 ** 

IRF1 0.508 1.662 1.241 2.226 0.001 ** –0.536 0.585 0.389 0.881 0.010 * 

IRF2 0.161 1.174 0.698 1.976 0.546  0.323 1.381 0.812 2.348 0.23  

IRF3 0.160 1.173 0.752 1.829 0.481  –0.021 0.980 0.554 1.732 0.944  

IRF4 –0.332 0.717 0.464 1.110 0.136  –0.059 0.943 0.298 2.978 0.920  

IRF5 0.157 1.170 0.695 1.972 0.555  0.239 1.270 0.830 1.943 0.271  

IRF6 –0.150 0.860 0.627 1.181 0.351  –0.301 0.740 0.491 1.115 0.150  

IRF7 0.344 1.411 0.980 2.030 0.064  0.545 1.725 1.159 2.566 0.007 ** 

IRF8 –0.755 0.470 0.326 0.678 0.000 ** –0.521 0.594 0.373 0.944 0.028 * 

IRF9 –0.379 0.685 0.441 1.063 0.092  –0.201 0.818 0.503 1.331 0.419  

Note: *P < 0.05, **P <0.01 

 

studies suggest that differentially expressed IRF family 

members may play a role in glioma tumorigenesis and 

progression.  

 

To explore the impact of IRF family member expression 

in glioma, we conducted a comprehensive analysis of 

patient characteristics and outcomes. We found that 

genetic alterations in IRFs were relatively uncommon in 

glioma, but patients with alterations exhibited more 

favorable overall survival, suggesting these changes 

may have a clinically significant impact on patient 

outcome. Furthermore, significant positive correlations 

were observed among the differentially expressed IRF 

family members, suggesting that these genes may play a 

synergistic role in the pathogenesis of glioma. The 

subsequent PPI network analysis also confirmed the 

close interactions among these genes. 

We then examined the functions of differentially 

expressed IRF family members using multiple 

enrichment analysis tools. As expected, we found that 

these genes are mainly associated with the type I 

interferon signaling pathway, viral carcinogenesis, 

toll-like receptor signaling pathway, RIG-I-like 

receptor signaling pathway, and TGF-beta signaling 

pathway, all of which are primarily related to 

inflammation and immunity processes. Additionally, 

GSCALite analysis showed that IRF genes participate 

in a variety of biological processes including 

apoptosis, cell cycle, DNA damage response, and 

tumor-related pathways, such as the EMT, 

RAS/MAPK, RTK, and PI3K/AKT pathways. These 

findings strengthen the understanding of the biological 

mechanisms by which IRF family members participate 

in glioma pathology.  
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IRFs participate in the innate and adaptive immune 

responses of the body by regulating the development, 

migration, and localization of immune cells. Increasing 

evidence suggests that immune cell infiltration can 

influence the tumor microenvironment, thereby affecting 

tumor growth and progression and in turn playing 

significant roles in response to immunotherapy and patient 

outcome [17]. Microglia and macrophages, the main 

immune cell types that infiltrate gliomas, could facilitate 

glioma proliferation and migration by creating a supportive 

stroma and releasing several growth factors and cytokines 

[18]. Tumor-infiltrating lymphocytes, including CD4+ and 

CD8+ cells, are also found in glioma, and their levels are 

correlated with patient survival [19]. In this study, IRF 

expression was correlated with infiltration of the six 

immune cell types in glioma, including B cells, CD8+, 

CD4+ T cells, macrophages, and dendritic cells, and 

infiltration of some of these cells was independently 

associated with patient outcome. Our findings emphasized 

the important influence of IRF family member expression 

on immune cell infiltration in glioma. 

 

Several limitations in our study should be considered when 

interpreting the results. First, because this is a retrospective 

study based on limited data from bioinformatic databases, 

we were unable to examine the specific roles of IRFs in 

different pathological types of glioma, such as astrocytoma 

or oligodendroglioma; future prospective studies with 

appropriate sample sizes are therefore warranted to expand 

our findings. Second, mRNA levels do not completely 

reflect protein levels in tumor tissues because of complex 

post-transcriptional regulation within cells. Further basic 

research is therefore necessary to further characterize the 

expression of and molecular mechanisms associated with 

IRF family members in glioma. 

 

In summary, this study showed that IRF1, IRF2, IRF5, 

IRF8, and IRF9 mRNA levels were increased in glioma 

compared to normal tissue. Increased expression of IRF1, 

IRF2, IRF3, IRF4, IRF5, IRF7, IRF8, and IRF9 was 

associated with more advanced pathological grade and 

worse outcomes in glioma patients. Moreover, although 

genetic alterations in IRFs were relatively rare in glioma 

patients, they were associated with more favorable 

outcomes. Finally, IRF expression was correlated with 

immune cell infiltration in glioma. The results of the 

bioinformatics analyses performed in this study should be 

confirmed and expanded upon in future studies. 

 

MATERIALS AND METHODS 
 

Gene expression profile data and analysis 

 

We used a two-step analysis to assess IRF family 

member expression patterns in glioma patients. First, 

we examined mRNA level data from ONCOMINE, the 

largest public microarray database for genome-wide 

expression analysis [20]. Data were extracted and 

compared to evaluate IRF family member expression in 

glioma specimens and normal controls under the "Brain 

and CNS Cancer" category. A p-value of 0.05, fold 

change of 2, and gene rank in the top 10% were selected 

as inclusion thresholds for the comparison. IRF family 

member expression data for different glioma subtypes, 

i.e., LGG and GBM, was then obtained from Gene 

Expression Profiling Interactive Analysis (GEPIA), 

another online tool that contains RNA sequence 

expression data from 518 LGG samples, 163 GBM 

samples, and 207 normal brain samples [21]. IRF 

expression was compared between LGG or GBM and 

normal tissues using Student t-tests; p < 0.05 and fold 

change >2 were considered significant.  

 

Clinicopathological correlation and prognosis 

analysis 

 

Correlations between IRF family member expression and 

clinicopathological characteristics and prognosis in glioma 

patients were evaluated using data derived from The 

Cancer Genome Atlas (TCGA) database, which contains 

both sequencing and clinical records for over 30 types of 

human cancers [22]. A total of 527 patients with LGG 

(“LGG” dataset) and 167 patients with GBM (“GBM” 

dataset) were included in the analysis. IRF expression was 

compared in different tumor grades using one-way 

analysis of variance (ANOVA) following by Dunnett tests. 

Survival analysis was performed using Kaplan-Meier 

curves with samples divided into high- and low-expression 

groups according to median mRNA levels of each IRF. A 

log-rank p-value <0.05 was considered significant. 

 

Molecular characteristics and interaction analysis 

 

The molecular characteristics and internal/external 

interactions of IRF family members were explored with 

multiple tools. Genetic alterations and their associations 

with patient prognosis were evaluated using cBioPortal, 

an online tool for visualization and analysis of 

multidimensional cancer genomics data [23]. Co-

expression among IRF family members was evaluated 

in Pearson’s correlation tests using data from TCGA 

“LGG” and “GBM” datasets. The internal protein-

protein interaction network among IRF family members 

was constructed and visualized using the STRING 

database [24]. The external interaction network between 

IRF family members and functionally related genes was 

generated using GeneMANIA [25]. 

 

Functional enrichment analysis 

 

To examine biological functions, Gene Ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
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enrichment analyses were conducted for IRF family 

members and functionally related genes using DAVID 

software (version 6.8) [26]. Biological processes (BP), 

cellular components (CC), and molecular function (MF) 

categories were included in the GO enrichment analysis. 

The significance threshold was p < 0.05. Additionally, 

associations between IRF family members and the activity 

of cancer pathways, including TSC/mTOR, RTK, 

RAS/MAPK, PI3K/AKT, hormone ER, hormone AR, 

EMT, DNA damage response, cell cycle, and apoptosis 

pathways, were explored with GSCALite, a web-based 

platform for gene set cancer analysis [27]. 

 

Tumor immune infiltrate analysis 

 

The TIMER (Tumor Immune Estimation Resource) 

database is an immune infiltrate analysis tool for 

systematic evaluation of the different immune cells that 

infiltrate tumor tissue and their clinical significance 

[28]. In our study, we used the “Gene Module” to 

calculate correlations between the expression of each 

IRF and the abundance of infiltrating immune cells in 

glioma. Moreover, associations between patient 

outcomes and the abundance of immune infiltrates or 

gene expression were determined using “Survival 

module”.  
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