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INTRODUCTION 
 

Pancreatic cancer is one of the highly malignant tumors 

associated with a 5-year survival rate as low as 9%, and 

ranks fourth as a common cause of cancer-associated 

death in the USA [1]. However, it is estimated to 

become the second common cause of cancer-associated 

death before 2030 [2]. Surgical resection is considered 
the only potentially curative treatment, but less than 

10% of patients are resectable using the standard 

resection, and the 5-year survival rate of these early 

stage patients is only 24.6% [3]. Systemic 

chemotherapy, radiotherapy, and targeted molecular 

therapy are also treatment choices for postoperative 

patients or patients with unresectable tumors [4]. 

Recurrence, early metastasis, and resistance to 

chemoradiotherapy are important characteristics of 

pancreatic cancer [5]. Therefore, patients with 

pancreatic cancer should have individualized systemic 
treatment to prolong survival time and improve quality 

of life; thus, it is essential to identify an effective 

predictive prognosis model and biomarkers for guiding 
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ABSTRACT 
 

Pancreatic cancer is a lethal disease. Chemoresistance is one of the characteristics of pancreatic cancer and 
leads to a poor prognosis. This study built an effective predictive model for personalized treatment and 
explored the molecular mechanism of chemoresistance. A four-gene signature, including serine peptidase 
inhibitor Kazal type 1 (SPINK1), anoctamin 1 (ANO1), desmoglein 3 (DSG3) and GTPase, IMAP family member 1 
(GIMAP1) was identified and associated with prognosis and chemoresistance in the training group. An internal 
testing dataset and the external dataset, GSE57495, were used for validation and showed a good performance 
of the gene signature. The high-risk group was enriched with multiple oncological pathways related to 
immunosuppression and was correlated with epidermal growth factor receptor (EGFR) expression, a target 
molecule of Erlotinib. In conclusion, this study identified a four-gene signature and established two nomograms 
for predicting prognosis and chemotherapy responses in patients with pancreatic cancer. The clinical value of 
the nomogram was evaluated by decision curve analysis (DCA). It showed that these may be helpful for clinical 
treatment decision-making and the discovery of the potential molecular mechanism and therapy targets for 
pancreatic cancer. 
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individualized systemic treatment. Clinical 

characteristics including the American Joint Committee 

on Cancer (AJCC) stage and pathological type are 

commonly used as indicators for prognosis and 

treatment evaluation [6]. With the development of gene 

chips and high-throughput sequencing technology, 

prediction tools based on prognosis-related genes have 

been developed with better accuracy, and may be 

beneficial to elucidate the molecular mechanism of 

pancreatic cancer occurrence and progression. 

 

One of the important factors for poor prognosis  

in pancreatic cancer is chemoresistance, including 

extrinsic or intrinsic resistance [7, 8]. Intrinsic 

resistance is driven by multiple mechanisms that are not 

clearly understood. For instance, Farrell JJ et al. has 

found that human equilibrative nucleoside transporter 1 

(hENT1), a transport protein that transports gemcitabine 

and other nucleoside analogs into cellular com-

partments, has variable expression in patients with 

pancreatic cancer with different responses to chemo-

therapy [8, 9]. Ju HQ et al. has found that gemcitabine 

resistance in pancreatic cancer plays a role through 

redox modulation [10]. Extrinsic resistance results from 

changes in the stromal microenvironment, including 

dense fibrotic tumor stroma and immunosuppression 

[11–13]. At present, gemcitabine or S-1, a fluoro-

pyrimidine derivative is commonly used as a first-line 

chemotherapy drug, while (m)FOLFIRINOX and 

gemcitabine plus nanoparticle albumin-bound paclitaxel 

are other choices for patients who can tolerate regimens 

[4]. With the continuous development of molecular 

biology technology, the molecular mechanisms of 

chemoresistance have been studied, and clinical trials of 

combination therapies, targeted molecular drugs, and 

immunotherapy are ongoing [14]. However, these 

studies have not contributed much to improving the 

survival of patients with pancreatic cancer. Erlotinib, a 

target inhibitor of the epidermal growth factor receptor 

(EGFR) tyrosine kinase, is currently recommended as a 

combination treatment for patients with skin rash, and is 

beneficial to the overall survival of patients with 

pancreatic cancer [4, 15]; but, immunotherapy has no 

efficacy in patients with pancreatic cancer due to the 

immunosuppressive tumor microenvironment [13]. 

 

Many gene signatures have been reported to be related 

to prognosis [16, 17]. However, they are seldom 

associated with the chemotherapy response. In this 

study, a four-gene prognostic signature related to the 

chemotherapy response was constructed based on the 

different responses after chemotherapy in The Cancer 

Genome Atlas (TCGA) and the Genotype-Tissue 
Expression (GTEx) project datasets training group, and 

validated in both an internal testing group and an 

external Gene Expression Omnibus (GEO) dataset. 

Moreover, the potential molecular mechanisms were 

explored through gene set enrichment analysis (GSEA) 

and tumor immunity relevance analysis. Two clinical 

nomogram models were also constructed to predict 

prognosis and the chemotherapy response and might 

serve as a reference for chemotherapy in patients with 

pancreatic cancer. 

 

RESULTS 
 

Identification of resistance-related differentially 

expressed genes (RRDEGs) 

 

Figure 1 depicts a flowchart of the study. The clinical 

characteristics of patients with pancreatic cancer in 

TCGA dataset are shown in Supplementary Table 1. 

TCGA and GTEx datasets with 165 pancreatic cancer 

samples and 332 normal samples were used to conduct 

differential expression analysis between tumor samples 

and normal samples after removing the batch effect 

(Figure 2A, 2B); 980 differential expression genes 

(DEGs) (526 upregulated and 454 downregulated 

genes) were identified (|log2FC| > 1 and p < 0.05). As 

chemoresistance plays a significant role in the 

progression of pancreatic cancer, the expression of 71 

patients with different responses after chemotherapy in 

the TCGA database was analyzed using a Kruskal-

Wallis rank sum test. A total of 128 RRDEGs were 

identified (p < 0.05, Figure 2C, 2D and Supplementary 

Table 2). 

 

GO and KEGG enrichment analysis of RRDEGs 
 

To explore RRDEGs function, RRDEGs were subjected 

to GO and KEGG enrichment analysis (Supplementary 

Table 3). RRDEGs were enriched in biological 

processes related to neutrophils, such as neutrophil 

degranulation and activation, which suggested that 

innate immunity plays an important role in tumor 

progression and chemoresistance (Figure 3A). GO 

enrichment analysis in cellular component and 

molecular function indicated that the RRDEGs were 

related to cell adhesion, which was consistent with the 

highly aggressive nature of pancreatic cancer and 

extrinsic resistance mechanisms (Figure 3B, 3C). 

Furthermore, KEGG pathway analysis also revealed 

that RRDEGs were related to cell adhesion (Figure 3D). 
 

A PPI network of RRDEGs was created to identify 

protein interactions; the top candidate hub included 25 

genes that played a significant role in this network 

(Figure 3E). Module analysis identified a meaningful 

clustering module with score 4.5 in the PPI network, 
which was marked with white font on the network 

(Figure 3E). Functional enrichment analysis of biological 

processes for these hub genes was associated with the 
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immune response (Figure 3F), including the innate 

immune response, cytokine production, and lymphocyte 

activation. Thus, PPI network analysis showed that 

RRDEGs promoted pancreatic cancer progression and 

chemoresistance through immune regulation. 

 

Construction of a four-gene signature associated 

with chemoresistance 

 

Next, univariate Cox regression analysis was performed 

to identify potential prognostic RRDEGs in the training 

group; 51 RRDEGs were identified that were 

significantly associated with overall survival 

(Supplementary Table 4). Lasso-penalized Cox analysis 

was then used to eliminate model over-fitting and 

showed that the expression of 10 RRDEGs was 

correlated with overall survival in patients with 

pancreatic cancer (Supplementary Figure 1A, 1B and 

Supplementary Table 5). Subsequently, a prognostic 

signature composed of four genes, including anoctamin 

1 (ANO1), desmoglein 3 (DSG3), serine peptidase 

inhibitor Kazal type 1 (SPINK1) and GTPase, IMAP 

family member 1 (GIMAP1), was identified using 

stepwise multivariate Cox regression analysis (Figure 

4). The downregulated gene GIMAP1, with a hazard 

ratio (HR) < 1, was regarded as a tumor suppressor, 

while the upregulated genes ANO1, DSG3, and SPINK1, 

with a HR > 1, were considered oncogenes. The risk 

score was calculated using the following formula: 

 
Risk score (0.47599 Expression value of ANO1)

(0.24553 Expression value of DSG3)

(0.23389 Expression value of 1)

[( 0.59799) Expression value of GIMAP1].

= 

+ 

+ 

+ − 

SPINK
 

 

 
 

Figure 1. Study flowchart. 



 

www.aging-us.com 12496 AGING 

The patients in the training group were divided into two 

(cutoff value = 7.03) or three (cutoff values = 6.59 and 

7.03, respectively) groups based on the optimal cutoff 

values generated by the X-tile software. Time-dependent 

ROC and C-index analyses were used to evaluate the 

prognostic value of the four-gene signature compared to 

the AJCC stage. The area under the curves (AUCs) for 

1-, 2-, and 3-year overall survival predicted by the risk 

scores were 0.750 (95% CI: 0.631–0.869), 0.821 (95% 

CI: 0.725–0.916), and 0.770 (95% CI: 0.629–0.911), 

respectively (Figure 5A–5C). As a control, the AUCs for 

1-, 2-, and 3-year overall survival predicted by the AJCC 

stage were 0.523 (95% CI: 0.419–0.628), 0.680 (95% 

CI: 0.569–0.791), and 0.725 (95% CI: 0.589–0.861), 

respectively. The C-index of the gene signature was 

0.724 (95% CI: 0.650–0.798), while the C-index of the 

AJCC stage was 0.573(95% CI: 0.504–0.643). Kaplan-

Meier survival curve analysis showed that patients with 

lower risk scores had a significantly more favorable 

prognosis (Figure 5D–5K). The calibration curve for the 

gene signature demonstrated a satisfactory fit in the 

training group (Figure 5L). 

 

 
 

Figure 2. Identification of resistance-related differentially expressed genes (RRDEGs) in pancreatic cancer. (A) Principle 

component analysis (PCA) plot of the data merged from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets 
before removing the batch effect. (B) PCA plot of the data merged from TCGA and GTEx datasets after removing the batch effect. (C) Volcano 
plot of DEGs between tumor tissues and normal tissues. The red and green points are DEGs, and RRDEGs are plotted with blue points. The 
lines were drawn where the absolute value of log2FC is equal to 1 and FDR is equal to 0.05. (D) Heatmap showing the expression of RRDEGs. 
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Chemoresistance is an important factor for poor 

progression of pancreatic cancer. In this study, the 

prognostic risk score based on patients with different 

responses after chemotherapy was closely related to 

chemoresistance in the training group (p < 0.05, Figure 

5M). Moreover, the AUC for chemoresistance predicted 

by the risk score was 0.711(95% CI: 0.563–0.858, 

Figure 5N). In general, these data showed that the 

 

 
 

Figure 3. Functional enrichment and protein-protein interaction (PPI) network analysis. (A–C) Gene ontology (GO) enrichment 

analysis of resistance-related differentially expressed genes (RRDEGs). (A) Biological process. (B) Cellular component. (C) Molecular function. 
(D) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of RRDEGs. (E) Visualization of the top 25 hub genes in the PPI network. A 
clustering module with a score of 4.5 is marked with white font. (F) GO enrichment analysis of hub genes in the biological process. 

 

 
 

Figure 4. Construction of the prognostic four-gene signature using a Cox regression model. 
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Figure 5. Evaluating the performance of the prognostic gene signature in the training group. (A–C) Time-dependent receiver 
operating characteristic (ROC) curves for 1-, 2-, and 3-year overall survival predictions of the gene signature. American Joint Committee on 
Cancer (AJCC) stage is the control. (D–G) Kaplan-Meier survival curves of the four-gene signature and distribution of patient survival and risk 
score in different groups when patients are divided into two groups. (D) Kaplan-Meier survival curves. (E) Distribution of risk score. (F) 
Distribution of survival time. Circle shape stands for high-risk group while triangle shape for low-risk group. Red stands for survival and green 
stands for dead. (G) Heatmap of the expression of the four genes. (H–K) Kaplan-Meier survival curves of the four-gene signature and 
distribution of patient survival and risk score in different groups when patients are divided into three groups. (H) Kaplan-Meier survival 
curves. (I) Distribution of risk score. (J) Distribution of survival time. (K) Heatmap of the expression of the four genes. (L) Calibration plot for 
validation of the gene signature. (M) Distribution of risk score in different responses to drug in the training group. (N) The ROC curve for the 
response to drug prediction of risk score in the training group is shown. 
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four-gene signature performed well in predicting 

prognosis and chemoresistance of pancreatic cancer. 

 

Internal and external validation of the four-gene 

signature 

 

The performance of the gene signature was validated in 

the internal testing group and external GEO dataset, 

GSE57495. Risk scores were calculated according to 

the same formula for each patient. In the testing group, 

patients were divided into two or three groups using the 

same cutoff values used in the training group. Due to 

sequencing using different platforms, patients in the 

GEO dataset were divided into two (cutoff value = 6.71) 

or three (cutoff values = 6.24 and 6.90, respectively) 

groups according to the optimal cutoff values. Time-

dependent ROC and C-index analyses were utilized to 

elevate the prognostic predictive value of the four-gene 

signature compared with the AJCC stage. In the testing 

group, the AUCs for 1-, 2-, and 3-year overall survival 

predicted by the risk score were 0.696, 0.713, and 

0.693, respectively (Figure 6A–6C). The AUCs for 1-, 

2-, and 3-year overall survival predicted by the AJCC 

stage were 0.455, 0.597, and 0.604, respectively. The C-

index of the gene signature was 0.639 (95% CI: 0.540–

0.737), while the C-index of the AJCC stage was 0.522 

(95% CI: 0.431–0.614). In the external GEO dataset, the 

AUCs for 1-, 2-, and 3-year overall survival predicted 

by the risk score were 0.615, 0.653, and 0.674, 

respectively (Supplementary Figure 2A–2C), while the 

AUCs for the AJCC stage were 0.575, 0.682, and 0.584, 

respectively. The C-index of the gene signature for the 

GEO dataset was 0.603 (95% CI: 0.528–0.677), while 

the C-index of the AJCC stage was 0.594 (95% CI: 

0.509–0.680). Kaplan-Meier survival curve analysis 

showed significant differences for overall survival 

between the different risk score groups both in the 

testing group and the external GEO dataset (p < 0.05, 

Figure 6D–6K and Supplementary Figure 2D–2K). 

Furthermore, the calibration curve for the gene 

signature revealed that the predicted overall survival 

was approximately consistent with the actual overall 

survival (Figure 6L and Supplementary Figure 2L). 

However, when the predicted 3-year overall survival in 

the testing group was higher than 50%, the signature 

might underestimate the overall survival in patients with 

pancreatic cancer. In the testing group, the correlation 

between response to chemotherapy and risk score was 

also explored and showed that patients with 

chemoresistance had a higher risk score (p < 0.01, 

Figure 6M). Moreover, the AUC for chemoresistance 

predicted by the risk score was 0.858 (95% CI: 0.695–1, 

Figure 6N). The internal and external validation 
indicated that the four-gene signature performed well in 

predicting overall survival and chemoresistance in 

patients with pancreatic cancer. 

Building predictive nomograms 

 

Patients with complete clinical information from TCGA 

dataset were included in the analysis. The clinical 

characteristics included gender, age, AJCC TNM stage, 

tumor dimension, tumor site, pathologic grade, 

chemotherapy, neoadjuvants, radiation, molecular 

therapy, residual tumor after surgery, tobacco smoking 

history, alcohol use history, history of chronic 

pancreatitis, and diabetes. Prognostic factors of overall 

survival for pancreatic cancer were identified using 

univariate and stepwise multivariate Cox regression 

analyses while chemoresistance predictive factors for 

pancreatic cancer were identified using univariate and 

stepwise multivariate logistics regression analyses. 

 

Univariate Cox regression analysis revealed that risk 

score (p < 0.001), AJCC stage (p < 0.05), T stage (p < 

0.05), N stage (p < 0.05), tumor dimension (p < 0.05), 

tumor site (p < 0.01), pathologic grade (p < 0.05), 

chemotherapy (p < 0.05), radiation (p < 0.05), and 

molecular therapy (p < 0.01) were corrected with 

overall survival of patients with pancreatic cancer. 

Stepwise multivariate Cox regression analysis indicated 

that the risk score (p < 0.001), N stage (p < 0.01, N1 vs 

N0), and chemotherapy (p < 0.001) were significantly 

correlated with overall survival of patients with 

pancreatic cancer. A prognostic nomogram predicting 

1-, 2-, and 3-year overall survival based on the stepwise 

multivariate Cox regression model was developed 

(Figure 7A). The AUC of the 1-, 2-, and 3-year overall 

survival predictions for the nomogram was 0.666, 

0.721, and 0.752, respectively (Figure 7B). The C-index 

of the nomogram was 0.791 (95% CI: 0.732–0.849). 

The calibration plot showed that the nomogram was 

effective at predicting 1-, 2-, and 3- year overall 

survival in patients with pancreatic cancer (Figure 7C). 

In the DCA, the results showed that the nomogram 

indicated a better net benefit than was achieved with the 

AJCC stage for predicting OS (Figure 7D). 

 

Univariate logistics regression analysis revealed that risk 

score (p < 0.001), residual tumor after surgery (p < 0.05, 

R1 vs R0), and N stage (p < 0.05) were corrected with 

response after chemotherapy. Additionally, stepwise 

logistics regression analysis showed that the risk score (p 

< 0.01) and residual tumor after surgery (p < 0.05, R1 vs 

R0) were independent risk factors of disease progression 

after chemotherapy. A predictive nomogram predicting 

the probability of response after chemotherapy was built 

based on the logistics regression model (Figure 7E). The 

AUC of the disease progression probability predictions 

for the nomogram was 0.847 (Figure 7F) while the C-
index of the nomogram was 0.847. The calibration plot 

showed good agreement between predictions and 

observations (Figure 7G). 
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Figure 6. Validation of the prognostic gene signature in the testing group. (A–C) Time-dependent receiver operating characteristic 
(ROC) curves for 1-, 2-, and 3-year overall survival predictions of the gene signature in the testing group. American Joint Committee on Cancer 
(AJCC) stage is the control. (D–G) Kaplan-Meier survival curves of the four-gene signature and distribution of patient survival and risk score in 
different groups when patients in the testing group are divided into two groups. (D) Kaplan-Meier survival curves. (E) Distribution of risk 
score. (F) Distribution of survival time. Circle shape stands for high-risk group while triangle shape for low-risk group. Red stands for survival 
and green stands for dead. (G) Heatmap of the expression of the four genes. (H–K) Kaplan-Meier survival curves of the four-gene signature 
and distribution of patient survival and risk score in different groups when patients in the testing group are divided into three groups. (H) 
Kaplan-Meier survival curves. (I) Distribution of risk score. (J) Distribution of survival time. (K) Heatmap of the expression of the four genes. 
(L) Calibration plot for validation of the gene signature in the testing group. (M) Distribution of risk score in different responses to drug in the 
testing group. (N) The ROC curve for the drug reaction prediction of risk score in the testing group is shown. 
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GSEA and tumor immunity relevance of the gene 

signature 

 

To elucidate the molecular mechanisms of the four-gene 

signature, 165 patients in TCGA dataset were divided 

into two groups according to the median of the risk score 

and GSEA was used to compare the high and low risk 

groups. The results revealed the malignant characteristics 

of cancer and immunity relevance and included 

cholangiocarcinoma, breast cancer, pancreas beta cell, 

MYC, keratinization, and mutation of P53 and KRAS 

(Figure 8A and Supplementary Figure 3A–3C). Results 

of the GSEA are shown in Supplementary Table 6. 

As shown above, RRDEGs might be related to  

tumor immunity. To further investigate the tumor 

immunity relevance of the gene signature, immune 

scores of TCGA-PAAD samples were downloaded  

from ESTIMATE, a database evaluating infiltrating 

immune cells in tumor tissues (https://bioinformatics. 

mdanderson.org/estimate/), and infiltration information 

of different immunocytes in TCGA-PAAD samples was 

downloaded from TIMER (http://timer.cistrome.org/). 

The immune score was significantly lower in the high-

risk group, which revealed that the four-gene signature 

might play an important role in tumor immune escape 

(Figure 8B). Immune cell proportions were weakly to 

 

 
 

Figure 7. Creation of a predictive nomogram in The Cancer Genome Atlas (TCGA) dataset. (A) A prognostic nomogram predicting 

1-, 2-, and 3-year overall survival of patients with pancreatic cancer. (B) Time-dependent receiver operating characteristic (ROC) curves for 1-, 
2-, and 3-year overall survival predictions of the nomogram. (C) Calibration plot for the validation of the prognostic nomogram. (D) The 
nomogram predicting OS were compared against AJCC stage by DCA. (E) A predictive nomogram predicting drug reaction in pancreatic 
cancer. (F) ROC curve of the nomogram for the prediction of chemotherapy resistance. (G) Calibration plot for the validation of the 
chemotherapy resistance predictive nomogram. 

https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
http://timer.cistrome.org/
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moderately correlated in patients with pancreatic  

cancer (Figure 8C). Infiltration levels of different 

immunocytes, including naïve B cells, macrophage 

M0s, monocytes and CD8+ T cells, were significantly 

different between different risk groups (Figure 8D, 8E). 

To evaluate the correlation between risk score and 

immunotherapy, correlation analysis between the 

expression of the immune checkpoint programmed cell 

death protein 1 (PD-1) and risk score was performed; 

the results showed that risk score was negatively 

correlated with the expression level of PD-1 (correlation 

coefficient = -0.351, Figure 8F). However, there was 

not significance difference between signature and the 

expression level of PD-L1 (Supplementary Figure 4A). 

 

 
 

Figure 8. Gene set enrichment analysis (GSEA) and tumor immunity relevance of the gene signature. (A) GSEA for hallmark gene 

sets. Upregulated and downregulated enriched pathways with top normalized enrichment scores are shown. (B) Distribution of immune 
score in high and low risk groups in The Cancer Genome Atlas (TCGA) dataset. (C) Correlation of the infiltration proportion between different 
immunocytes. (D, E) Infiltration levels of different immunocytes in high and low risk groups. (F) Correlation between expression of 
programmed cell death protein 1 (PD-1) or epidermal growth factor receptor (EGFR) and risk score. 
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The expression of EGFR, a target molecule of Erlotinib, 

was positively correlated with risk score (correlation 

coefficient = 0.469, Figure 8F), which suggested that 

these risk scores might be used as a reference for 

Erlotinib-targeted drug therapy. To further explore the 

role and the clinical relevance of genes, we analyzed the 

expression level of mRNA from dataset. The mRNA 

expression of SPINK1, DSG3, ANO1 were significantly 

increased in PAAD tumor tissue while GIMAP1 were 

significantly decreased compared with normal tissues 

(Supplementary Figure 4B–4E). 

 

DISCUSSION 
 

Pancreatic cancer is a lethal disease where the 5-year 

survival rate is only 9% [1]. However, current 

treatments, including surgery, chemotherapy, radiation 

therapy, targeted molecular therapy, and immuno-

therapy have only led to modest improvements in 

overall survival. Accurate prognostic models provide a 

reference for personalized treatments strategies, which 

are expected to improve patient prognosis. The AJCC 

stage and other clinical features are commonly used as 

prognostic markers and are one of the reference 

indicators for clinical treatment strategies. Additionally, 

molecular prognostic markers provide good 

supplementation to the AJCC stage for improving 

accuracy of prognosis predictions [6]. Moreover, 

chemoresistance plays a significant role in the progress 

of pancreatic cancer, leads to poor prognosis, and may 

have effects through a complex molecular regulatory 

network [5, 7, 8, 12, 18, 19]. By analyzing the related 

molecules, these molecules can be used as prognostic 

molecular markers and help in the understanding of the 

mechanism of chemoresistance, which may provide 

new therapeutic targets. Nomograms that combine 

several prognostic risk factors, including molecular 

markers and clinical characteristics, are widely used to 

accurately calculate and visualize the probabilities of 

clinical events, and contribute to clinical decisions in 

personalized treatment strategies [20–22]. 

 

In this study, a four-gene prognostic signature that 

included SPINK1, ANO1, DSG3, and GIMAP1 in 

patients with pancreatic cancer were identified. The 

gene signature was related to the chemotherapy 

response based on different responses in patients after 

chemotherapy in training group, and was validated in 

both an internal testing group and an external GEO 

dataset. The gene signature was closely correlated with 

prognosis, chemoresistance, and target molecular 

therapy of patients with pancreatic cancer. To explore 

the potential mechanisms of these genes in pancreatic 

cancer progression and chemoresistance, the patients 

were divided into high and low risk groups based on 

risk score and GSEA was performed. When using 

oncogenic gene sets, a correlation was revealed with 

KRAS and P53, common genes with mutation in 

pancreatic cancer; it has been reported that KRAS and 

P53 are associated with chemoresistance [23, 24]. 

Utilizing hallmark gene sets, MYC-related pathways and 

other pathways are enriched, which is consistent with 

previous studies where MYC has been reported to play a 

role in cell growth, proliferation, and tumorigenesis in 

pancreatic cancer [25, 26]. Subsequently, it was found 

that patients with a high-risk score had a lower immune 

score, which suggested that the high-risk group had a 

tumor immunosuppressive microenvironment. Further-

more, the relationship between risk score and tumor 

immunotherapy was explored and the results show that 

risk score is negatively correlated with the expression 

level of PD-1, which may be due to the immuno-

suppressive microenvironment and is consistent with 

the modest curative effect of anti-PD-1 drugs in 

pancreatic cancer [27]. Although there is no benefit for 

immunotherapy in pancreatic cancer [13], new regimens 

of immunotherapy may be one of the choices in the 

future. 

 

SPINK1, a trypsin inhibitor, is secreted into pancreatic 

juice by pancreatic acinar cells. It is encoded by 

SPINK1, located in chromosomal region 5q32. Mutation 

of this gene is closely associated with idiopathic chronic 

pancreatitis [28], a risk factor of pancreatic cancer. 

However, the relationship between SPINK1 and the 

development of pancreatic cancer is controversial [29, 

30]. Chen F et al. has found that overexpression of 

SPINK1 promotes pancreatic cancer aggressiveness, 

particularly chemoresistance, through the epithelial-

endothelial transition mediated by EGFR downstream 

signaling [31]. However, a meta-analysis shows that 

SPINK1 has no correlation with the progression of 

pancreatic cancer [30]. Overexpression of SPINK1 has 

also been discovered in multiple tumors, including 

colon, lung, breast, and prostate, and is associated with 

tumor progression and poor prognosis [32, 33]. ANO1, a 

calcium-activated chloride channel, is a biomarker for 

poor prognosis in pancreatic cancer. Overexpression of 

ANO1 promotes pancreatic cancer cell migration via the 

ligand-dependent EGFR signaling pathway [34, 35]. 

ANO1 is also upregulated in multiple tumor tissues, 

including head and neck squamous cell carcinoma 

(HNSCC), and prostate and breast cancer [36, 37]. It is 

reported that ANO1 interacts with EGFR and affects 

EGFR-targeted therapy in HNSCC and breast cancer 

[38, 39]. However, additional experiments are required 

to elucidate whether this occurs in pancreatic cancer. 

DSG3, encoded by DSG3, located in chromosomal 

region 18q12.1, is a member of the desmoglein family 
and the cadherin cell adhesion molecule superfamily of 

proteins that establish links between adjacent cells [40]. 

DSG3 has been identified as an autoantigen in the skin 
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disease pemphigus vulgaris [41] and is also upregulated 

in several cancers, including squamous cell carcinoma, 

pancreatic ductal adenocarcinoma, and head and neck 

cancer [40, 42, 43]. In pancreatic cancer, it has been 

identified as a negative prognosis biomarker [40]. 

GIMAP1, a guanosine triphosphatase (GTPase) that  

is immunity-associated, is involved in Th cell 

differentiation and development of mature B and T 

lymphocytes [44]. GIMAP1 has been commonly 

reported to be related to autoimmune diseases, such as 

Bechet’s disease [45] and type I diabetes [46]. 

Moreover, GIMAP1 is reported to be downregulated in 

lymphomas and regulates the B and T lymphocyte cell 

cycle [47]. However, there are no reports on its effect in 

pancreatic cancer. 
 

There are limitations to this study. First, the model was 

conducted and validated in TCGA and GEO datasets 

and some clinical information was limited, especially 

the information on chemotherapy. Therefore, it is 

necessary to validate the model in a larger number of 

samples with complete clinical information. Second, the 

potential molecular mechanisms of progression and 

chemoresistance in pancreatic cancer that were 

identified in this study need to be verified by further 

experimental studies. 
 

This study identified a four-gene signature that 

predicted prognosis and chemoresistance in patients 

with pancreatic cancer. In addition, two nomograms 

were established in pancreatic cancer. The gene 

signature was closely correlated with prognosis, 

chemoresistance, and target molecular therapy of 

patients with pancreatic cancer and might be beneficial 

to the discovery of potential mechanisms of progression 

and chemoresistance. Two predictive nomograms were 

created to be used as references for clinical treatment 

decisions. 

 

MATERIALS AND METHODS 
 

Gene expression data and clinical data 

 

The gene expression profiles (HTSeq-Counts) of 

patients with pancreatic cancer (TCGA-PAAD) and 

their associated drug information were downloaded 

from TCGA using the R package “TCGAbiolinks,” 

while the other clinical information was obtained from 

the cBioPortal database (https://www.cbioportal.org/). 

Samples meeting the following criteria were excluded: 

(1) a metastatic tumor; (2) without pathological 

information; (3) with a pathological diagnosis of colloid 

(mucinous non-cystic) carcinoma or undifferentiated 
carcinoma; and (4) follow-up time less than 30 days. 

Meanwhile, eight cases without corresponding gene 

expression data were eliminated. Therefore, 165 cases, 

165 tumor samples and 4 normal samples, were 

included in this study. Gene expression profiles (gene 

read counts) from normal pancreatic tissues (n = 328) of 

healthy individuals were downloaded from the GTEx 

project (https://www.gtexportal.org/). Then, TCGA and 

GTEx gene expression data were combined for further 

analysis. The gene expression microarray dataset, 

GSE57495, associated with follow-up information, was 

downloaded from GEO (https://www.ncbi.nlm.nih.gov/ 

geo/) for the validation of the prognostic model. 

 

Differentially expressed gene (DEG) identification 

and analysis 

 

Gene expression data were normalized and a variance 

stabilizing transformation using the R package 

“DESeq2” was applied. To reduce the influence of a 

batch effect, a batch variate giving rise to a different 

database was designed as a covariant, and the  

batch effect was further removed using the 

removeBatchEffect () function in the R package 

“limma.” DEGs between tumor samples and normal 

samples were identified using “limma.” |log2FC| > 1 

and p < 0.05 were set as the cutoffs for DEGs. Then, 

RRDEGs were identified using a Kruskal-Wallis rank 

sum test between patients with different responses after 

chemotherapy, including “Clinical Progressive 

Disease”, “Partial Response”, “Stable Disease” and 

“Complete Response”. p < 0.05 was considered 

statistically different. Furthermore, gene ontology (GO) 

enrichment and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analyses were performed 

for RRDEGs using the R package “clusterProfiler.” A 

protein–protein interaction (PPI) network was 

conducted using the search tool for the retrieval of 

interacting genes/proteins (STRING) database 

(https://www.string-db.org/) and was visualized using 

Cytoscape v. 3.7.2 (http://www.cytoscape.org/). 

 

Construction of a risk prognostic signature 

 

A total of 165 tumor samples were randomly divided 

into two groups, a training group (n = 115, 70%) and a 

testing group (n = 50, 30%). There were 49 samples 

with chemotherapy information in the training group, 

while 22 samples had chemotherapy information in the 

testing group. A risk prognostic model was constructed 

based on the data from the training group and validated 

in the testing group and the GSE57495 dataset. First, a 

univariate Cox proportional hazards regression model 

was performed to identify potential survival-related 

RRDEGs for subsequent analysis. Lasso-penalized Cox 

regression analysis was performed to reduce over-fitting 
based on the “glmnet” package. Next, a stepwise 

multivariate Cox proportional hazards regression model 

was used to construct a risk prognostic signature, and 

https://www.cbioportal.org/
https://www.gtexportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.string-db.org/
http://www.cytoscape.org/
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the risk score was calculated through the summation of 

the gene expression multiplied by the regression 

coefficients from the multivariate Cox proportional 

hazards regression model. Patients with different 

responses after chemotherapy were divided into two 

groups. Patients with a response from “Clinical 

Progressive Disease” were assigned to one group and 

the others were assigned to another group. A student’s t-

test was performed to evaluate the correlation between 

risk score and chemoresistance. The receiver operating 

characteristic (ROC) curve was performed to evaluate 

the predictive power of the gene signature for 

chemoresistance. Patients were separated into two or 

three groups based on an optimal cutoff value risk score 

using X-tile software (V3.6.1). Kaplan-Meier analysis, 

ROC curves, Harrell’s concordance indexes (C-index), 

and calibration plots were conducted to evaluate the 

performance of the prognostic gene signature. The 

AJCC stage was used as a control. The GSE57495 

dataset, with follow-up information, was set as an 

external validation dataset and the same formula was 

used to calculate the risk score. 
 

Construction of nomograms and DCA 
 

To identify independent risk factors of prognosis, 

univariate and multivariate Cox regression analyses 

were performed, and clinical characteristics included 

age, gender, AJCC stage, T, N, M, dimension, location, 

grade, histopathology, neoadjuvant, radiation, molecular 

therapy, residual tumor, smoking, drinking, pancreatitis, 

diabetes, chemotherapy, and risk score. p < 0.05 was 

considered statistically different. All independent risk 

factors were included in the construction of prognostic 

nomograms using a stepwise Cox regression model in 

TCGA PAAD dataset. A univariate and multivariate 

binary logistics regression model was performed to 

identify chemoresistance risk factors, and all were 

included in the construction of a predictive nomogram 

using a stepwise method. The ROC curve, C-index, 

calibration plots, and DCA were conducted to evaluate 

the performance of the nomograms. 
 

GSEA 
 

GSEA was used to explore the potential molecular 

mechanism of a prognostic gene signature. All patients 

in TCGA dataset were divided into two groups 

according to the median of the risk score. The R 

package “limma” was used to acquire the DEGs 

between high and low risk groups, and GSEA was 

performed using the R package “clusterProfiler” [48], 

based on the Molecular Signatures Database v. 7.0. 
Hallmark gene sets included C2 (curated gene sets), C5 

(GO gene sets) and C6 (oncogenic signatures). p < 0.05 

was regarded as statistically different. 

Data of tumor immunity relevance in pancreatic 

cancer 

 

The data on tumor purity and the presence of 

infiltrating stromal/immune cells in TCGA PAAD 

sample tumor tissue were download from the 

Estimation of STromal and Immune cells in MAlignant 

Tumor tissues using Expression data (ESTIMATE) 

[49] (https://bioinformatics.mdanderson.org/estimate/). 

The abundance of different immunocyte immune 

infiltrates' in TCGA PAAD samples was downloaded 

from TIMER (http://timer.cistrome.org/) [50] and  

the CIBERSORT method was used to acquire the 

results [51]. 

 

Statistical analysis 

 

Statistical analysis was performed in the programming 

language R (v3.6.2, https://www.r-project.org/). 

Pearson's chi-squared test was used to analyze 

categorical variables. A Wilcoxon signed rank test or 

Student’s t-test was used to compare two groups of 

continuous variables. A Kruskal-Wallis rank sum test 

was used to analyze multiple groups of continuous 

variables. Lasso regression analysis, and univariate 

and multivariate Cox regression analyses were 

performed for survival analysis. Univariate and 

multivariate binary logistics regression analysis were 

performed for regression analysis of binary category 

variables. p < 0.05 was regarded as statistically 

different. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Lasso analysis of the prognostic RRDEGs in pancreatic cancer. (A) Selection of tuning parameter (λ) in 

LASSO model. (B) LASSO coefficient profiles of all genes. 
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Supplementary Figure 2. External validation of the prognostic gene signature. (A–C) Time dependent ROC curves for 1-, 2- and 3-

years overall survival predictions of genes signature in GSE57495, and AJCC stage is the control. (D–G) Kaplan-Meier survival curves of the 
four-gene signature and distribution of patient survival and risk score in different groups when patients in GSE57495 were divided into two 
groups. (D) Kaplan-Meier survival curves. (E) Distribution of the risk score. (F) Distribution of the survival time. Circle shape stands for high-
risk group while triangle shape for low-risk group. Red stands for survival and green stands for dead. (G) Heatmap of the expression of the 
four genes. (H–K) Kaplan-Meier survival curves of the four-gene signature and distribution of patient survival and risk score in different 
groups when patients in GSE57495 were divided into three groups. (H) Kaplan-Meier survival curves. (I) Distribution of the risk score. (J) 
Distribution of the survival time. (K) Heatmap of the expression of the four genes. (L) Calibration plot for validation of the gene signature in 
GSE57495. 
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Supplementary Figure 3. GSEA for other MSigDB gene sets. Upregulated and downregulated enriched pathways with top NES were 

showed. (A) C2 (curated gene sets). (B) C5 (GO gene sets). (C) C6 (oncogenic gene sets). 
 

 
 

Supplementary Figure 4. Expression of PD-L1 and four genes in signature. (A) Correlation between expression of PD-L1 and risk 
score. (B–E) The mRNA expression of four genes in signature. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–6. 

 

Supplementary Table 1. Clinical characteristics of pancreatic cancer patients in the TCGA dataset. 

 

Supplementary Table 2. Identification of the RRDEGs in pancreatic cancer. 

 

Supplementary Table 3. Functional enrichment analysis of RRDEGs. 

 

Supplementary Table 4. Univariate Cox regression analysis of RRDEGs in training group. 

 

Supplementary Table 5. Mean cross-validation error (CVM) and standard deviation of the CVM (CVSD) for each 
lambda in the Lasso regression. 

 

Supplementary Table 6. Gene set enrichment analysis between high and low risk groups in 165 samples from 
TCGA PAAD. 


