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INTRODUCTION 
 

In the United States, 25% of adults over aged 64-74, and 

50% of adults over the age of 75 experience hearing loss 

[1]. Auditory difficulties can be due to sensorineural 

hearing loss, conductive hearing loss, or central hearing 

loss, which encompasses deterioration or damage to 

ascending auditory pathways beyond the cochlea [2]. 

 

One consequence of central hearing loss is the reduction 

in ability to understand speech in noisy environments. 
Speech-in-noise (SIN) discrimination is notably difficult 

to target with hearing aids [3, 4], and deficits may exist 

even in the presence of a clinically normal audiogram [5]. 

Communication difficulties that result from hearing  

loss produce strain on social relationships and quality of 

life. Specifically, auditory decline is associated with 

loneliness [6], depression [7, 8], substance abuse [9], and 

reduced social functioning [7, 10, 11]. To address the 

dramatic impact of speech-in-noise discrimination loss on 

quality of life, it is relevant to both investigate ways to 

prevent decline and to improve speech-in-noise abilities 

in older adults. Music training is a reasonable candidate 

to improve auditory abilities by fine-tuning perceptual 

abilities of sound and enhancing discrimination between 

streams of sound in a complex auditory scene. 

 

Accordingly, adult musicians show enhanced 

performance on sentence-in-noise [12–15], masked 

sentence [16–19], word-in-noise [20], and gap-in-noise 
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[21] tasks as compared to non-musicians. Additionally, 

Ruggles et al., [22] observed a significant correlation in 

speech-in-noise abilities with years of music training in 

adults. In older adults, musicians additionally out-

perform non-musicians in sentence-in-noise [23, 24] 

and word-in-noise discrimination [23, 25]. Fostick, 

2019 demonstrated that the musician advantage for 

words-in-noise discrimination remained when 

comparing older adult musicians to life-long card 

players. Zendel and Alain [26] found that the rate of 

speech-in-noise decline associated with age was less 

steep in musicians as compared to non-musicians, 

indicating that music training may protect against age-

related hearing difficulties. 

 

Speech-in-noise difficulties are thought to reflect 

reduced synchrony of neuronal firing [27–29], and are 

associated with alterations to both bottom-up and top-

down processing [30]. Perceiving speech in noise relies 

on encoding acoustic features, such as frequency or 

temporal structure, through bottom-up processes in 

combination with recruiting attentional resources, 

memory, and contextual prediction through top-down 

processes. In age-related hearing decline, individuals 

may compensate for bottom-up sensory deficits with 

greater reliance on top-down mechanisms, filling in 

missed pieces of information [31]. In situations of 

cognitive decline, these compensatory resources may be 

less available, resulting in further reduced speech-in-

noise perception [32, 33]. Thus, both top-down and 

bottom-up mechanisms are important for supporting 

speech-in-noise perception in older adults and can be 

dissociated and assessed at the level of the brain. 

Specifically, neural responses to speech-in-noise can be 

measured with event-related potentials, voltage 

recorded from scalp electrodes evoked by a stimulus 

[34]. Specifically, the P1, N1, P2, and P3 components 

are utilized to assess auditory processing, including 

SIN, at a cortical level. The P1 potential (sometimes 

referred to as P50) peaks around 70-100ms post-

stimulus onset, is the first cortical component of the 

auditory response [35, 36] and has a fronto-central 

distribution. It is thought to originate in the primary 

auditory cortex and the reticular activating system [36, 

37], and becomes more robust with age [38]. N1 is a 

negative deflection peaking around 100ms after 

stimulus onset and is most reliably has a frontal and 

fronto-central distributions on the scalp [39]. N1 is 

thought to originate in the primary auditory cortex, 

specifically from the posterior supratemporal plane, 

Heschl’s gyrus, and the planum temporal [37, 40, 41], 

and may be modulated by prefrontal regions engaged in 

attention processes [42]. A vertically-oriented or 
“tangential” dipole in the primary auditory cortex, in 

parallel with orientation of auditory cortex neurons, is 

likely responsible for generating the negative potential 

recorded in frontal and frontocentral sites [40, 41]. N1 

response measured in frontal electrodes from this 

tangential dipole, as compared to a horizontal dipole 

originating in secondary auditory areas and recorded 

more centrally, is more dependent on stimulus intensity 

and on age [43]. N1 amplitude increases in the presence 

of an unpredictable or change-related stimulus [44, 45]. 

P2, peaking around 200ms, is less studied but is known 

to appear with the N1 response [46] and may, like P1, 

originate in the reticular activation system [47]. P2 may 

reflect attentional processing of sensory input after 

initial detection marked by N1 (for review, see [48]). 

The P3 component peaks from 300-700ms post-

stimulus onset, and is reflective of attentional 

engagement [49], classically assessed utilizing the 

Oddball task. P3 contains two main subcomponents, 

P3a and P3b. P3a has a frontocentral distribution and is 

elicited by novel, non-target stimuli and is largely 

generated by the anterior cingulate cortex [50]. P3b, 

often referred to as simply P3, occurs slightly later and 

has a posterior parietal distribution. It is elicited in 

response to an infrequent target sound and reflects 

voluntary attention [51] and is largely generated by the 

temporal-parietal junction [52]. Of particular relevance 

to this study investigating speech in noise, it has been 

demonstrated that early auditory event-related potentials 

(AERPs) showing cortical responses to speech (e.g: N1, 

P2) degrade with increased level of background noise 

[53, 54], as well as with advancing age [55, 56]. 

 

Behavioral differences between musicians and non-

musicians in speech-in-noise abilities are paralleled by 

differences in electrophysiological measures of auditory 

processing. Adult musicians, compared to non-musicians, 

show enhancements (earlier and larger peaks) of P1 and 

N1 in response to syllables in silence [57], and P2 in 

response to vowels [58]. Adult musicians, compared to 

non-musicians, also exhibit less changes in N400 [15], a 

component reflective of meaning representations [59], 

and N1 [60] as a result of increasing background noise 

level in a speech task, indicating less degrading effects of 

noise on speech processing. In older adults, musicians 

demonstrate enhanced N1, P2, and P3 response to vowels 

as compared to non-musicians [61], suggesting more 

robust encoding of and increased attention to speech 

stimuli. At the subcortical level, both child [62] and adult 

[13, 57, 58, 63] musicians show enhanced auditory 

brainstem encoding, a measure of pre-attentive 

processing, when compared to non-musicians. 

 

While these cross-sectional studies provide valuable 

information regarding differences between musicians and 

musically untrained individuals, they do not establish a 
causal relationship between musical experience and 

speech-in-noise discrimination. Additionally, it has been 

suggested that cognitive abilities and socioeconomic 
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status [64] as well as inherent differences in auditory 

abilities [65], may mediate the relationship between 

music training and speech-in-noise perception. To 

address this, several longitudinal studies have 

investigated the effect of music training on speech-in-

noise perception. In a randomized waitlist-control study, 

children aged 7-9 who received community-based music 

training showed significant improvement in sentence-in-

noise discrimination after 2 years of training, and as 

compared to controls [66]. Children aged 6-9 with 

prelingual moderate-to-profound sensorineural hearing 

loss showed advantages in sentence-in-noise ability as 

compared to a passive control group after 12 weeks of 

music training [67]. In older adults, individuals 

randomly assigned to choir participation outperformed a 

passive control group on a sentence-in-noise task after 

10 weeks of training [68]. In this study, participants 

assigned to the choir group additionally demonstrated 

enhanced neural representation to temporal-fine 

structure of auditory stimuli related to speech (i.e.: 

fundamental frequency of the syllable \da\), and that 

this training effect remained robust in individuals with 

higher levels of peripheral hearing loss. In another 

randomized-control study, older adults who participated 

in 6 months of piano training performed better on a 

words-in-noise task and showed enhanced N1 and mid-

latency responses, as compared to a videogame and no-

training group [69]. 

 

Overall, cross-sectional and longitudinal findings 

demonstrate the potential for music training to affect 

speech-in-noise perception across development. 

However, more experimental work is needed to 

continue disentangling the effects of music training 

from pre-existing biological differences, both in terms 

of behavior and neural response. Additionally, as our 

global population ages, investigation of auditory decline 

in relation to socio-emotional well-being in older adults 

grows more significant. More research is needed to 

assess effects of shorter-term music interventions 

commencing later in life, as compared to life-long 

learning. Lastly, it is unclear whether music training 

may produce advantages in speech processing through 

bottom-up processes, implying that music training 

improves the neural encoding of sound, or through top-

down processes implying enhanced conscious 

attentional network performance leading to improved 

auditory discrimination. Studies on long-term music 

training suggest that both mechanisms are at play, 

where musicians as compared to non-musicians show 

enhancements of attention-related P300 during a 2-

stimulus pure tone oddball task [70], but also enhanced 

subcortical pitch encoding [57]. Working memory 
additionally appears to mediate the relationship between 

preservation of speech-in-noise abilities and lifelong 

music training in older adults [71]. However, the 

contribution of each of these mechanisms in short-term 

music training is not known. 

 

In this study, we expand upon existing literature to 

examine the effects of a short-term, community-oriented 

music training program on speech-in-noise abilities, 

associated neural mechanisms, and well-being in older 

adults with mild subjective hearing loss. We utilize a 

randomized-control design with an active control group 

to examine whether potential differences can be 

attributed to active music engagement, or simply to any 

music listening activity. Choir singing was chosen as the 

active music intervention due to its practicality in short-

term application, potential for near-transfer, and 

pervasiveness through human culture and evolution. 

Additionally, as compared to instrument-learning, choir 

singing is more accessible to larger communities as it 

requires less equipment and financial resources. By 

recruiting adults aged 50-65 with mild subjective hearing 

loss, we examine the effects of music training on a 

population vulnerable to age-related auditory decline. 

Inclusion of EEG measurements provides information on 

training-related changes in neural processing of speech 

and sound. To parse the effects of bottom-up versus top-

down changes in auditory processing related to music 

training, we include both a speech-in-noise, aimed to 

target mostly bottom-up processing, and an auditory 

attention (Oddball) task, aimed to target mostly top-down 

processing, in our EEG assessments. Lastly, we address 

the link between aging, hearing loss, and psychological 

well-being by including measures of quality of life and 

loneliness. 

 

We hypothesized that after 12 weeks of training 

participants in the choir group, as compared to the control 

group, would show 1) greater improvements in behavioral 

measures of speech-in-noise perception, 2) more robust 

neural responses during EEG, and 3) improvements in 

socioemotional well-being. Exploratory analyses between 

EEG tasks were additionally assessed. We expected that 

greater change in the P3 vs. early sensory components 

(N1, P2) in the oddball task and/or the syllable in noise 

task would support a top-down model of attentional 

neuroplasticity associated with music training of this 

type, indicating that training supports cognitive processes 

(i.e. attention, memory) that support speech perception. If 

the reverse (a greater change in N1, P2 vs. P3) a bottom-

up model in which music training enhances stimulus-

encoding would be supported. 

 

RESULTS 
 

Means and standard deviations for each behavioral  

task, EEG task amplitude, and EEG task latency by 

group are presented in Supplementary Tables 1–3, 

respectively. 
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Montreal cognitive assessment 

 

At pre-test, no difference between groups was observed 

for the MoCA (p > 0.05). Groups demonstrated nearly 

identical distributions (Choir M = 26.11, SD = 2.25; 

Control M = 26.48, SD = 2.06). 

 

Sentence-in-noise task 

 

In the BKB-SIN task, no effect of Group was observed 

(p > 0.05). 

 

Musical sophistication 

 

At Pretest, no difference between groups was observed 

in any subcategory of the Goldsmith MSI (p > 0.05). 

 

Music-in-noise task 

 

In the MINT, 3 participants from the control group had 

incomplete or missing data from one or more time 

points and were thus excluded from analysis, resulting 

in 20 Control and 18 Choir participants. No main or 

interaction effects of Condition or Group were observed 

for accuracy or reaction time (all p > 0.05). 

 

Well-being 

 

No significant effects of Group were observed for any 

subcategory of Ryff’s Psychological Well-being Scale 

(all p > 0.05). 

 

For the Dejong’s Loneliness Scale, no effect of group 

was observed in emotional or social loneliness at post-

test (all p > 0.05). 

 

For the open-ended prompt, “Do you think that music 

intervention has had any impact on your social life or 

feelings of connection with other people?”, 13 

participants responded from the Control group and 15 

participants responded from the Choir group. In the Choir 

group, 62% reported that the intervention had an impact 

on their social wellbeing, 19% reported an impact on 

emotional well-being, and 19% reported no impact. In the 

Control group, 8% reported that the intervention had an 

impact on their social well-being, 54% reported impact 

on emotional well-being, and 31% reported no impact. A 

chi-squared test of independence indicated that response 

category (social, emotional, none) was dependent on 

group (X2 (2, N = 30) = 11.02, p < 0.01). 

 

Behavioral responses during EEG tasks 

 
Syllable-in-noise 

One participant from the Choir group was removed 

from analysis due to excessive noise in EEG data, and 3 

participants were removed from the Control group for 

excessive noise or incomplete data. No main or 

interaction effects were observed for accuracy (all p > 

0.05). No main or interaction effects were observed for 

reaction time (all p > 0.05). 

 

Oddball 

Three participants from the Control group were 

removed from analysis due to excessive noise in EEG 

data. No effect of Group was observed for accuracy or 

reaction time (all p > 0.05). 

 

Event-related potentials in active syllable-in-noise 

task 

 

P1 amplitude and latency 

P1 reached peak latency at 35-70ms in the Silent SNR 

condition, 50-85ms in the 10dB SNR condition, 65-

110ms (pre) and 55-95ms (post) in the 5dB SNR 

condition, and 60-105ms in the 0dB SNR condition. No 

significant effects between groups or interactions were 

observed for P1 amplitude or latency (all p > 0.05). For 

P1 latency, a main effect of SNR Condition was 

observed (Test statistic: 7.50, p < 0.01, QS = 0.78), 

where latency in the 5dB condition was earlier than in 

the 0dB (p < 0.001), 10dB (p < 0.05), and silent (p < 

0.01) conditions from Pretest to Posttest. 

 

N1 amplitude 

N1 reached peak amplitude at 90-125ms (pre) and 85-

130ms (post) during the Silent SNR condition, 105-

175ms in the 10dB SNR condition, 125-190 in the 5dB 

condition, and 130-200 in the 0dB condition. No 

significant effects related to intervention were observed 

for N1 amplitude (p > 0.05). A main effect of Frontality 

was observed (Test statistic = 4.15, p < 0.05, QS = 0.50) 

where amplitude in frontal electrodes showed an 

increase more than in central electrodes from Pretest to 

Posttest (p < 0.01). 

 

N1 latency 

For N1 latency, a main effect of Group was observed 

(Test statistic = 7.31, p < 0.05, QS = 0.31), where N1 

latency in the Choir group decreased to a greater extent 

than in the Control group from Pretest to Posttest (p < 

0.01) across all SNR conditions (see Figure 1). 

 

P2 amplitude and latency 

P2 was observed only in the Silent SNR condition 

around 160-245ms. For P2 amplitude and latency, no 

significant effects between groups were observed (all p 

> 0.05). 

 
P3-like amplitude 

A positive inflection varying from 275-400ms to 305-

445ms (latency dependent on SNR condition) was 
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observed across SNR conditions of the active, but not the 

passive, task. A Group x Laterality interaction was 

observed for the P3-like amplitude (Test statistic = 3.10, 

p < 0.05) where, in the right electrodes, the Control group 

showed an increased amplitude from Pretest to Posttest 

more than the Choir group (p < 0.05, QS = 0.41). A 

Group x SNR Condition interaction approached 

significance (Test statistic = 2.55, p = 0.05) where, in the 

silent SNR condition only, the Control group showed an 

increased amplitude from Pretest to Posttest more than 

the Choir group. A main effect of Frontality was 

observed (Test statistic = 7.51, p < 0.01, QS = 0.44), 

where amplitude increased from Pretest to Posttest was 

more pronounced in frontal than central electrodes (p < 

0.01). After inspecting individual traces, we noted that 

the group differences in amplitude were driven by a 

single participant in the Control group and, when that 

participant was removed, did not approach significance. 

 

 
 

Figure 1. (A) N1 latency, difference score (post-test – pre-test) at Cz in the active condition of the syllable-in-noise task in choir and control 

groups, across SNR conditions. (B) ERPs recorded at Cz during active condition of the syllable-in-noise task in the choir and control groups at 
pre and post-test for each noise condition. (C) Topographic headplots for N1 during active condition of the syllable-in-noise task in the choir 
and control groups at pre and post-test for 0dB and Silent conditions. 
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P3-like latency 

For Latency, no significant effects or interactions were 

observed (p > 0.05). 

 

Event related potentials in passive syllable-in-noise 

task 

 

P1 amplitude and latency 

P1 reached peak amplitude at 40-75ms in the Silent 

SNR condition, 50-100ms in the 10dB SNR condition, 

55-105ms in the 5dB SNR condition, and 55-110ms 

(pre) and 65-115ms (post) in the 0dB condition. No 

significant effects between groups or interactions  

were observed for P1 amplitude or latency (all  

p > 0.05). 

 

N1 amplitude 

N1 reached peak amplitude at 90-130ms in the Silent 

SNR condition, 125-195ms (pre) and 125-185ms 

(post) in the 10dB SNR condition, 145-200ms in the 

5dB SNR condition, and 144-215ms (pre) and 155-

200ms (post) in the 0dB SNR condition. A main effect 

of Group was observed (Test statistic = 6.62, p < 0.05, 

QS = 0.51), where the Choir group showed an increase 

in N1 amplitude from Pretest to Posttest significantly 

more than did the Control group (p < 0.001) (see 

Figure 2) across SNR conditions. A Group X SNR 

Condition X Frontality interaction was observed on N1 

amplitude (Test statistic = 3.38, p < 0.05) but was not 

significant after correcting for multiple comparison  

(p > 0.05). 

N1 latency 

For N1 latency, no significant effects between groups or 

interactions were observed (p > 0.05). 

 

P2 amplitude and latency 

P2 was observed only in the silent SNR condition and 

reached peak amplitude at 160-230ms. No significant 

effects related to intervention were observed for P2 

amplitude (p > 0.05). A main effect of Laterality was 

observed (Test statistic = 7.32, p < 0.01), but was not 

significant after correcting for multiple comparisons (p 

> 0.05). No significant effects between groups were 

observed for P2 latency (all p > 0.05). 

 

Event related potentials in oddball task 

 

N1 amplitude 

N1 reached peaked amplitude at 65-115ms at pretest 

and 70-110 ms at posttest in the Oddball, Standard, 

and Distractor conditions. During Standard trials, a 

Group X Frontality interaction was observed (Test 

statistic = 5.36, p < 0.05, QS = 0.64) where, in frontal 

electrodes, amplitude in the Choir group increased 

more than in the Control group (p < 0.01, QS = 0.37) 

from Pretest to Posttest (see Figure 3). During Oddball 

and Distractor trials, no effect of Group was observed 

(p < 0.05). During Distractor trials, a main effect of 

laterality was observed (Test statistic = 3.59, p < 0.05, 

QS = 0.73), where amplitude at right electrodes 

increased more than amplitude at left electrodes  

(p < 0.01). 

 

 
 

Figure 2. (A) N1 amplitude, difference score (post-test – pre-test) averaged across frontal and central in the passive condition of the syllable-
in-noise task in choir and control groups. (B) ERPs recorded at Cz during passive condition of the syllable-in-noise task in the choir and control 
groups at pre and post-test for each noise condition. 
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N1 latency 

During Oddball, Standard, and Distractor trials, no 

significant effects between groups or interactions were 

observed on N1 latency (all p > 0.05). 

 

P2 amplitude and latency 

P2 reached peak amplitude at 145-250ms (pre) and 125-

155ms (post) in the Standard condition, 135-185ms 

(pre) and 115-145ms (post) in the Oddball condition, 

and 190-265ms (pre) and 115-145ms (post) in the 

Distractor condition. However, no significant effects 

between groups or interactions were observed for P2 

amplitude or latency (all p > 0.05) for any of the 

conditions. 

P3a amplitude and latency 

During the Distractor trials, P3a reached peak amplitude 

at 345-495ms at pretest and 320-390 ms at posttest. 

However, there were no observed significant amplitude 

or latency effects between groups or interactions (all  

p > 0.05). 

 

P3b amplitude and latency 

P3b reached peak amplitude at 300-625ms (pre)  

and 315-610ms (post) during Oddball trials and 450-

660ms during Distractor trials. No significant effects 

between groups were observed on P3b amplitude  

or latency during Oddball or Distractor trials (all  

p > 0.05). 

 

 
 

Figure 3. (A) N1 amplitude, difference score (post-test – pre-test) in frontal and central electrodes in the standard condition of the oddball 
task in choir and control groups. (B) ERPs recorded at Fz during standard condition of the oddball task in the choir and control groups at pre 
and post-test. (C) Topographic headplots for N1 during oddball task in choir and control groups in the standard condition. 
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DISCUSSION 
 

In this study, we investigated the effects of participation 

in a short-term choir program on perceiving speech in 

noise (SIN), auditory attention, and their underlying 

neurophysiological correlates using event-related 

potentials (ERPs) in a randomized-control trial with 

older adults between ages 50-65. We also assessed social 

well-being as a result of participation in the choir. We 

observed an effect of music training on the auditory 

evoked potential N1 response in an Active and Passive 

Syllable-in-Noise task, although no behavioral 

differences were observed. An effect of training was also 

observed on N1 response during the Oddball task, again 

in the absence of behavioral differences. Lastly, well-

being measure qualitatively indicated that choir training 

may have benefitted participants’ social well-being, 

while passive music listening may have benefitted 

control participants’ emotional well-being. These results 

have implications for the use of a short-term music 

program to mitigate the perceptual and socioemotional 

effects of age-related auditory decline. We discuss these 

findings in detail in the context of existing literature 

below. 

 

N1 

 

N1 is regarded as a correlate of initial stimulus 

detection [72]. N1 is additionally enhanced by increased 

attention, where larger amplitudes [73–75] and shorter 

latencies [75] are observed with increasing attentional 

engagement. In the presence of background noise, N1 is 

attenuated, with decreased amplitude and increased 

latency with falling signal-to-noise ratios [76–78]. Thus, 

N1 is associated with encoding of physical properties of 

sound and marks the arrival of potentially important 

sounds to the auditory cortex. While N1 elicitation does 

not require conscious processing [79, 80], it can be 

modulated by attentional demands [74]. 

 

N1 response is reduced in certain clinical populations 

with disorders related to audition, including individuals 

with misophonia [81] and sensorineural hearing loss 

[82]. The effects of age on N1 are less clear. While 

some report decreased amplitude [83], others report a 

pattern of increased amplitude and longer N1 latency 

in older adults [84–87] and older adults with hearing 

loss [55] and many investigations report little or no 

effects of age on either amplitude or latency [88–93]. 

Throughout the lifespan, however, N1 appears to be 

mutable through experience-dependent plasticity. N1 

is larger in adult musicians as compared to non-

musicians [94, 95]. N1 amplitude increases are 

observed after short-term syllable [96], frequency 

(using a tone-based oddball task) [97] and music 

training [69, 98]. 

Effect of music training on N1 

 

In the present study, participants involved in choir, as 

compared to participants engaged in passive music 

listening, demonstrated larger N1 amplitudes in a passive 

syllable-in-noise task from pre- to post-training across all 

noise conditions. This finding replicates that of [69], who 

also showed larger N1 during a passive, but not active, 

words-in-noise task after 6 months of piano training. Of 

note, all participants in our study first completed the 

active task followed by the passive task. The group 

difference in N1 amplitude observed only in the passive 

condition could be related to the order of task 

administration and interaction with music training; where 

during the active condition both groups equally attended 

to the incoming auditory stimuli and due to a ceiling 

effect, no group differences were evident- during the 

passive task however, the participants in the choir group 

continued to involuntarily attend to the incoming 

auditory stimuli, due to a general re-organization of 

attention to and encoding of sound in relation to their 

music training. 

 

In the oddball task, choir participants additionally 

demonstrated larger N1 amplitudes from pre- to post-

training as compared to controls. This finding was 

specific to the frontal electrode (Fz), during trials of 

standard tones. This finding is similar to that of [97] who 

observed that a short-term frequency discrimination 

intervention led to increased N1 amplitude most 

prominently during standard (as compared to deviant) 

trials of an oddball task. The finding that N1 amplitude 

was enhanced only in standard trials may simply reflect 

the fact that standard tones were presented 4.7 times as 

frequently as oddball or distractor tones, indicating that a 

larger sample of trials was necessary to see an effect of 

training. The observed frontality effect replicates 

previous work showing the N1 response most reliably 

observed at frontal or frontocentral sites [39], and further 

demonstrates that the effect of training was most robust 

in locations where N1 is classically observed. 

 

Given that N1 amplitude is known to be enhanced by 

attention [73–75], it is possible that observed changes in 

N1 amplitude in the oddball and passive syllable-in-noise 

tasks may be explained by, in addition to enhanced 

encoding, increased attention to sound in general in the 

choir group. Participating in music training may have in 

part re-organized participants’ orientation towards sounds 

and led to greater engagement of attention resources 

towards tones and syllables. This, in conjunction with 

improved basic auditory perception, may have 

contributed to enhanced amplitudes of N1. 
 

In contrast to amplitude, latency differences were 

observed only in the active condition of the syllable-in-
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noise task, where choir participants demonstrated earlier 

N1 latencies from pre- to post-training across all noise 

conditions. Attention has been shown to decrease N1 

latency, where latency is earlier in active as compared 

to passive tasks [75, 99]. These findings support the 

Prior Entry Hypothesis, which posits that attended 

stimuli are perceived earlier than unattended stimuli 

[100]. While it is expected that latencies will be shorter 

in the active than the passive condition across 

participants, the choir group’s latency decrease from pre 

to post-test in the active condition here suggests that 

music training impacted attentional processes. It could 

be that music training led participants to be more 

attentive during the task, or that it increased the 

potential for acceleration in neural processing speed for 

the same level of attentional engagement. Given that the 

choir group did not demonstrate any improvements in 

syllable-in-noise response time, which would also 

indicate greater attentiveness during the task, we posit 

that the latter explanation is more likely to be true. 

Specifically, choir training increased the influence of 

attention on the speed of neural processing which may 

be not evident in the motor response as measured by 

reaction time. 

 

Of note, no effect of latency was observed during the 

oddball task, even though it is also an active task and 

latency effects were observed during the active 

condition of the syllable-in-noise task. If attention 

modulates latency of N1 response, and music training 

further enhances this effect, then one would expect 

latency during N1 to also decrease in the oddball task in 

the choir-trained group. The lack of latency difference 

between groups may relate to a ceiling effect on the 

latency of the stimuli in the oddball task. It also likely 

indicates that the ability of short-term choir training to 

accelerate sensory processing speed is not consistent 

across all types of auditory stimuli. Rather than a global 

effect on attention across stimuli, choir training may 

first modify the latency of N1 selectively in response to 

speech sounds as presented in the syllable-in-noise task 

as opposed to pure tones and white noise presented in 

the oddball task. Speech perception involves top-down 

processing (for review, see [101]), whereas perception 

of pure tones, sounds that do not typically occur in the 

natural environment, may not benefit as much from top-

down filling. In line with this, Shahin et al., [95] 

observed enhancements of N1 and P2 to musical tones 

as compared to pure tones in professional musicians. 

Speech stimuli, as used in this study, are arguably more 

similar to musical stimuli than are pure tones, given 

their probability of occurrence in daily life. It is likely 

that the attention-related reductions in N1 latency 
attributed to music training were present in the SIN, but 

not the oddball, task because training improved only 

top-down modulation of sounds relevant to the natural 

environment, such as speech, and not to computer-

generated stimuli typically unheard outside of a 

laboratory. 

 

Together, enhancements of N1 in the Choir group 

across tasks demonstrate the ability of a short-term 

music program to improve the early neural encoding of 

both speech and tones. The observed overall effect of 

music training on N1 is in accordance with 

experimental [69] and cross-sectional work comparing 

musicians to non-musicians, citing enhanced N1 during 

passive tone listening [95] and active tone listening 

[94]. After habituation in a passive task, musicians as 

compared to non-musicians showed enhanced N1 when 

presented with a brief active task, demonstrating rapid 

plasticity [102]. Yet, others report no N1 differences 

between musicians and non-musicians in response to 

pure and piano tones, noise [103] or harmonics [104], 

or report reduced amplitudes in musicians [105]. 

Discrepancies may be due to differences in EEG task 

stimuli and design. For example, both [104, 105] used 

an oddball-like paradigm. It may be that N1 

enhancement in musicians observed in the context of 

an attention-related task may produce less consistent 

results, and that more research is needed to elucidate 

these differences. For example, N1 response decreases 

with increased predictability of a stimulus [44, 45] (i.e: 

with high repetition in an oddball paradigm). 

Differences in N1 may not be consistently detectable 

across task designs due to the saturation of the neural 

response, yet more investigation is needed. 

Alternatively, as proposed by [103] discrepancies 

between studies may reflect differences in dipole 

estimation methods. Here, our results most closely 

followed Zendel et al., 2019, whose study and EEG 

task design more closely follow ours. 

 

Change in N1 could be indicative of more synchronized 

discharge patterns in N1 generator neuron populations 

of Heschl’s gyrus or regions of the superior temporal 

gyrus. This is supported by evidence that N1 responses 

to speech in noise are predicted by neural phase locking, 

as measured by inter-trial phase coherence [77]. 

Specifically, neural synchrony is positively correlated 

with the earlier latencies and larger amplitudes of N1 

that are observed when background noise is decreased 

[77]. The shorter latency observed in the active 

condition may additionally indicate faster conduction 

time in these neurons [106]. 

 

Contributions of top-down and bottom-up processing 

 

Using multiple EEG tasks, we aimed to address the 
question regarding role of top-down versus bottom-up 

processing in music training-related benefits to auditory 

processing in general and speech perception specifically. 
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Studies recruiting life-long musicians have provided 

evidence primarily for top-down attention modulation to 

improve speech processing abilities [70, 71]. In this 

study, however, we provide evidence largely towards a 

model of improved bottom-up processes. We notably did 

not observe differences between groups in later 

components of the oddball task (e.g: P3a or P3b) or in 

the later attention-related positivity of the syllable-in-

noise task, suggesting that choir-training conferred a 

general advantage to encoding acoustic features, but did 

not modulate general attentional processes. This is in 

line with N1 findings from the syllable-in-noise task, 

where differences between groups were not affected by 

noise level. This suggests that changes observed were 

again due to general enhanced processing of the target 

sound, rather than suppression of attention away from a 

distracting noise. Importantly, however, it should be 

noted that, although N1 is an early component thought to 

reflect basic encoding, it can still be impacted by top-

down processes, namely attention, as seen in differences 

in amplitude and latency when comparing active to 

passive paradigms [75]. Here, we observed that choir 

training enhanced the relationship between attention and 

sensory processing in the syllable-in-noise task, as seen 

in decreased latencies in the active condition only. This 

suggests that choir training, while mainly impacting 

bottom-up processes, may have had some impact on 

attention-related processing of speech stimuli. This 

effect was stimulus-specific, as no latency effects were 

observed for N1, or any other component, during the 

oddball task that involved pure tones as opposed to 

speech sounds. This may reflect a more near-transfer 

effect of choir training, which involves speech and not 

pure tones, as compared to instrumental training. It may 

additionally suggest simply that choir may selectively 

improve top-down processing of stimuli that more 

regularly occur in the environment; pure tones, as 

compared to speech stimuli, are highly unusual outside 

of a laboratory setting as they are built from an isolated 

frequency. Due to their prevalence in the natural 

environment, speech sounds also involve and benefit 

more from top-down processing (review: [101])  

than do pure tones. Therefore, we overall provide 

evidence towards improved neural encoding with  

some attentional modulation, suggesting that short  

term choir training and long-term instrumental  

training may produce benefits through different, or 

proportionally different, mechanisms. As noted by Patel 

[107], the proposed mechanisms may not be mutually 

exclusive. 
 

Speech perception involves top-down processing (for 

review, see [101]), whereas perception of pure tones, 
sounds that do not typically occur in the natural 

environment, may not benefit as much from top-down 

filling. 

Effect of training on P3-like component 

 

In our analysis on the P3-like component during the 

active syllable-in-noise task, we investigated whether 

we could replicate findings observed by [69]. In [69], 

the music group showed greater amplitude of this 

peak, and this result was interpreted as an index of 

increased voluntary attention allocation similar to a 

P3b response. Here, we observed enhanced amplitude 

in the control group in the P3-like component during 

the active condition of the syllable-in-noise task. 

However, this difference was driven by a single 

participant in the control group and thus does not 

reflect true differences between groups. Discrepancies 

between our findings and those of [69] may simply be 

due to task design, as noted previously [69]. Observed 

a positivity peaking from 200-1000 ms in both the 

passive and the active tasks, whereas in this study we 

were only able to reliably measure a similar 

component in the active task and in a much smaller 

time window (~250-450ms). This may again indicate 

that the stimuli used by [69] required more effort to 

process and thus was more sensitive to training-

related effects. 

 

Absence of behavioral change 

 

Despite observed changes on early auditory encoding, 

we report no effect of training on behavioral measures 

of speech-in-noise perception. Groups did not differ in 

pre- to post-training improvements of sentence-in-noise 

tasks during or outside EEG recording. This is in 

contrast to experimental evidence demonstrating 

benefits in behavioral speech-in-noise abilities after 10 

weeks of choir training [68] and 6 months of piano 

training [69], both in older adults. However, with the 

same group of participants, [108] did not observe 

behavioral differences in an in-scanner task of hearing 

in noise. Differences between observed behavioral 

speech-in-noise improvements and the results of this 

study may reflect differences in tasks [68] used the 

QuickSIN [109, 110], which consists of sentences 

embedded in 4-talker babble. Comparison of QuickSIN 

and BKB-SIN, as used in this study, show greater 

differences between groups of differing hearing 

abilities in QuickSIN as compared to BKB-SIN, a 

difference associated with increased contextual cues 

present in the BKB-SIN that lead to better recognition 

in individuals with greater hearing loss [111]. It is 

possible that the BKB-SIN was not sensitive enough to 

pick up on potential differences resulting from a short-

term training program. In [69], stimuli consisted of 150 

different monosyllabic words were presented over a 4-
talker babble. In contrast, the stimuli presented during 

EEG in this study consisted of a single repeated 

syllable presented in a 2-talker babble. It is possible 
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that the addition of two more babble speakers, thereby 

increasing the difficulty, may have impacted accuracy 

during this task between groups, especially as [69] 

found differences only during the most difficult 

condition of the task (0dB SNR), and participants in  

the present study performed at ceiling. Differences  

in results between [69, 108], in which the same 

participants were assessed, were attributed to 

differences in the speech-in-noise task. The task 

completed during [69] EEG session had lower signal-

to-noise ratios, as compared to the task presented in 

[69, 108], single words were presented in noise without 

context, whereas [108] presented sentences in noise, for 

which participants could use contextual cues. Here, 

both our behavioral speech-in-noise task (BKB-SIN) 

and results are more similar to that of [108], indicating 

that in measurement choice could explain the absence 

of behavioral change, and that a more difficult task 

may produce different results. 

 

We also observed no behavioral change between 

groups on the music-in-noise task. This task is 

intended to measure auditory segregation ability in the 

context of musical excerpts. Musicians outperformed 

non-musicians in the original study of the task, and 

years of music (minimum of 2 years) training 

predicted task performance [112]. However, no 

studies to our knowledge have examined the effects of 

short-term music training on the MINT. Here, we 

show that 12 weeks of choir training for older adults 

with no prior music training may not be sufficient to 

provide an advantage in hearing musical excerpts in 

noise. 

 

Well-being 

 

Through qualitative assessment, participants who 

participated in choir reported more perceived social 

benefit, while participants in the passive listening 

group reported more perceived emotional benefit. 

Group music production has been found to produce 

feelings of social cohesion and group belonging [113, 

114], while music listening may help individuals 

regulate emotions [115]. While individuals in the 

passive listening group did participate in online group 

discussions about the playlists, qualitative results here 

demonstrate that singing together was a more effective 

way to gain a sense of social well-being. However, no 

observed differences were found between groups in 

quantitative measures of well-being. In a recent 

waitlist-control study, 6 months of choir singing was 

shown to reduce loneliness and improve interest in life 

in older adults [116]. It may be that twelve weeks of 
group singing is not sufficient time to alter feelings of 

loneliness and well-being outside of the immediate 

choir context, as was measured in this study. 

Limitations 

 

A limitation of the present study is small sample size 

due to high rates of attrition before and during the 

intervention period. While robust statistical methods 

were utilized to ensure appropriate capture of training 

effects, statistical methodology cannot replace overall 

power gained from high Ns. 

 

Additionally, a possible limitation in this study is the 

degree to which we were able to match the groups on 

programmatic aspects related to the intervention, 

specifically the nature and setting of social engagement. 

In the passive-listening control group, participants 

responded to prompts and collectively discussed playlists 

on an online platform and were encouraged to attend 

specific in-person concerts with the research team and 

other participants. Thus, social engagement between 

participants was encouraged and facilitated. However, 

this type of engagement differed from the social activity 

experienced by participants in the choir group, where 

participants worked together towards the common goal of 

a cohesive musical sound. This difference may have 

contributed to the observed qualitative well-being or 

auditory processing findings. Additionally, while we 

believe that matching of auditory-based interventions was 

a reasonable method of control, we do acknowledge that 

differences in social setting and differential 

enhancements in social functioning could have benefitted 

cognitive abilities and subsequently impacted auditory 

processing. 

 

CONCLUSIONS 
 

In older adults, age-related declines in speech-in-noise 

abilities may significantly disrupt daily communication 

and overall well-being. Underlying such declines are 

hypothesized reductions in neural conduction speeds 

and population synchrony of neurons in the auditory 

cortex. Auditory training programs have shown to 

improve speech-in-noise abilities (for review, see 

[117]), but are frequently expensive, time-consuming, 

and require high consistency and motivation. Singing is 

a low-cost activity that is often fun and engaging, and 

thus may be easier to implement and maintain across a 

variety of situations. Here, we observed that 12 weeks 

of choir singing produces enhancements in early sound 

encoding, as seen in earlier latencies and larger 

amplitudes of the N1 response, in a group of older 

adults with mild subjective hearing loss. Enhanced N1 

response may reflect more synchronized firing and 

accelerated conduction velocity in regions of the 

auditory cortex that are involved in processing of 

speech and music. Thus, using a randomized-control 

design, we provide experimental evidence for the 

efficacy of a low-cost, non-invasive method to improve 
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neural processing of speech, specifically early sound 

encoding, in individuals who are particularly vulnerable 

to declines in such abilities due to age. Additionally, we 

demonstrate that group singing, through its socially 

engaging nature, may improve certain indices of well-

being. Importantly, the use of an active control 

demonstrates that advantages conferred to the choir 

group were related specifically to group music 

production, rather than passive music listening. Our 

findings diverge from previous investigations in that 

behavioral improvements in speech-in-noise abilities 

were not observed, likely due to differences in 

measurement method. Future work utilizing a variety of 

hearing-in-noise tasks in a larger sample could provide 

clarification. 

 

MATERIALS AND METHODS 
 

Participants 

 

Participants between the ages of 50-65 were recruited 

from local community centers in the Los Angeles area, 

and from the Healthy Minds Research Volunteer 

Registry, a database of potential participants interested 

in studies at the University of Southern California 

related to aging and the brain. Participants were pre-

screened based on inclusion and exclusion criteria. 

Participant inclusion criteria were: 1) native English 

speaker with experience of subjective hearing loss; 2) 

normal cognitive function, as measured by the Montreal 

Cognitive Assessment (score ≥ 23). Subjective hearing 

loss was assessed by verbally asking participants if they 

noticed problems with their hearing, or if they struggled 

to hear in noisy environments. Participant exclusion 

criteria were: 1) use of prescribed hearing aids; 2) 

severe hearing loss (thresholds of 50db for all recorded 

frequencies; see Figure 4); 3) current diagnosis of 

neurological or psychiatric disorders; 4) formal music 

training, where participant currently plays a musical 

instrument or has had more than 5 years of formal 

music training in their life, excluding music classes as 

part of typical education curriculum. 

 

Study design was a pre-post randomized control trial. 

Participants took part in two testing sessions: the Pretest 

session took place up to one month prior to intervention 

and the Posttest took place up to one month after 12 

weeks of intervention. After all participants had 

completed the Pretest session, participants were 

randomized by an independent statistic consultant into 

two groups (Control and Choir), stratified by gender 

and age (<57, ≥57). During Pretest and Posttest, 

participants completed behavioral assessments of socio-

emotional well-being, speech-in-noise perception, 

music in noise perception and two auditory tasks with 

simultaneous EEG recording. 

 

 
 

Figure 4. Pure tone thresholds for participants in choir and control groups at pre-test. 



 

www.aging-us.com 9480 AGING 

Seventy-six participants were recruited to participate in 

the study. Five participants dropped out prior to pre-

screening assessment. After pre-screening, 11 

participants were excluded, leaving 60 participants who 

completed the Pretest session. After randomization, 17 

participants withdrew from the study due to personal 

circumstances, change in schedule, or relocation. 2 

participants were removed for insufficient completion 

of the intervention (missed more than 3 choir rehearsals 

or 3 weeks of music listening). This resulted in forty-

one participants completing Pretest and Posttest 

(Control group N = 23, Choir group N = 18). 

Demographics of participants within each group are 

summarized in Table 1. 

 

Interventions 

 

Choir-singing group 

The choir-singing group (Choir group hereafter) 

participated in 2-hour weekly group choir singing 

sessions for 12 consecutive weeks. Participants were 

given at-home vocal training and music theory exercises 

to complete outside of class for an estimated 1 hour per 

week. The choir was directed by a doctoral student from 

the Department of Choral and Sacred Music at USC 

Thornton School of Music and accompanied by a 

pianist. Four singers from Thornton School of Music 

sang with each voice part of the choir, as “section 

leaders”. Participants learned a variety of songs across 

genres and performed them at the end of the 12-week 

period as a small concert. The performance included 

folk (i.e: “Sally Gardens”), musical theater (i.e: “Food 

Glorious Food” from Oliver!), holiday (i.e: “Carol of 

the Bells”), renaissance (i.e: “El Grillo), Baroque (i.e; 

“Bist du Bei Mir”, by J.S Bach), and traditional choral 

music (i.e: “Life’s Joy” by Schubert, and “Laudate 

Dominum”). Participants in the choir were given an 

additional $15 per rehearsal attended to cover parking 

and transportation expenses. 

 

Passive-listening group 

The passive-listening group (Control group hereafter) 

received twelve weekly 3-hour musical playlists that 

they were asked to listen to throughout the week. 

Playlists were curated by a doctoral student in the 

Thornton School of Music to reflect a variety of musical 

genres that would be enjoyable to participants in this 

age group. Participants were given the choice to listen 

to the playlists on a provided MP3 player, or on a 

personal device through Spotify. Reminders to listen 

each week were administered via text. Participants 

interacted with other participants on a private online 

platform to discuss the previous week’s playlist. 
Additionally, participants were given opportunities to 

attend free weekly live concerts and musical events as a 

group. Attendance at live events was not required for 

participation in the study, but on average different 

combinations of 4-5 participants attended each week. 

 

Stimuli 

 

Behavioral tasks 

Cognitive abilities were assessed for pre-screening 

purposes using the Montreal Cognitive Assessment 

(MoCA) [118], which includes measures of memory, 

language, attention, visuospatial skills, calculation, and 

orientation and is intended to detect mild cognitive 

impairment. Audiometric thresholds were obtained 

bilaterally at octave intervals 0.5-8 kHz using a Maico 

MA 790 audiometer in a sound-attenuated booth. 

Musical experience was measured at pre-test only using 

the Goldsmiths’ Musical Sophistication Index [119], 

which measures musical experience as a function of six 

facets: active engagement, perceptual abilities, musical 

training, singing abilities, emotions, and general 

sophistication. Socio-emotional well-being was assessed 

using Ryff’s Psychological Well-Being Scale [120, 121], 

which includes 42 self-report items that measures six 

aspects of wellbeing: autonomy, environmental mastery, 

personal growth, positive relations with others, purpose 

in life, and self-acceptance. Loneliness was measured at 

post-test only, with the Dejong Giervald Loneliness 

Scale [122], consisting of 11 self-report items asking 

participants about current feelings of social and 

emotional loneliness. At post-test, participants were 

additionally asked to respond in writing to the open-

ended prompt: “Do you feel that the music intervention 

has had any impact on your social life or feelings of 

connection with other people?”. 

 

Hearing-in-noise abilities were assessed with the Music-

In-Noise Task (MINT) [112] and the Bench, Kowal, and 

Bamford Sentences test (BKB-SIN) [123]. In the MINT, 

participants were presented with a musical excerpt 

embedded within musical noise, followed by a matching 

or non-matching repetition of the target excerpt in silence 

and are asked to determine whether the two presented 

sounds matched. This portion of the task is divided into 

Rhythm or Pitch matching conditions. In a third 

condition of the task (Prediction), participants were first 

presented with the target stimulus in silence before being 

asked to determine if the following excerpt within noise 

was a match. Accuracy and response times were 

recorded. Participants completed this task using 

headphones in a sound attenuated room. In the BKB-SIN, 

speech-in-noise abilities were assessed by asking 

participants to repeat simple sentences embedded in four-

talker babble at increasing noise levels. The BKB-SIN 

uses Bench, Kowal, and Bamford Sentences [124], which 
are short stimuli written at a first-grade reading level rich 

with syntactic and contextual cues. A verbal cue 

(“ready”) is presented before each sentence. Background 
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Table 1. Gender, age, and MoCA scores for choir and 
control groups. 

  Total  Choir Control 

Gender     

 n 41 18 23 

 # Females 26 12 14 

Age      

 Mean 58.29 58.22 58.39 

 SD  4.19 4.35 4.10 

     

MoCA Total Score 26.32 26.48 26.11 

 SD  2.13 2.06 2.25 

 

babble is presented at 21, 18, 15, 12, 9, 6, 3, 0, -3, and -6 

dB SNR. Six lists containing ten sentences each were 

presented through a single loudspeaker in a sound 

attenuated room at 60 dBA. Each sentence contains three 

or four key words that are scored as correct or incorrect. 

An experimenter recorded responses, and a total score 

and a SNR-50 (23.5 – total score) were calculated. 

 

EEG tasks 

Participants completed two tasks during EEG recording: 

an auditory oddball, and a syllable-in-noise task. The 

syllable-in-noise (SIN) task consisted of an active and a 

passive condition. In the active condition, participants 

pressed a button when they were able to hear a target 

syllable within background babble. In the passive 

condition, participants watched a muted nature 

documentary while passively listening to the stimuli. 

Stimuli consisted of the syllable /da/ presented at 65 dB 

SPL within a two-talker babble at one of four SNR 

conditions (silent (no background noise), 0dB, 5dB, and 

10dB). Each target stimulus was presented for 170 ms 

with an inter-stimulus interval jittered at 1000, 1200, or 

1400 ms, for a total trial length of 1370 ms. Each SNR 

condition was presented in a block of 150 stimuli for 

both the active and the passive condition. Accuracy and 

response time during the active condition were 

recorded. Auditory stimuli for both tasks were presented 

binaurally with ER-3 insert earphones (Etymotic 

Research). In the oddball task, 400 trials were presented 

with a 1000msec Intertrial Interval; stimuli consisted of 

280 standard pure tones (500 Hz), 60 oddball target 

tones (1000 Hz), and 60 white noise distracter stimuli, 

each presented for 60ms. Stimuli were presented at 76 

dB SPL. Participants were instructed to press a button 

only for the oddball stimulus. Accuracy and response 

times were recorded. 

 

Procedure 

 

Recruitment and induction protocols were approved  

by the University of Southern California Institutional 

Review Board. Informed consent was obtained in writing 

from participants, and participants could end participation 

at any time. Participants received monetary compensation 

for assessment visits ($20 per hour). All participants were 

tested individually at the Brain and Creativity Institute at 

the University of Southern California. 

 

EEG recording and averaging 

 

Electrophysiological data was collected from 32 channels 

of a 64-channel BrainVision actiCAP Standard-2 system. 

Electrodes were labeled according to the standard 

International 10-20 system [125]. Participants were 

seated in a comfortable chair in a dark, sound-attenuated 

and electrically-shielded room. Impedances were kept 

below 10 kΩ. Data were sampled at 500 Hz. 

 

EEG data processing was conducted with EEGLab 

[126] and ERPLAB [127]. Data were resampled offline 

to 250 Hz sampling rate, and bandpass filtered with 

cut-offs at .5 Hz and 50 Hz. Channels with excessive 

noise were removed and then manually interpolated. 

The data were visually inspected for artifacts, and 

segments with excessive noise were removed. Ocular 

movements were identified and removed using 

independent components analysis. Data were then 

bandpass filtered at 1-20 Hz. Epochs were average 

referenced (excluding EOG and other removed 

channels) and baseline corrected (-200 to 0 ms prior to 

each note). Epochs with a signal change exceeding +/- 

150 microvolt at any EEG electrode were artifact-

rejected and not included in the averages. For the 

Active and Passive syllable-in-noise tasks, EEG data 

were divided into epochs starting 200ms before and 

ending 800 ms after the onset of each stimulus. A 

repeated measures ANOVA was conducted, with SNR 

Condition and Time as within-subject factors, and 

Group as the between-subjects factor for the Passive 

and Active tasks separately to assess differences in 

number of trials accepted. No differences in accepted 

trials were observed in the Passive syllable-in-noise 
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task (ps > 0.05). An effect of time was observed in the 

Active syllable-in-noise task, (F(1, 32) = 5.96, p < 

0.05), where more trials were accepted at post-test than 

at pre-test across conditions and groups. No other 

differences were observed (see Table 2). 

 

For the Oddball task, data was epoched from -200ms 

to +1000ms relative to the onset of each stimulus. For 

the Oddball task, separate repeated measures 

ANOVAs were calculated to assess if time or group 

impacted the number of accepted trials in each 

condition (Oddball, Standard, and Distractor). No 

effect of group or time on the number of accepted 

trials was observed in the Oddball (p > 0.05), Standard 

(p > 0.05), or Distractor conditions (p > 0.05) (see 

Table 2). 

 

Mean amplitude and peak latency for ERPs were 

calculated automatically in time-windows centered on 

the peak of the retrospective component of the grand 

average waveform. Latencies were analyzed at a 

single electrode chosen from existing literature  

[57, 60] and verified based on location of peak 

activity observed in topographic headplots. Time-

windows and electrodes for peak measurements for 

each component of the Oddball and the syllable-in-

noise task are summarized in Tables 3–5. In addition 

to examining well-studied ERP components (P1, N1, 

P2, P3), we investigated the effects of choir training 

on a frontally-distributed, P3-like positive peak 

occurring at 200-1000ms during the syllable-in-noise 

task as described by Zendel et al., [69]. This peak was 

interpreted as a marker of attention orienting, given its 

temporal overlap with the P3 [69]. 

 

Statistical analysis 

 

All statistical analyses were performed using R statistics 

[128]. Difference scores were calculated for all 

behavioral and EEG measures (Posttest - Pretest) and 

used as the primary outcome of interest. Much of the 

data presented as not normally distributed or 

homoscedastic, thus robust estimators were used, with 

R functions from [129] and the WRS2 package [130]. 

Pairwise comparisons were conducted using a robust 

bootstrap-t method (R function linconbt from functions 

in [129]). This method computes sample trimmed 

means (20%) and Yuen’s estimate of squared standard 

errors, before generating bootstrap samples to estimate 

the distribution. For tasks that included multiple 

conditions, a robust bootstrap-trimmed-mean method 

was used (R functions bwtrim and bwwtrim from 

WRS2). 20% trimming was used in all tests as it is a 
compromise between the mean and median. These 

robust methods perform well under non-normal 

conditions and small sample sizes [129]. Effect sizes 

were computed (R function ES.summary) for all 

significant main effects and interactions using QS, a 

heteroscedastic, non-parametric measure based on 

medians. An alpha level of 0.05 was used for all tests. 

 

Behavioral analysis 

 

Separate robust bootstrap-t tests were conducted for 

each behavioral task, with Group as the between-groups 

factor and difference score as the dependent variable. 

For the MINT, task condition was included as a within-

groups factor (Prediction, Melody, and Rhythm). For 

Ryff’s and the Goldsmith MSI, each subcategory was 

assessed separately. DeJong’s scale was assessed at 

post-test only, and scores on the emotional and social 

subcategory were assessed separately. For the open-

ended well-being prompt (“Do you think that the music 

intervention has had any impact on your social life or 

feelings of connection with other people?”) responses 

were transcribed and sorted into one of three categories 

: 1) social impact, 2) emotional impact, or 3) no impact 

and proportion of responses in each category were 

assessed by Group. These categories were aimed to 

parallel the “social” and “emotional” aspect of 

loneliness measured in the DeJong scale [122]. For the 

EEG syllable-in-noise task, SNR condition was 

included as a within-groups factor (silent, 0dB, 10dB, 

5dB). Accuracy and reaction time during the EEG 

syllable-in-noise task were only recorded during the 

Active listening condition. For the EEG Oddball task, 

group differences in accuracy and reaction time were 

compared separately. 

 

EEG analysis 

 

Separate bootstrap-trimmed-means tests were conducted 

for each EEG task, for each component of interest for 

amplitude and latency difference scores. When 

appropriate, laterality was included as a factor in both 

EEG tasks due to the known right-lateralized processing 

of musical pitches [131], the mediating effect of pitch 

perception on speech-in-noise abilities [68, 132], and 

influence of musical training on right- lateralized 

temporal structures [133, 134]. For the syllable-in-noise 

task, SNR Condition (Silent, 10dB, 5dB, 0dB), Laterality 

(amplitude only), and Frontality (amplitude only; frontal 

vs central electrodes) were included as within-subjects 

factors, and Group was included as a between-subjects 

factor. The Active and Passive listening conditions of the 

syllable-in-noise task were analyzed separately. For the 

Oddball task, components were assessed separately for 

each trial type (Oddball, Standard, and Distractor). 

Laterality (amplitude only; left, middle and right) or 
Frontality (amplitude only; frontal, central, parietal) was 

included as a within-subjects factor, and group was 

included as a between-subjects factor. 
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Table 2. Trials in EEG tasks. 

  Pre-test 

mean (SD) 

Post-test 

mean (SD) 

Choir Control Choir Control 

Syllable-in-noise Active      

 Silent 123.53 (31.01) 132.68 (19.29) 119.26 (37.64) 112.79 (32.71) 

 10 dB 121.87 (33.01) 132.26 (22.22) 114.13 (44.14) 111.58 (34.99) 

 5 dB 130.33 (29.75) 135.37 (16.77) 119.47 (36.54) 111.63 (40.04) 

 0 dB 123.00 (34.86) 134.00 (19.23) 116.80 (39.49) 115.89 (36.52) 

Syllable-in-noise Passive       

 Silent 147.11 (4.09) 148.33 (33.93) 148.67 (3.01) 148.16 (2.48) 

 10 dB 146.22 (6.34) 144.78 (25.28) 149.33 (1.85) 147.78 (4.28) 

 5 dB 146.61 (3.18) 139.94 (14.90) 149.00 (1.61) 147.28 (9.61) 

 0 dB 147.83 (2.50) 141.83 (12.19) 147.33 (8.35) 148.22 (3.57) 

Oddball      

 Standard  274.89 (6.64) 263.2 (36.92) 276.28 (5.97) 269.35 (20.47) 

 Oddball 55.00 (7.11) 51.75 (11.27) 54.11 (5.94) 53.25 (8.28) 

 Distractor 56.89 (1.94) 54.35 (6.47) 57.11 (1.45) 54.75 (4.52) 

 

Table 3. Syllable-in-noise active task. 

Time Component Condition Electrodes Window 

Pre P1 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

35 70 

10db 50 80 

5db 65 110 

0db 60 105 

Post P1 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

45 70 

10db 50 85 

5db 55 95 

0db 65 100 

Pre N1 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

90 125 

10db 115 170 

5db 125 190 

0db 130 200 

Post N1 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

85 130 

10db 105 175 

5db 125 175 

0db 155 205 

Pre P2 Silent 
F3, FZ,F4 

C3, Cz*, C4 
155 200 

Post P2 Silent 
F3, FZ,F4 

C3, Cz*, C4 
160-245 

Pre P3-like component 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

275 400 

10db 270 430 

5db 280 440 

0db 295 480 

Post P3-like component 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

275 400 

10db 280 410 

5db 275 430 

0db 305 445 

*Electrode from which latency was calculated. 
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Table 4. Syllable-in-noise passive task. 

Time Component Condition Electrodes Window 

Pre P1 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

40 75 

10db 50 100 

5db 55 105 

0db 55 110 

Post P1 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

40 70 

10db 55 95 

5db 55 105 

0db 65 115 

Pre N1 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

90 130 

10db 130 195 

5db 145 200 

0db 144 215 

Post N1 

Silent 

F3, FZ,F4 

C3, Cz*, C4 

90 130 

10db 125 185 

5db 145 200 

0db 155 200 

Pre P2 Silent 
F3, FZ,F4 

C3, Cz*, C4 
160 230 

Post P2 Silent 
F3, FZ,F4 

C3, Cz*, C4 
165 230 

*Electrode from which latency was calculated. 

 

Table 5. Oddball task. 

Time Component Condition Electrodes Window 

Pre 

N1 

Oddball, 

Standard, 

Distractor 

F3, FZ*,F4 

C3, Cz, C4 

65 115 

Post 70 110 

Pre P2 

Oddball Fz 

Cz* 

Pz 

145 250 

Standard 135 185 

Distractor 190 265 

Post P2 

Oddball Fz 

Cz* 

Pz 

125 155 

Standard 115 145 

Distractor 115 145 

Pre P3 Oddball P3, Pz*, P4 300 625 

Post P3 Oddball P3, Pz*, P4 315 610 

Pre P3a Distractor 

Fz* 

Cz 

Pz 

345 395 

Post P3a Distractor 

Fz* 

Cz 

Pz 

320 390 

Pre 

P3b Distractor 

Fz 

Cz* 

Pz 

450 660 
Post 

*Electrode from which latency was calculated. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

 

Supplementary Table 1. Means and standard deviations for behavioral tasks by group and time. 

  

Pre-test 

mean (SD) 

Post-test 

mean (SD) 

Choir Control Choir Control 

BKB-SIN      

 Total  24.38 (1.12) 24.54 (1.24) 25.03 (1.04) 24.83 (1.24) 

Goldsmith MSI      

 Engagement 37.27 (9.03) 37.47 (11.70)   

  Perceptual 44.00 (8.96) 46.53 (8.29)   

 Training 21.47 (9.66) 18.47 (10.86)   

 Singing 25.13 (8.48) 23.33 (10.22)   

 Emotions 29.80 (6.66) 32.27 (5.44)   

 General 69.93 (21.21) 64.73 (19.34)   

MINT      

 Rhythm Accuracy 0.61 (0.17) 0.61 (0.13) 0.66 (0.14) 0.59 (0.14) 

 Pitch Accuracy 0.66 (0.15) 0.62 (0.13) 0.64 (0.15) 0.61 (0.17) 

 Prediction Accuracy  0.73 (0.13) 0.69 (0.14) 0.74 (0.13) 0.65 (0.15) 

 Rhythm RT 4.01 (2.13) 4.11 (1.35) 3.86 (1.77) 3.94 (1.57) 

 Pitch RT 4.08 (1.52) 4.90 (2.06) 4.56 (3.12) 4.13 (2.09) 

 Prediction RT 2.47 (0.96) 2.66 (0.64) 2.74 (0.93) 3.01 (1.86) 

Ryff’s      

 Autonomy 38.07 (7.48) 38.86 (5.73) 39.21 (6.99) 38.50 (6.12) 

 Environmental Mastery 36.44 (7.84) 38.04 (6.37) 37.00 (8.44) 37.65 (7.51) 

 Personal Growth 40.13 (5.78) 43.78 (5.20) 40.38 (5.82) 44.52 (4.95) 

 Positive Relations 36.67 (7.58) 39.83 (7.67) 36.60 (7.56) 40.35 (7.02) 

 Purpose 39.00 (5.41) 40.55 (5.75) 37.29 (7.52) 41.05 (6.07) 

 Self-Acceptance 36.88 (6.18) 35.50 (6.12) 36.81 (8.23) 36.05 (6.69) 

Dejong’s       

 Social Loneliness   3.20 (1.78) 2.21 (2.04) 

 Emotional Loneliness    2.40 (1.80) 2.36 (2.24) 

EEG syllable-in-noise Silent Accuracy 0.94 (0.12) 0.96 (0.06) 0.94 (0.09) 0.91 (0.17) 

 10 dB accuracy 0.93 (0.14) 0.96 (0.09) 0.97 (0.03) 0.89 (0.18) 

 5 dB Accuracy 0.94 (0.08) 0.96 (0.08) 0.97 (0.05) 0.88 (0.21) 

 0dB Accuracy 0.97 (0.03) 0.98 (0.02) 0.94 (0.13) 0.91 (0.16) 

 Silent RT 0.24 (0.06) 0.25 (0.08) 0.28 (0.08) 0.25 (0.08) 

 10 dB RT 0.29 (0.08) 0.29 (0.07) 0.29 (0.11) 0.28 (0.08) 

 5 dB RT 0.30 (0.08) 0.30 (0.07) 0.31 (0.09) 0.30 (0.08) 

 0dB RT 0.30 (0.10) 0.32 (0.07) 0.34 (0.09) 0.33 (0.08) 

EEG Oddball Accuracy 0.95 (0.11) 0.93 (0.12) 0.93 (0.10) 0.96 (0.06) 

 RT 0.47 (0.10) 0.46 (0.10) 0.48 (0.11) 0.44 (0.08) 
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Supplementary Table 2. Means and standard deviations of amplitudes for EEG tasks by group and time. 

  

Pre-test Post-test 

Choir Control Choir Control 

Mean 

amplitude (SD) 

Mean 

amplitude (SD) 

Mean 

amplitude (SD) 

Mean 

amplitude (SD) 

Syllable-in-noise, active      

 P1 Silent 0.21 (0.61) 0.37 (0.72) 0.46 (0.67) 0.20 (0.85) 

 P1 10dB 0.27 (0.57) 0.08 (0.51) 0.24 (0.45) 0.28 (0.55) 

 P1 5dB 0.23 (0.46) 0.05 (0.42) 0.19 (0.49) 0.31 (0.58) 

 P1 0dB -0.03 (0.48) 0.01 (0.46) -0.07 (0.64) 0.00 (0.41) 

 N1 Silent -0.69 (1.18) -0.94 (1.58) -1.03 (0.98) -0.90 (1.57) 

 N1 10dB -0.57 (0.76) -0.54 (1.13) -0.23 (0.73) -0.39 (0.92) 

 N1 5dB -0.38 (0.72) -0.69 (0.82) -0.72 (1.01) -0.55 (0.89) 

 N1 0dB -0.78 (0.77) -0.62 (0.86) -0.66 (0.76) -0.54 (0.97) 

 P2 Silent 1.65 (1.09) 1.28 (1.02) 1.68 (1.08) 1.53 (1.30) 

 P3-like Silent  1.15 (1.12) 1.31 (1.20) 1.00 (1.31) 1.70 (1.07) 

 P3-like 10 dB 0.69 (0.75) 1.29 (0.96) 0.78 (1.21) 1.38 (0.82) 

 P3-like 5 dB 0.85 (1.24) 1.18 (0.87) 0.87 (1.14) 1.25 (1.08) 

 P3-like 0 dB 0.81 (0.86) 1.08 (0.96) 0.72 (0.95) 1.25 (1.09) 

Syllable-in-noise, passive      

 P1 Silent 0.52 (0.59) 0.49 (0.65) 0.50 (0.63) 0.44 (0.59) 

 P1 10dB 0.50 (0.33) 0.42 (0.42) 0.50 (0.42) 0.57 (0.46) 

  P1 5dB 0.32 (0.32) 0.35 (0.26) 0.37 (0.41) 0.52 (0.42) 

 P1 0dB 0.31 (0.27) 0.42 (0.30) 0.30 (0.34) 0.37 (0.53) 

 N1 Silent -0.93 (0.82) -1.39 (0.84) -1.18 (0.80) -1.34 (0.68) 

 N1 10dB -0.28 (0.52) -0.61 (0.42) -0.48 (0.52) -0.56 (0.45) 

 N1 5dB -0.33 (0.45) -0.59 (0.44) -0.50 (0.51) -0.70 (0.54) 

 N1 0dB -0.19 (0.46) -0.47 (0.50) -0.49 (0.50) -0.58 (0.44) 

 P2 Silent 1.13 (0.83) 1.15 (0.82) 1.13 (0.78) 1.46 (0.87) 

Oddball N1 Oddball  -1.25 (1.46) -2.32 (1.56) -0.87 (1.55) -2.04 (1.35) 

 N1 Standard -0.99 (0.97) -1.81 (1.33) -0.95 (1.16) -1.55 (1.22) 

 N1 Distractor -1.34 (1.27) -1.92 (2.03) -0.77 (1.24) -1.95 (1.58) 

 P2 Oddball 1.38 (1.77) 0.81 (1.27) 0.92 (2.42) 1.12 (1.47) 

 P2 Standard 1.70 (0.92) 1.59 (0.93) 1.48 (1.01) 1.82 (0.97) 

 P2 Distractor 1.62 (1.48) 1.55 (1.43) 1.21 (1.79) 1.50 (1.40) 

 P3a Distractor 1.66 (1.57) 1.37 (2.15) 1.79 (1.93) 1.73 (2.06) 

 P3b Oddball 0.29 (0.71) 0.03 (1.18) 0.25 (0.92) 0.04 (1.06) 

 P3b Standard 0.22 (0.37) -0.05 (0.56) 0.28 (0.52) 0.00 (0.52) 
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Supplementary Table 3. Means and standard deviations of latencies for EEG tasks by group and time. 

  

Pre-test Post-test 

Choir Control Choir Control 

Mean latency 

(SD) 

Mean latency 

(SD) 

Mean latency 

(SD) 

Mean latency 

(SD) 

Syllable-in-noise, active      

 P1 Silent 62.82 (11.29) 62.00 (13.20) 60.47 (9.37) 62.60 (12.40) 

 P1 10dB 67.06 (14.53) 70.00 (15.44) 67.53 (13.26) 66.40 (15.10) 

  P1 5dB 91.06 (13.31) 87.80 (12.81) 73.65 (18.50) 72.40 (18.76) 

 P1 0dB 78.82 (15.67) 77.60 (16.69) 79.29 (17.51) 89.60 (21.06) 

 N1 Silent 109.65 (12.33) 108.20 (11.20) 105.41 (10.19) 108.60 (11.12) 

 N1 10dB 136.94 (14.39) 142.60 (17.76) 143.29 (27.50) 150.80 (22.67) 

 N1 5dB 159.76 (17.23) 147.40 (19.04) 148.47 (17.37) 150.00 (19.23) 

 N1 0dB 182.12 (19.80) 176.40 (19.68) 168.47 (15.55) 179.00 (19.11) 

 P2 Silent 191.53 (18.86) 195.60 (23.36) 195.29 (18.83) 197.80 (23.91) 

 P3-like Silent  341.18 (45.12) 307.78 (37.51) 325.65 (40.33) 319.11 (31.96) 

 P3-like 10 dB 355.76 (54.62) 332.89 (42.39) 345.65 (49.30) 346.89 (40.74) 

 P3-like 5 dB 367.06 (53.00) 350.22 (43.41) 366.12 (51.03) 356.22 (49.70) 

 P3-like 0 dB 372.00 (61.04) 370.22 (43.09) 368.00 (51.13) 364.44 (38.90) 

Syllable-in-noise, 

passive 
     

 P1 Silent 58.89 (10.70) 56.63 (10.61) 57.33 (10.08) 55.37 (12.46) 

 P1 10dB 76.00 (13.72) 72.84 (12.90) 77.33 (11.15) 72.63 (14.44) 

  P1 5dB 81.56 (16.01) 77.05 (14.47) 80.89 (15.97) 85.68 (14.13) 

 P1 0dB 85.33 (16.35) 84.42 (13.39) 94.89 (14.64) 84.00 (16.97) 

 N1 Silent 110.89 (7.36) 109.89 (10.01) 109.11 (9.39) 109.05 (10.31) 

 N1 10dB 157.56 (19.12) 162.11 (20.59) 161.78 (14.21) 158.53 (20.62) 

 N1 5dB 180.67 (16.54) 177.26 (16.71) 175.33 (18.21) 173.05 (17.07) 

 N1 0dB 177.56 (18.36) 174.53 (18.39) 184.00 (14.06) 182.11 (10.94) 

 P2 Silent 192.22 (18.94) 195.58 (20.91) 195.33 (19.32) 201.26 (19.28) 

Oddball N1 Oddball  88.89 (9.76) 92.17 (8.54) 87.33 (10.01) 89.8 (10.26) 

 N1 Standard 89.33 (7.76) 92.67 (7.04) 88.67 (8.92) 91.40 (8.24) 

 N1 Distractor 89.56 (11.16) 96.17 (12.11) 88.67 (13.11) 96.60 (12.26) 

 P2 Oddball  170.22 (32.27) 172.33 (33.21) 163.56 (31.25) 176.80 (34.86) 

 P2 Standard 192.67 (29.43) 194.00 (31.16) 197.56 (32.03) 205.80 (25.84) 

 P2 Distractor 197.33 (30.62) 205.00 (28.73) 197.56 (34.30) 213.60 (22.57) 

 P3a Distractor 317.78 (17.79) 317.33 (18.64) 324.22 (20.00) 325.60 (18.33) 

 P3b Oddball 578.00 (87.15) 605.33 (103.97) 567.11 (84.78) 567.40 (100.28) 

 P3b Standard 625.56 (92.21) 637.50 (83.95) 602.22 (97.75) 648.00 (72.94) 

 

 

 


