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INTRODUCTION 
 

Esophageal cancer (EC) is an aggressive and invasive 

disease and early diagnosis is clinically challenging. It 

is associated with one of the highest mortality rates 

(500,000 per year) and incidence rates (570,000 new 

cases per year) [1] and the global incidence and 

mortality of EC are predicted to increase in the coming 

decades [1, 2]. The growing risk from this malignancy 
presents a heavy burden on health care providers in 

almost every population, particularly in Eastern Asia, 

the world leader in tobacco use, which is one of the 

most important risk factors for EC [2]. 

EC can be divided into esophageal squamous cell 

carcinoma (ESCC) and esophageal adenocarcinoma 

(EAC) based on the different cell origins. ESCC 

originates from squamous cells, while EAC originates 

predominantly from Barrett mucosa [3]. It is known that 

the incidences of ESCC and EAC vary geographically. 

ESCC is predominant in East Asia and parts of Africa 

and accounts for 90% of the new cases of EC every year 

[4]. The major causes of ESCC include smoking and 

excessive drinking. Other risk factors are dietary 

deficiencies, hot beverage intake, achalasia, history of 

head and neck squamous cell cancer, and radiation 

therapy [5, 6]. EAC is found more frequently in Europe 
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and North America and is related to chronic 

inflammation, intestinal metaplasia (Barrett’s 

esophagus) in the distal esophageal epithelium and 

obesity [7–9]. Notably, compared to ESCC, the 

incidence of EAC has increased persistently in some 

developed countries in recent years [10]. Although age 

has not been listed as a risk factor of EC, age may affect 

patient survival and treatment methods [11, 12]. One 

study demonstrated that overall survival of patients ≥70 

years old was shorter, while length of stay was longer 

than those <70 years old [13]. In another study, patients 

≥70 years old were less likely to be subjected to surgery 

or/and radiotherapy [14]. Given the great challenge of 

this disease, it is urgently needed to develop more 

powerful disease models for a better understanding of 

the pathogenesis of esophageal cancer and developing 

new approaches to esophageal cancer prevention, early 

diagnosis, and treatment. 

 

Patient-derived xenograft (PDX) models are established 

by the engrafting patients’ tumor tissues into 

immunodeficient mice to obtain a framework that 

faithfully simulates human cancer biology in vivo. 

Particularly, PDX models largely recapitulate the 

genetic, phenotypic, and functional characteristics of the 

primary tumors after transplantation. Here we 

summarize the methods of PDX model construction for 

EC and elucidate the practical value of the PDX model 

in EC treatment, including its use in screening 

predictive markers and therapeutic targets. PDX models 

are of great value in understanding cancer progression 

of EC and developing precision medicine methods to 

combat EC. 

 

Methods for establishing EC PDX models and 

characteristics of EC-PDX 
 

The engraftment rates of PDX 

The engraftment rates of subcutaneous PDX for EC 

vary from 13.3% to 55.5%, as reported in several 

studies listed in Table 1. In Table 2, the success rates of 

PDX for other tumors including neuroblastoma, 

osteosarcoma, osteosarcoma and so on are listed, which 

vary from 24% to 100%. The take rate of orthotopic 

PDX for EC is claimed as 100%, however, the 

extremely limited sample size (only one case) used in 

this study may strongly affect the estimation of the take 

rate [15]. Because of the anatomical location of the 

esophagus, the establishment of orthotopic model of EC 

requires advanced surgical techniques, and hardly 

achieves simplicity or reproducibility [16, 17]. 

Therefore, orthotopic PDX models for EC are rarely 

employed. Both resected tumor tissues and endoscopic 
biopsies are suitable for the engraftment. Resected 

tumor tissues are often obtained during surgery, while 

biopsy specimens are obtained during endoscopic 

examination for pathological confirmation. Tumor 

tissues or biopsy specimens are then fragmented and 

these tissue fragments will be directly implanted or 

blended with Matrigel before implanting into 

immunocompromised mice for tumor growth and 

expansion. Esophageal tumor cell populations isolated 

from ESCC tissues have also been implanted to 

establish PDX model [18]. 

 

Tumor tissues or biopsy specimens from EC patients 

are termed P0 (Passage zero); established PDX  

models are termed passage 1 (P1); when P1 tumors 

reached 500~1500 mm3, fresh tumor fragments are 

harvested from mice and then subsequently re-

implanted into other mice (P2, P3, and so on) [19–22]. 

In general, PDX models undergoing more than 3 

passages (P3) are applicable for drug test experiments. 

If tumor growth was not detected for at least 6 months 

or the mass was caused by non-epithelial cell 

proliferation, the engraftment would be considered as a 

failure. 

 

The recipients of PDXs 

Immunodeficient mice suitable to receive human tumor 

tissues include athymic nude mice, C.B17-Prkdcscid 

(SCID) mice, non-obese diabetic.C.B17-Prkdcscid 

(NOD-SCID) mice, NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) 

mice and NODShi.Cg-Prkdcscid Il2rgtm1Sug (NOG/SCID) 

(Table 1). A spontaneous mutation of Foxn1 gene in 

athymic nude mice results in the deteriorated or absent 

thymus [23]. They are also characterized by the 

defective differentiation and proliferation of thymic 

epithelial cells (TECs) and progenitors of T-

lymphocytes [23]. However, an intact innate immune 

system remains and NK cell activity is high, thus 

engraftment is limited for most primary solid human 

tumors and impossible for human normal or malignant 

hematopoietic cells [24]. SCID mice lack both 

functional T and B lymphocytes because of a Prkdc 

gene deficiency. The concept of SCID now expands to 

all severely immunodeficient strains of mice, such as 

those with Recombination activating gene-1/2 mutation 

(Rag-1null/Rag-2null). The engraftment takes rates of 

human tumor cells (including neuroblastoma, colon 

cancer, and breast cancer cell line) are higher in SCID 

mice than nude mice [25]. However, moderate NK cell 

activity remaining in SCID mice restricts the growth of 

human hematopoietic cells and PDX tumors after 

implantation. NOD-SCID mice are cultivated by 

crossbreeding NOD mice and SCID mice. These 

immunocompromised mice display defective innate 

immunity, including the dampened activity of NK cell 

and macrophages, abnormal dendritic cell development 
and function, and a lack of complement activation [26]. 

Therefore, NOD-SICD mice are more suitable for the 

engraftment of human solid tumors and hematopoietic 
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cells that fail in SCID mice. IL-2 receptor subunit 

gamma (IL-2Rγ) is indispensable for high-affinity 

signaling for the IL-2, IL-4, IL-7, IL-9, IL-15, and  

IL-21 receptors. A lack of IL-2Rγ cripples both the 

adaptive and innate immune system. NSG mice 

combine the characters of NOD-SICD mice and  

IL-2Rγnull mice, and are highly receptive to engraftment 

of human primary tumors. Nevertheless, no significant 

improvement in primary EC engraftment has been 

found using NSG mice compared with NOD-SCID 

mice [27]. Similarly to NSG mice, NOG mice also  

lack T and B lymphocytes and NK cells and are 

compatible with human cells and tissues [28]. The 

engraftment rate of human hematopoietic cells in NOG 

mice are significantly elevated when compared with 

NOD-SCID mice [29]. However, there is no evidence 

indicating NOG mice are superior recipients for EC-

PDX. 
 

Most studies that establish a EC-PDX model used 

animals aged 6-8 weeks for engraftment of patient-

derived xenografts, aging mice might not be suitable for 

xenografts implantation. The reasons may include: (1) 

The activity of T cell in athymic nude mice tends to 

increase with the age. Therefore, engraftment rate of 

tumor cells or tissues could be enhanced in younger 

mice (5-10 weeks) (reviewed by Szadvari et al [23]); (2) 

In some aging mice, such as SCID mice, spontaneous 

thymic and non-thymic tumors may develop and 

seriously affect their survival, even they are maintained 

in an SPF, barrier-protected environment [30]; (3) the 

life spans of immunodeficient mice vary across 

different species. The median life span of NOD-SCID 

mice has been reported as 37 weeks, while that of NSG 

mice was 89 weeks (range, 59–95 weeks) [26, 31]. (4) 

Inflammatory conditions are also present in aging NSG 

female mice and contribute to morbidity and mortality 

in these mice [32]. 
 

The engraftment methods 

Currently, subcutaneous, orthotopic, and 

intramuscular implanting are three methods employed 

by researchers in the establishment of PDX models 

for EC (Table 1). Subcutaneous engraftment is a well-

established technique employed by most researchers 

in establishing PDX models. Both resected tumor 

tissues or biopsy derived from human ESCC or EAC 

could be engrafted subcutaneously into immuno-

deficient mice. Orthotopic implantation of human 

primary EC tissues is scarcely reported. Veeranki et 

al. [15] transabdominally implanted a biopsy sample 

of EAC at the distal esophagus/gastroesophageal 

junction to mimic tumor growth patterns in patients. 

The orthotopic mouse model closely mimics tumor 

growth patterns seen in patients and recapitulated the 

response to radiation treatment in patients with EAC 

[15]. A study showed that intramuscular engraftment 

might improve the success rate of esophageal PDX 

establishment (intramuscular vs subcutaneous, 72% vs 

16%) [33]. They attributed the improvement to a more 

abundant blood supply in the muscles than cutaneous 

tissue. This novel method in tumor tissue engraftment 

may optimize the process of testing therapeutic drugs 

for EC. However, lymphomatous transformation 

occurred in some xenografts when using the 

intramuscular method [33]. Intramuscular engraftment 

has also been used in establishing xenograft models 

for canine osteosarcoma and human ovarian tissues 

[34, 35]. The feasibility of this engraftment approach 

should be further validated by more studies. The 

procedures in establishing PDX models of EC are 

summarized in Figure 1. 

 

Characteristics of EC-PDX 

Distinguishing features of EC-PDX models support 

them become useful tools in translational cancer 

research. Firstly, the morphology and histology in EC-

PDX remained consistent when compared that of the 

corresponding primary tumor tissues [22]. Through 3-

4 passages, the degree of differentiation in tumor 

xenografts varied slightly [22]. Importantly, drug 

sensitivity, including paclitaxel and cisplatin, in PDX 

models correlates well with the clinical response in 

corresponding patients [22]. Thus, EC-PDX model 

provided a realistic model for drug sensitivity selection 

for EC patients [22, 36, 37]. Secondly, EC-PDXs are 

able to mimic the current clinical genetic setting of 

EC, including mutations in PIK3CA, EGFR, K-Ras, B-

Raf and HER2 amplification [19]. These models may 

support further investigation of the effect of driver 

gene mutation on treatment response. For instance, the 

efficacy of Trastuzumab has been developed for the 

treatment of HER2 positive breast cancer [38]. 

Likewise, Trastuzumab caused tumor regression in 

HER2 positive EC-PDX models [39]. However, when 

PIK3CA mutation was present in the models, 

Trastuzumab lost the ability to suppress tumor growth, 

which suggest PIK3CA mutation may be a mechanism 

of Trastuzumab resistance [39]. Clinical response to 

chemotherapy using 5-FU and cisplatin was also 

compromised in EC-PDX models with PIK3CA 

mutation [19]. Additionally, cancer associated 

fibroblasts (CAFs) constitute the majority of the tumor 

microenvironment (TME) [8]. CAFs may promote 

tumor growth through their mechanical contributions 

to the stroma and cytokines secretion [40]. Unlike in 

cell line xenograft, patient-derived CAFs are preserved 

well in PDX models and contribute to the therapy 

resistance of EAC [41]. Therefore, PDX models are 

superior in studying the interaction between EC and 

TME. 
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Table 1. A summary of PDX models for esophageal cancer. 

Histology  Tissue type 
Implantation 

method 
Mouse strain 

Xenograft success rate 

(%) 
Refs. 

ESCC Resected SC SCID mice 37/96 (38.5) [19] 

ESCC/EAC Resected SC NSG mice 
ESCC 4/12 (25) EAC 

13/49 (33) 
[20] 

ESCC Resected SC SCID mice 14/26 (53.6) [21] 

ESCC Biopsy SC NOD-SCID mice 25/188 (13.3) [22] 

ESCC / EAC Biopsy SC NOD-SCID/NSG mice 
ESCC 5/16(31) EAC 

8/54(33) 
[27] 

GEJ adenocarcinoma Biopsy Ort SCID mice 1/1 (100) [15] 

GEJ/ESCC/EAC Resected/biopsy IM/SC 
SCID/NOD-SCID/NSG 

mice 

IM 13/18 (72) SC 1/6 

(16) 
[33] 

ESCC Resected SC Athymic nude mice 61/110 (55.5) [36] 

ESCC Resected SC NOD-SCID mice 23/54 (42.6) [42] 

GEJ/ ESCC/EAC Resected SC NOD-SCID mice 21/55 (38) [43] 

ESCC Resected SC SICD mice 25/54(46.3) [39] 

ESCC: esophageal squamous cell carcinoma; GEJ: gastroesophageal junction; EAC: esophageal adenocarcinoma; SC: 
Subcutaneous; Ort: orthotopic; IM: Intramuscular; SCID: C.B17-Prkdcscid; NOD-SCID: NOD.C.B17-Prkdcscid; NSG: NOD.Cg-
PrkdcscidIl2rgtm1Wjl. 

Table 2. The success rate of PDX for other tumor types. 

Tumor types Methods Recipient Success rates% Refs. 

neuroblastoma Ort NSG/ athymic nude mice 24 [44] 

osteosarcoma Ort NSG/ athymic nude mice 48 [44] 

rhabdomyosarcoma Ort NSG/ athymic nude mice 65 [44] 

retinoblastoma Ort SCID/athymic nude mice 70 [44] 

Wilms tumour Ort NSG/ athymic nude mice 78 [44] 

desmoplastic small round-cell tumour Ort NSG/ athymic nude mice 22 [44] 

Ewing sarcoma Ort NSG/ athymic nude mice 29 [44] 

high-grade sarcoma Ort NSG/ athymic nude mice 83 [44] 

Colorectal cancer  SC athymic nude mice 52 [45] 

Prostate cancer SC SCID/NSG/ C57BL/6 pfp/rag2 mice 100-66 [46] 

SC: Subcutaneous; Ort: orthotopic; SCID: C.B17-Prkdcscid; NOD-SCID: NOD.C.B17-Prkdcscid; NSG: NOD.Cg-PrkdcscidIl2rgtm1Wjl. 

 

Application of PDX models in screening 

predictive biomarkers for chemoradiotherapy 
 

Although multidisciplinary approaches have been 

developed for the treatment of locally advanced EC, 

only a small percentage (less than 40%) of patients 

respond well to these treatments [47]. Many 

nonresponsive patients may suffer severe adverse 

effects and even lose the option of surgical resection 

[48]. Therefore, predictive biomarkers are critical in 

determining whether chemoradiotherapy solutions are 

suitable and effective in preventing EC progression in 

patients. Identification of predictive biomarkers would 

facilitate accurate risk stratification of patients for 

therapy and avoid potential morbidity due to ineffective 

treatment. The employment of PDXs in screening 

biomarkers has been carried out by many researchers. 

For instance, CAFs derived from EAC PDXs were 

shown to play important roles in inducing resistance to 

chemoradiotherapy [41]. Interleukin-6 (IL-6) produced 

from/by CAFs drives EMT and enhances cell migration 

and survival in EAC [41]. Therefore, IL-6 expression 

from CAFs may provide value in prediction of patient 

resistance to chemotherapy and radiotherapy [41]. 

TP53-induced glycolysis and apoptosis regulator 

(TIGAR) is a downstream regulator of p53 and highly 

expressed in many hematologic and solid tumors, 

including leukemia, breast cancer, and EC [49, 50]. 

TIGAR remodels energy metabolism in ESCC cells and 

promotes cell proliferation and colony formation [51]. 

Compared to ESCC-PDXs with low TIGAR expression, 

those with TIGAR overexpression were more resistant 

to 5-fluorouracil/Cisplatin, whereas they were sensitized 

by a glutaminase inhibitor, CB-839 [51]. Therefore, 
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TIGAR expression in EC tissues might be a predictive 

biomarker in guiding chemotherapeutic strategies [51]. 

Furthermore, NAD(P)H quinone dehydrogenase 1 

(NQO1), an enzyme involved in cellular reactive 

oxygen species clearance [52], showed enhanced 

expression in ESCC cells during the treatment of a 

preparation of curcumin (THC) and was associated with 

THC resistance [53]. However, the combination of THC 

and NQO1 inhibitor exerted a superior effect on tumor 

growth than THC monotherapy in ESCC-PDX, 

suggesting that NQO1 expression might be a critical 

biomarker of THC response in ESCC patients [53]. 

 

Application of PDX models in evaluating 

therapeutic targets for chemotherapy 
 

Topoisomerase I 

Topoisomerase I binds to the supercoiled DNA and 

cleaves the phosphate backbone of the DNA to release 

supercoiled DNA [54]. It functions as a critical nuclear 

enzyme that facilitates DNA replication, transcription, 

recombination and repair [55–57]. High expression of 

topoisomerase I can be found in human ESCC tissues 

and is related to poor prognosis, while topoisomerase I 

expression is relatively low in the normal squamous 

epithelium [58, 59]. Gimatecan is a modified lipophilic 

analog of camptothecin [60], which exerts anti-tumor 

activity through specifically inhibiting topoisomerase I 

activity. Gimatecan can induce DNA damage, S-phage 

arrest and apoptosis in ESCC cells in cell-line-derived 

xenograft (CDX) models as well as in PDX models 

through suppressing the expression and function of 

topoisomerase I [61]. (S)-10-Hydroxycamptothecin 

(HCPT) is another topoisomerase I inhibitor isolated 

from Camptotheca cuminata. HCPT suppresses the 

enzymatic activity of topoisomerase I, impedes cell 

proliferation, and induces cell cycle arrest and apoptosis 

in ESCC cells [59]. The tumor growth of PDX models 

was also suppressed by HCPT, supporting its anti-tumor 

activity [59]. Both studies validated the antitumor 

efficacy of topoisomerase I inhibitors in ESCC cells and 

PDX models, which may pave the way for the clinical 

use of these drugs in the treatment of EC. 

 

EGFR and HER2 

The HER family of receptor tyrosine kinases contains 

epidermal growth factor receptor (EGFR/ErbB1/HER1), 

erb-b2 receptor tyrosine kinase 2 (ERBB2/HER2/Neu), 

erb-b2 receptor tyrosine kinase 3 (ERBB3/HER3), and 

erb-b2 receptor tyrosine kinase 4 (ERBB4/HER4) [62, 

63]. The aberrant activation of these receptor tyrosine 

kinases facilitates the tumorigenesis and progression of 

multiple malignant tumors, such as EC, lung cancer, 

gastric cancer, and colon cancer [64]. EGFR and HER2 

are overexpressed in human primary EC tissues and 

significantly associated with overall survival in EC [65, 

66]. The effect and mechanism of inhibitors targeting 

EGFR and HER2 have been evaluated using EC-PDX 

models. Theliatinib is a potent and highly selective 

EGFR inhibitor currently in Phase I clinical study in 

China (NCT02601248). Theliatinib was effective in 

restraining the tumor growth of ESCC-PDX models with 

EGFR gene amplification [42]. However, PIK3CA 

mutation or FGFR1 over-expression in PDX attenuated 

the effect of theliatinib, suggesting care to apply 

theliatinib to only responsive subsets of patients is 

 

 
 

Figure 1. The procedures in establishing patient-derived xenograft models of esophageal cancer. Tumor tissues or biopsy are 

obtained from patients with EC during surgery or endoscopic examination. These tumor tissues and biopsy are termed P0 and are then 
fragmented before implantation. In some condition, cell populations are isolated from tumor tissues for PDX model establishment. 
Fragmented samples or primary tumor cells are then implanted into immunocompromised mice (termed P1), either subcutaneously or 
orthotopically. When P1 tumors reached 500~1500 mm3, fresh tumor fragments are harvested from mice and then subsequently re-
implanted into other mice for expansion (P2, P3, and so on). 
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required [42]. Cetuximab is a mouse-human chimeric 

antibody that functions through binding with EGFR, 

leading to an inhibition of EGFR phosphorylation and 

activation [67]. Zhu et al [36] tested the response of 

ESCC to cetuximab via PDX models. It is notable that 

EGFR amplification, EGFR mRNA levels and EGFR 

protein expression could be significantly correlated with 

the ESCC-PDXs response to cetuximab treatment [36]. 

 

The anti-HER2 monoclonal antibody, trastuzumab has 

been shown its efficacy in prolonging overall survival of 

patients with HER2-positive advanced gastric or gastro-

oesophageal junction cancer [68, 69]. Trastuzumab 

resistance was observed in PDX models of ESCC with a 

dose-dependent decrease in HER2 expression and a 

significant increase of HER3 and HER4 expression [70]. 

The HER3 might be a potential therapeutic targets for 

trastuzumab resistant cancer, as inhibition of HER3 could 

reverse trastuzumab resistance in ESCC and EAC cells 

[70]. Afatinib is a pan-HER inhibitor for clinical treatment 

of lung cancer and breast cancer [71, 72]. EGFR gene 

amplification or overexpression was a predictor for 

afatinib sensitivity of ESCC [73]. Afatinib inhibited the 

phosphorylation of EGFR, S6, and ERK and induced G1 

phase arrest and apoptosis in ESCC cells and PDX models 

[73]. In the PDX model of esophagogastric cancer, 

afatinib resistance could be caused by MET amplification, 

which might be overcome by MET inhibitor [74]. 

Additionally, lapatinib, a dual tyrosine kinase inhibitor of 

EGFR2 and HER2, was able to contain tumor growth of 

PDX in combination with 5-fluorouracil [75]. 

 

Aurora-A and -B 

Aurora-A and -B are two members of Aurora family 

kinases that are implicated in the control of mitosis [76, 

77]. Aurora-A is required for centrosome maturation and 

separation and bipolar spindle assembly, while Aurora-B 

regulates cytokinesis and acts as a member of the 

chromosome passenger complex [77]. Both Aurora-A 

and -B can be found overexpressed in human EC tissues 

[78, 79] and act to enhance cell invasion and malignant 

phenotypes in ESCC [80, 81]. Treatment of APIO-EE-9, 

an Aurora kinase inhibitor, resulted in inhibition of cell 

growth and proliferation, induction of apoptosis, and 

reduction of Aurora-A and -B activities in ESCC cell 

lines [82]. In PDX models of ESCC, APIO-EE-9 

effectively inhibited tumor growth with minimal toxicity 

[82]. The inhibition of Aurora-A and -B might be 

effective in reducing uncontrolled proliferation in ESCC, 

thus contributing to tumor suppression. 

 

Cyclin-dependent kinase 4/6/9 

Cyclin-dependent kinases (CDKs) can integrate many 
extracellular signaling pathways to drive cell cycle 

transition [83]. The employment of CDK4/6 inhibitors, 

such as palbociclib, ribociclib, and abemaciclib for 

clinical treatment of breast cancer has been approved in 

the United States [84, 85]. These inhibitors may interrupt 

the hyperactive cyclin D associated kinases in Rb 

positive tumor cells, resulting in cell cycle arrest [84]. 

The effectiveness of CDK4/6 inhibitors for EC therapy 

has been also investigated in preclinical and clinical trials 

[86–88]. The results of high-throughput sequencing in 

EACs showed that more than half of EACs contained 

biomarkers of response to CDK4/6 inhibitors [89]. 

SHR6390 is an orally bioavailable inhibitor of CDK4/6. 

Suppression of proliferation of EC cells and tumor 

growth of PDX model were observed following 

SHR6390 treatment [90]. The combination of SHR6390 

with paclitaxel or cisplatin synergistically inhibited tumor 

growth in a PDX model [90]. The effects of another two 

CDK4/6 inhibitors, palbociclib (PD-0332991) and 

ribociclib (LEE011) on human ESCC were validated in 

vitro and using CDX and PDX models [37]. ESCC cells 

and PDX models with cyclin dependent kinase inhibitor 

2A (CDKN2A) or CDKN2B loss were more sensitive to 

palbociclib and ribociclib treatment than cells with wild-

type genes [37]. Intriguingly, through using a mouse 

avatar model of ESCC, the authors demonstrated that 

CDKN2A and CDKN2B loss were critical biomarkers 

for CDK4/6 inhibitor therapy [37]. Lastly, researchers 

examined the expression of CDK9 in human EAC tissues 

and Barrett's esophagus and found that CDK9 was 

overexpressed in EAC [91]. Pharmaceutical inhibition of 

CDK9 by Flavopiridol and CAN508 diminished cell 

proliferation and promoted apoptosis in EAC cells [91]. 

Furthermore, the treatment using a CDK9 inhibitor might 

enhance the cell-killing effect of radiation on EAC. 

Synergetic effect of the CDK9 inhibitor, BAY1143572 

and radiation were assessed in EAC cell lines and  

PDX models [92]. By inhibiting CDK9 activation, 

BAY1143572 could sensitize EAC cells and PDX of 

EAC to radiation [92]. The precise mechanism by which 

CDK4/6/9 inhibitors suppress EC progression remains 

unclear and needs further investigation. 

 

JAK/STAT3 signaling pathway 

Janus kinase (JAK)/ signal transducer and activator of 

transcription 3 (STAT3) signaling activation frequently 

present in primary ESCC and is associated with poor 

prognosis in patients [93]. JAK/STAT3 can be recruited 

by EGFR and contributes to esophageal keratinocyte 

migration [94]. Aberrant activated STAT3 in cancer cells 

induces epithelial mesenchymal transition and facilitated 

metastasis [95]. Suppressor of cytokine signaling 1 

(SOCS1) is a multifunction protein that functions as a 

signal inhibitor and a regulator in the process of 

ubiquitination [96]. SOCS1 negatively regulates 

JAK/STAT3 signaling transduction via interaction with 
JAK proteins [97]. Overexpression of SOCS1 using 

recombinant adenoviral vectors reduced cell proliferation 

and inactivated JAK/STAT3 signaling in ESCC cells as 
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well as in ESCC PDX models [98]. By restraining the 

JAK/STAT3/c-MYC pathway, metformin could inhibit 

the transition of normal endothelial cells toward tumor 

endothelial cells induced by tumor conditioned medium 

[99]. In the human ESCC PDX model, metformin 

prevented tumor growth and tumor angiogenesis [99]. 

The phosphorylation of STAT3 in ESCC cells could be 

blocked by a small molecular STAT3 inhibitor, Stattic 

[100]. Stattic alone or in combination with 5-fluorouracil 

markedly suppressed tumor growth of ESCC-PDX, with 

less cell proliferation and increased apoptosis in 

xenografts [100]. 

 

The MAPK cascades 

Mitogen-activated protein kinase kinase (MEK)/ 

extracellular signal-regulated kinase (ERK) signaling is 

an essential component of the mitogen-activated protein 

kinase (MAPK) cascades [101]. Mutations of MEK/ERK 

signaling are frequently seen in many human tumors, 

including EC [102], lung cancer [103], and breast cancer 

[104]. Researchers have taken efforts to develop 

inhibitors of MEK and ERK as cancer therapeutic agents 

[105, 106]. Purpurogallin, a phenol distilled from oak 

nutgalls, inhibits the function of MEK1 and MEK2 by 

binding within their ATP-binding pocket [107]. 

Purpurogallin inhibited the malignant phenotypes of 

ESCC cells and tumor growth of ESCC PDX model by 

targeting MEK1 and MEK2 [107]. Ethyl gallate (EG) is a 

natural phenolic compound obtained from herbs like 

Galla Rhois, Longan and Acacia nilotica Wild [108–

110]. EG directly interacts with ERK1/2 and negatively 

regulated ERK1/2 activities in ESCC cells, leading to the 

inhibition of cell proliferation, interruption of cell cycle, 

and increase of cell apoptosis [111]. In ESCC PDX 

models, EG administration suppressed tumor growth via 

the inactivation of ERK1/2 [111]. MSK2 acts as a 

downstream of the ERK1/2 or p38 MAPK pathways and 

has a regulatory effect on CREB and histone H3 [112, 

113]. MSK2 activation as well as downstream CREB-

Bcl-2 pathway could be dampened by sulforaphene, 

leading to the induction of apoptosis and cell cycle arrest 

and inhibition of cell migration and invasion in EC cells 

[114] and using EC-PDX models, the anti-tumor effect of 

sulforaphene was validated [114]. Finally, MKK3/6 acts 

as an upstream activator of p38 MAPK. A hexa-

hydroxylated flavonoid named gossypetin reduces cell 

viability and anchorage-independent growth and induces 

apoptosis in ESCC through binding with MKK3 and 

MKK6 [115]. Using an ESCC PDX model, the anti-

tumor activity of gossypetin was further demonstrated in 
vivo [115]. 

 

Glypican-1 

Glypican-1 is a cell surface proteoglycan that presents  

in a variety of solid tumors and modulates tumor  

growth, invasion and progression [116]. Glypican-1 

overexpression is associated with cisplatin resistance 

and promotes malignant transition of ESCC via the 

PTEN/AKT/β-catenin signaling pathway [117, 118]. 

Glypican-1 expression is relatively weaker in human 

normal heart, kidney, small intestine, colon and 

esophageal tissues compared to ESCC tissues [119]. 

Knockdown of glypican-1 inhibits cell growth and the 

activation of EGFR, AKT and p44/42-MAPK signaling 

pathways [119]. Targeting glypican-1 using anti-

glypican-1 monoclonal antibody restrained tumor growth 

and promoted apoptosis in ESCC PDX models [119]. 

 

Hedgehog signaling 

Hedgehog signaling pathway is critical for tissue 

development, injury repair and tumorigenesis [120, 121]. 

The Hedgehog signaling cascade contains 3 ligands, 

Sonic (SHH), Indian, and Desert Hedgehog, which 

activate downstream signal transducer protein 

smoothened (SMO) and subsequently the GLI protein 

family (GLI1, GLI2, and GLI3) by binding with the 

transmembrane receptor Patched-1 [122]. Aberrant 

activation of Hedgehog signaling is linked to cancer 

progression and chemoresistance. GLI1 activity was 

elevated in EAC and correlated with EAC differentiation 

as well as the response to neoadjuvant chemotherapy 

[123]. In the established EAC PDX models, upregulation 

of hedgehog ligands (e.g. SHH) was found in tumor 

epithelium and upregulation was further enhanced by 

radiation treatment [20, 124]. Unlike EAC and Barrett’s 

Esophagus, SHH expression in ESCC is relatively rare 

[125]. Hence, researchers concentrated on developing 

inhibitors targeting SHH signaling for invasive EAC [126, 

127]. Evidence has shown that the Hedgehog signaling 

pathway is a target for improving chemoradiation therapy 

in EC [128]. SHH inhibition using a monoclonal antibody 

5E1 augmented the growth delay of PDX tumors 

following radiation [124]. Likewise, SMO inhibition with 

an SMO inhibitor, LDE225, also increased growth delay 

induced by radiation [124]. 

 

PI3K/AKT signaling pathway 

The phosphatidylinositol-4,5-bisphosphate 3-kinase 

(PI3K)/ serine/threonine kinase 1 (AKT) signaling 

pathway plays a critical role in modulating cellular 

processes such as cell proliferation, survival, protein 

synthesis and glucose homeostasis [129, 130]. The 

PI3K/AKT signaling pathway can be activated by 

different receptor tyrosine kinases (RTKs) including the 

EGFR family, insulin-like growth factor 1 (IGF-1) 

receptor, and fibroblastic growth factor [131]. The 

strategies that target the PI3K/AKT pathway help to 

inhibit cadherin switching, diminish cell proliferation and 

migration, alleviate inflammation, restore chemo-
sensitivity, and increase radiosensitivity in EC cells. For 

instance, the combination of a clinical PI3Kα-selective 

inhibitor CYH33 and radiation promoted DNA damage, 
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cell cycle arrest and apoptosis in ESCC cells [132]. In the 

PDX model, CYH33 and radiation inhibited tumor 

growth, lowered Akt phosphorylation and M2-like 

macrophage infiltration [132]. Oridonin, Xanthohumol, 

and Scutellarin are natural compounds isolated from 

herbs. Their activities in targeting AKT activation in 

ESCC cells and ESCC-PDX have been reported [133–

135]. These AKT inhibitors were effective in suppressing 

cell growth and inducing cell cycle arrest in ESCC cells as 

well as decreasing PDX tumor growth in vivo. 

Importantly, the effects of these inhibitors were dependent 

on AKT protein level in ESCC cells [134, 135]. 

 

VEGFR2 

The vascular endothelial growth factor (VEGF)/vascular 

endothelial growth factor receptor 2 (VEGFR2) system 

plays an important role in tumor angiogenesis. Patients 

with solid tumors have demonstrated benefit from drugs 

targeting VEGF and/or VEGFR2 [136, 137]. 

Ramucirumab is an anti-VEGFR2 monoclonal antibody 

that may prevent VEGFR2 dimerization and thus 

suppress downstream signaling transduction [138]. 

VEGFR2 expression was found to be significantly 

elevated in EC tissues and correlated with poor efficacy 

of cytotoxic treatment [139]. Ramucirumab has been 

approved by FDA for treating gastric and GEJ 

adenocarcinomas either as a single agent or in 

combination with paclitaxel [140, 141]. Apatinib, a broad 

inhibitor of VEGFR2, RET, c-Kit and c-Src, induced cell 

apoptosis and cell cycle arrest, inhibited malignant 

transformation and sensitized EC to cisplatin [139]. The 

efficacy of apatinib monotherapy as second- or further-

line treatment for advanced EC has been validated in a 

Phase II study [142]. Apatinib also exhibited its potential 

efficacy in patients with metastatic ESCC when 

combined with docetaxel [143]. Moreover, inhibition of 

VEGFR2 using DC101, a murine VEGFR2 inhibitor, 

delayed tumor growth and prolonged survival of animals 

with EAC xenografts [144]. However, vascular 

regression induced by DC101 impaired the uptake of 

intraperitoneally administered nab-paclitaxel [144]. This 

study suggested the limits of the combination of anti-

angiogenesis and cytotoxic agents in EAC therapy [144]. 

 

HSP90 

A significant correlation between heat shock protein 90 

(HSP90) expression and Her2 status has been found in 

EAC [145]. Serum HSP90a level was a significant 

predictor for definitive chemoradiotherapy in patients 

with ESCC [146]. The reduction ratio of HSSP90a 

could be an independent prognostic factor for ESCC 

patients [146]. The detailed role of HSP90 as a 

therapeutic target in EC has been reviewed in a previous 
study [147]. Drugs targeting HSP90 alone or combined 

with other chemotherapeutic drugs (i.e. cisplatin) and 

radiation play inhibitory roles in EC cell survival. For 

instance, the inhibitor of HSP90 Ganetespib (STA-

9090) could inhibit cell proliferation and induce 

apoptosis in ESCC cells and PDX models [148]. 

Interestingly, the effect of HSP90 inhibition seemed to 

be dependent on MYC expression. ESCC cells and 

xenografted primary tumors overexpressing MYC were 

more sensitive to STA-9090 [148]. 

 

Notch signaling pathway 

Dysregulation of notch signaling due to NOTCH1, 

NOTCH2 or NOTCH3 gene mutation has been shown in 

ESCC [149, 150]. Nuclear accumulation of notch 

intracellular domain (NICD) is closely linked to tumor 

grade and stage in human ESCC [151]. Higher expression 

of NICD is detected in human EAC tissues compared 

with the normal esophageal mucosa and the normal 

gastric cardia [152] and NICD expression correlates with 

the stage of EAC. Notch signaling regulates EAC cell 

proliferation and transformation of normal esophageal 

epithelial cells [152, 153]. DAPT treatment suppressed 

tumor growth and promoted apoptosis in EAC CDX 

models and PDX models [152]. Inhibition of Notch 

signaling also decreased the expression of cancer stem-

cell markers in EAC cells [152]. 

 

Other targets and utilities 

Microtubules are composed of alpha- and beta-tubulin 

heterodimers, the basic structures that are essential for 

cell shape and behavior. Microtubules are highly 

dynamic structures that change during the cell cycle. 

Clinically, tubulin binding agents (TBA) can suppress 

microtubule dynamics and induce cell cycle arrest, thus 

contributing to tumor growth inhibition [154, 155]. 

PPMP (2-[4-(3,4-dimethoxyphenyl)-3-methyl-1H-

pyrazol-5-yl]-5-[(2-methylprop- 2-en-1-yl)oxy]phenol), 

a novel TBA, reduced cell viability, caused cell cycle 

arrest and apoptosis in ESCC cell lines [156]. PPMP 

might occupy the colchicine binding site of tubulin and 

inhibit tubulin polymerization in ESCC cells [156]. In 

vivo, PPMP effectively suppressed tumor growth in 

animals bearing ESCC PDX [156]. 

 

With the extensive application of next-generation 

sequencing to cancer transcriptomes, the role of long 

non-coding RNAs (LncRNAs) in tumor progression has 

increasingly drawn people’s attention [157]. LncRNAs 

act as tumor suppressors or oncogenes by modulating 

tumor-suppressive or oncogenic pathways [158]. 

LncRNA AGPG is highly enhanced in human ESCC 

tissues and cell lines. AGPG interacts with PFKFB3, 

contributing to metabolism remodeling in ESCC cells. 

Administration of an AGPG inhibitor to ESCC PDX 

models markedly reduced tumor growth [159]. 
 

Additionally, PDXs are also of great value in 

establishing chemoresistant cell lines and identity new 
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Table 3. Agents and their targets tested in PDX models of esophageal cancer. 

Agent  Target Histology Administration method Mouse strain Reference 

Gimatecan  Topoisomerase I ESCC Oral gavage NOD-SCID mice [61] 

HCPT Topoisomerase I ESCC Paraneoplastic injection SCID mice [59] 

Cetuximab EGFR ESCC Intraperitoneal injection Athymic nude mice [36] 

Theliatinib EGFR ESCC Oral gavage NOD-SCID mice [42] 

Trastuzumab  HER2 EAC Intraperitoneal injection NSG mice [70] 

Trastuzumab/ 

pertuzumab 
HER2/HER3 EAC Intraperitoneal injection NSG mice [160] 

Afatinib 

dasatinib 

EGFR /Src family 

kinase 
ESCC Oral gavage NOD-SCID mice [73] 

Afatinib/AMG 337 HER2/MET EG - - [74] 

Lapatinib EGFR/HER2 ESCC Oral gavage Athymic nude mice [75] 

APIO-EE-9 Aurora A and B ESCC - SCID mice [82] 

SHR6390 CDK4/6 ESCC Oral gavage NOD-SCID mice [90] 

Palbociclib  CDK4/6 ESCC Oral gavage BALB/c nude mice [37] 

BAY1143572 CDK9 EAC Intraperitoneal injection Athymic nude mice [92] 

AdSOCS1  SOCS1 ESCC Intratumoral injection NOD-SCID [98] 

Metformin  JAK/STAT3 ESCC - SCID mice [99] 

Stattic STAT3 ESCC Intraperitoneal injection SCID mice [100] 

Purpurogallin MEK1/2 ESCC Oral gavage SCID mice [107] 

Ethyl gallate ERK1/2 ESCC Oral gavage SCID mcie [111] 

Sulforaphene MSK2 ESCC Intraperitoneal injection SCID mice [114] 

Gossypetin MKK3/6 ESCC Oral gavage SCID mice [115] 

Anti-Glypican-1 mAb Glypican-1 ESCC Intraperitoneal injection NOG/SCID mice [119] 

5E1 

LDE225 

SHH 

SMO 
EAC 

Intraperitoneal injection 

Oral gavage 

NOD-SCID/NSG 

mice 
[124] 

CYH33 PI3Kα ESCC Oral gavage BALB/c nude mice [132] 

Oridonin Akt ESCC Oral gavage SCID mice [133] 

Xanthohumol  Akt ESCC Oral gavage SCID mice [134] 

Scutellarin  Akt1/2 ESCC Oral gavage SCID mice [135] 

DC101 VEGFR2 EAC Intraperitoneal injection Athymic nude mice [144] 

Ganetespib HSP90 ESCC Intraperitoneal injection NSG mice [148] 

DAPT Notch signaling EAC Intraperitoneal injection NSG [152] 

PPMP Tubulin ESCC Intraperitoneal injection SCID mice [156] 

Antisense 

oligonucleotides 
LncRNA AGPG ESCC Intratumoral injection Athymic nude mice [159] 

HCPT: (S)-10-Hydroxycamptothecin; EGFR: epidermal growth factor receptor; HER2: erb-b2 receptor tyrosine kinase 2; 
HER3: erb-b2 receptor tyrosine kinase 3; MET: MET proto-oncogene, receptor tyrosine kinase; CDK4/6/9:cyclin dependent 
kinase 4/6/9; SOCS1:suppressor of cytokine signaling 1; JAK: Janus kinase; STAT3:signal transducer and activator of 
transcription 3; MEK1/2:mitogen-activated protein kinase kinase 1/2; ERK1/2: extracellular signal-regulated kinase 1/2; 
MSK2:ribosomal protein S6 kinase A4; MKK3/6:mitogen-activated protein kinase kinase 3/6; SHH: sonic hedgehog; SMO: 
smoothened, frizzled class receptor; PI3Kα:phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; Akt: 
serine/threonine kinase 1; VEGFR2: vascular endothelial growth factor receptor 2; HSP90: heat shock protein 90; EAC: 
esophageal adenocarcinoma; ESCC: esophageal squamous cell carcinoma; EG: esophagogastric cancer; SCID: C.B17-Prkdcscid; 
NOD-SCID: NOD.C.B17-Prkdcscid; NOG/SCID: NODShi.Cg-Prkdcscid Il2rgtm1Sug; NSG: NOD.Cg-PrkdcscidIl2rgtm1Wjl. 

therapeutic targets. Liu et al [18] established cisplatin-

resistant ESCC cell lines through repeatedly treating 

ESCC-PDX models with cisplatin. With these cisplatin-

resistant ESCC cells, they were able to pick out 

microRNA-455-3p as a potential therapeutic target to 

overcome drug resistance in EC patients [18]. 

CONCLUSIONS 
 

PDX models of EC are increasingly utilized for 

studying tumor biology, investigating genetic 

heterogeneity, and screening predictive biomarkers and 

therapeutic targets (Table 3). Indeed, investigators have 
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tested various drugs or radiation therapy on mice 

bearing PDX and screened predictive biomarkers/ 

therapeutic targets that may guide for EC therapy in 

patients (Figure 2). 

 

However, there are still several problems that need to be 

solved in the establishment and usage of EC-PDX: 

 

1) The engraftment rates of EC-PDX remain relatively 

low with the current methods, and only a minority 

of tumor tissues derived from patients can be 

successfully engrafted. As a result, there is a high 

cost in establishing successful PDX models. To 

solve this issue, novel immunodeficient animals are 

needed, such as gene-modified rats and hamsters 

[161–163]; 

 

2) Although subcutaneous engraftment is commonly 

employed by most researchers [164], subcutaneous 

models less accurately reflect tumor progression 

compared with orthotopic methods and hinder the 

investigation of tumor metastasis, angiogenesis and 

tumor microenvironment in EC. The difficulties in 

establishing and examining orthotopic PDX models 

have become the roadblocks for the popularization 

of this tool; 

 

3) A replacement of human stromal cells by mouse 

stroma occurs in the initial stage of PDX 

establishment [20], which blocks the study of the 

interaction between EC cells and stromal cells due 

to the loss of human stromal cells in PDX; 

 

4) A lack of a functional immune system also prevents 

the analysis of immunotherapeutic approaches to 

EC therapy. 

 

Although the drawbacks exist in the current EC-PDX 

models, the development of novel immunodeficient 

animals may help accelerate their usage in a preclinical 

study. For instance, tumor cells in immunodeficient 

Syrian hamster can communicate with host fibroblasts, 

which may provide growth factors to keep human 

cancer and stromal cells survive longer [163]. 

Moreover, humanized animal models with reconstituted 

human immune cells will be more meaningful, which 

allow the investigation of the interaction between 

cancer cells and various human immune cells. 

 

 
 

Figure 2. The application of patient-derived xenograft (PDX) in screening predictive biomarkers and therapeutic targets for 
esophageal cancer therapy. Esophageal cancer tissues are obtained from patients and implanted into immunodeficient mice for PDX 

models establishment. With the PDX models, the treatment response of chemotherapeutic drugs, radiotherapeutic methods or targeted 
drugs are tested on these tumor xenografts. Subsequently, genome-wide sequencing techniques and expressional analysis are carried out to 
screen genes with differential expression, which are related to various therapeutic methods. Through bioinformatic analysis, potential 
biomarkers are selected from differentially expressed genes. Finally, clinical trials are designed and performed to validate the feasibility of 
these biomarkers. 
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Search strategy 
 

Searching databases include PubMed, Medline, and 

Web of Science by using “patient derived xenograft” 

and “esophagus*”, or “mouse avatar”, “xenograft”, 

“primary esophageal cancer”. 
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