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INTRODUCTION 
 

Intraventricular hemorrhage (IVH) occurs in up to 54% 

of intracerebral hemorrhage (ICH) cases [1], and is 

considered an independent predictor of poor outcome 

due to the mass effect, obstructive hydrocephalus, and 

inflammatory meningitis [2–5]. Twelve percent of IVH 

cases will increase in volume by more than 2 mL.  

 

Radiologists distinguish growth-prone hematoma based 

on empirical knowledge of location, radiological sign, and 

morphological characteristics. However, these qualitative 

variables are subjective and difficult to standardize. 

Furthermore, atypical hematomas with fine borders can 

develop new IVH upon follow-up examinations. These 

characteristics hamper diagnosis and treatment decisions. 

 

Radiomics is an emerging tool that allows researchers to 

obtain quantitative features from medical images. 

Radiomics features can be used to evaluate the tumor 

spatial heterogeneity and microenvironment and  

reflect tumor gene patterns [6]. It is widely used for 

evaluating tumor prognosis, selecting appropriate treat-

ment, and predicting lymph node metastasis [7, 8]. 
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ABSTRACT 
 

We constructed a radiomics-clinical model to predict intraventricular hemorrhage (IVH) growth after 
spontaneous intracerebral hematoma. The model was developed using a training cohort (N=626) and validated 
with an independent testing cohort (N=270). Radiomics features and clinical predictors were selected using the 
least absolute shrinkage and selection operator (LASSO) method and multivariate analysis. The radiomics score 
(Rad-score) was calculated through linear combination of selected features multiplied by their respective LASSO 
coefficients. The support vector machine (SVM) method was used to construct the model. IVH growth was 
experienced by 13.4% and 13.7% of patients in the training and testing cohorts, respectively. The Rad-score was 
associated with severe IVH and poor outcome. Independent predictors of IVH growth included 
hypercholesterolemia (odds ratio [OR], 0.12 [95%CI, 0.02-0.90]; p=0.039), baseline Graeb score (OR, 1.26 
[95%CI, 1.16-1.36]; p<0.001), time to initial CT (OR, 0.70 [95%CI, 0.58-0.86]; p<0.001), international normalized 
ratio (OR, 4.27 [95%CI, 1.40, 13.0]; p=0.011), and Rad-score (OR, 2.3 [95%CI, 1.6-3.3]; p<0.001). In the training 
cohort, the model achieved an AUC of 0.78, sensitivity of 0.83, and specificity of 0.66. In the testing cohort, 
AUC, sensitivity, and specificity were 0.71, 0.81, and 0.64, respectively. This radiomics-clinical model thus has 
the potential to predict IVH growth. 
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Although some researchers have predicted parenchymal 

hemorrhage enlargement with radiomics technology [9–

11], few have tried to predict IVH growth. In this study, 

we aimed to develop a model that incorporates clinical 

and radiomics features to identify patients at high risk for 

IVH growth in the acute phase of ICH. 

 

RESULTS 
 

Study population 

 

The incidence of IVH growth in the training and testing 

cohorts were 84 (13.4%) and 37 (13.7%), respectively 

(Table 1). There was no significant difference in the 

incidence of IVH growth or baseline characteristics 

between the cohorts. 

 

Patient characteristics 

 

Among the 626 patients enrolled in the training cohort, 

those with IVH growth had a lower admission GCS 

(median [IQR], 12.5 [7.0-15.0] vs. 14.0 [11.0-15.0]; 

p<0.001), larger parenchymal hemorrhage volume 

(median [IQR], 19.6 [11.8-30.5] mL vs. 15.9 [9.4-26.0] 

mL; p<0.01), higher baseline Graeb score (3.0 [0.0, 7.8] 

vs. 0.0 [0.0. 2.0]; p<0.001), and experienced a shorter 

time from onset to initial ICH detection (median [IQR], 

2.0 [1.5-3.5] h vs. 3.0 [2.0-4.5] h; p<0.01) (Table 2). 

Patients without a history of hypercholesterolemia (1.0 

[1.2%] vs. 76.0 [14.0%)]; p<0.01) or hypertension (62.0 

[73.8%] vs. 451.0 [83.2%]; p<0.05) were more likely to 

experience IVH growth. Patients with IVH growth were 

more likely to have parenchymal hemorrhage expansion 

(HE) (47.0 [56.0%] vs. 80.0 [14.8%]; p<0.001) and a poor 

outcome (81.0 [96.4%] vs. 405.0 [74.7%]; p<0.01). GCS, 

baseline ICH volume, baseline Graeb score, time to initial 

CT, blood glucose, history of hypercholesterolemia, 

hypertension, international normalized ratio (INR), and 

the Rad-score were analyzed by multivariable regression. 

 

Multivariable regression analysis indicated that a history 

of hypercholesterolemia (odds ratio [OR], 0.12 [95% CI, 

0.02-0.90]; p=0.039), baseline Graeb score (OR, 1.26 

[95% CI, 1.16-1.36]; p<0.001), time to initial CT (OR, 

0.70 [95% CI, 0.58-0.86]; p<0.001), INR (OR, 4.27 [95% 

CI, 1.40, 13.00]; p=0.011), and Rad-score (OR, 2.30 

[95% CI, 1.60-3.30]; p<0.001) (Supplementary Table 2)  

were independently associated with IVH growth. Multi-

collinearity was not observed between the independent 

predictors and IVH growth (VIF for all <2). 

 

Radiomics analysis 

 

The median ICC of 396 candidate features was  

0.96 (IQR, 0.87-0.99). Twenty-eight features were 

excluded and 368 features with good agreement were 

further analyzed by the LASSO regression model. Finally, 

seven features were selected to construct the radiomics 

signature (Supplementary Figure 1, Supplementary Table 

3). The mean and median ICC of the seven selected 

features were 0.88 (standard deviation, 0.06) and 0.90 

(IQR, 0.85-0.91), respectively. The Rad-score was 

calculated through the linear combination of selected 

features multiplied by their respective LASSO 

coefficients (Supplementary Material 3). The Rad-score 

was confirmed to be a significant predictor of IVH growth 

with an optimal cut-off value of -1.7259179. Patients with 

a Rad-score of ≥-1.7259179 were more likely to 

encounter severe IVH (Graeb score, ≥6, 50.0 [22.6%] vs. 

55.0 [13.6%]; p=0.004) and have a poor outcome (GOS, 

≤3, 197.0 [89.1%] vs. 289.0 [71.4%]; p<0.001) (Table 3). 

The results from Figure 1 indicate that the proportion of 

poor outcomes was lower in individuals with a lower Rad-

score and progressively increased with an increasing 

interquartile Rad-score (p<0.001). We used the Rad-score 

to predict poor outcome. In the training cohort, the Rad-

score achieved an AUC of 0.695, a sensitivity of 0.639, 

and a specificity of 0.696. In the testing cohort, the AUC, 

sensitivity, and specificity were 0.665, 0.639, and 0.632, 

respectively. The Receiver-operator curves are shown in 

Supplementary Figure 2. 

 

Model performance 

 

Five features, including history of 

hypercholesterolemia, baseline Graeb score, time to 

initial CT, INR, and Rad-score, were introduced into 

the SVM model. In the training cohort, the model 

yielded an AUC of 0.78, sensitivity of 0.83, and 

specificity of 0.66. In the testing cohort, the AUC, 

sensitivity, and specificity were 0.71, 0.81, and 0.64, 

respectively Figure 2, Table 4. The confusion matrices 

results of the model are shown in Supplementary 

Tables 4, 5. 
 

Evaluation of clinical usefulness  
 

DCA indicated that the radiomics-clinical model had a 

higher overall net benefit in distinguishing patients at 

high risk for IVH growth than the single clinical model 

for most of the threshold probabilities (Figure 3). 

 

DISCUSSION 
 

A radiomics-clinical model predicting IVH growth 

was established using SVM and showed good 

performance. The Rad-score was confirmed to be 

independently associated with severe IVH and poor 

outcomes. To the best of our knowledge, this is the 
first application of radiomics to predict IVH growth in 

a relatively large sample (a total of 896 patients 

enrolled). 
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Table 1. Baseline characteristics of patients in the training and testing cohorts (variables were presented as 
counts [percentages]). 

Training cohort (N=626) Testing cohort (N=270) 

Baseline IVH (%)* IVH expansion 51.0 (24.2) Baseline IVH (%)* IVH expansion 20 (20.0) 

 Non-IVH expansion 160.0 (75.8)  Non-IVH expansion 79 (80.0) 

No baseline IVH (%)* New IVH 33.0 (8.0) No baseline IVH (%)* New IVH 17 (9.9) 

 No IVH 382.0 (92.0)  No IVH 154 (90.1) 

IVH growth (%)* 84.0 (13.4) IVH growth (%)* 37.0 (13.7) 

IVH= intraventricular hemorrhage; *Data are the number of patients, with percentages in parentheses. 

 

Table 2. Characteristics of patients in two cohorts and univariate analysis of variables associated with IVH growth. 

 Training cohort (N=626) Testing cohort (N=270) 

 IVH growth Non-IVH growth P value IVH growth Non-IVH growth P value 

Age (year) 61.5(53.0, 73.8) 60.0(51.0, 69.0) 0.285 65.0(55.0, 68.5) 59.0(50.0, 67.0) 0.045 

Sex   0.198   0.927 

Male (%)* 61.0(72.6%) 355.0(65.5%)  23.0(62.2%) 143.0(61.4%)  

Female (%)* 23.0(27.4%) 187.0(34.5%)  14.0(37.8%) 90.0(38.6%)  

Hypertension (%)* 62.0(73.8%) 451.0(83.2%) 0.037 25.0(67.6%) 192.0(82.4%) 0.035 

Hypercholesterolemia (%)* 1.0(1.2%) 76.0(14%) 0.001 3.0(8.1%) 23.0(9.9%) 0.970 

Diabetes (%)* 5.0(6.0%) 53.0(9.8%) 0.260 5.0(13.5%) 30.0(12.9%) 1.000 

Prior hemorrhage (%)* 4.0(4.8%) 20.0(3.7%) 0.864 2.0(5.4%) 9.0(3.9%) 1.000 

Alcohol-consumption (%)* 25(29.8%) 161(29.7%) 0.991 10.0(27.0%) 61.0(26.2%) 0.913 

GCS 12.5(7.0, 15.0) 14.0(11.0, 15.0) <0.001 10.0(7.0, 13.0) 13.0(10.0, 15.0) <0.001 

Time to initial CT (h) 2.0(1.5, 3.5) 3.0(2.0, 4.5) 0.001 2.5(2.0, 3.5) 3.0(2.0, 4.0) 0.474 

Baseline ICH volume (mL) 19.6(11.8, 30.5) 15.9(9.4, 26.0) 0.008 21.1(12.8, 38.0) 17.0(9.0, 27.5) 0.009 

Parenchymal HE (%)* 47.0(56.0%) 80.0(14.8%) <0.001 20.0(54.1%) 35.0(15.0%) <0.001 

Blood glucose (mmol/L) 7.4(6.2, 9.0) 6.7(5.9, 8.0) 0.009 7.2(6.2, 9.2) 6.9(6.0, 8.3) 0.177 

PLT count (10^9/L) 195.5(159.5, 226.8) 206.0 (169.8, 245.3) 0.051 204.0(143.0, 228.0) 201.0(163.0, 246.0) 0.219 

INR 1.0(1.0, 1.1) 1.0(1.0, 1.1) 0.087 1.0(1.0, 1.1) 1.0(1.0, 1.0) 0.666 

APTT (s) 34.2(31.4, 37.8) 34.0(31.1, 37.2) 0.492 32.9(31.2, 36.0) 33.3(31.2, 36.8) 0.825 

Baseline Graeb score 3.0(0.0, 7.8) 0.0(0.0, 2.0) <0.001 2.0(0.0, 5.0) 0.0(0.0, 2.0) 0.012 

Follow-up Graeb score 5.0(3.0, 8.0) 0.0(0.0, 2.0) <0.001 4.0(3.0, 6.5) 0.0(0.0, 2.5) <0.001 

GOS≤3 (%)* 81.0(96.4%) 405(74.7%) <0.001 35.0(94.6%) 169.0(72.5%) 0.004 

Rad-score -1.5(-2.0, -1.1) -2.1(-2.6, -1.6) <0.001 -1.7(-2.0, -1.2) -2.1(-2.7, -1.7) 0.001 

CT= computed tomography; GCS= Glasgow Coma Scale; GOS= Glasgow Outcome Scale; ICH= intracerebral hemorrhage; HE= 
hemorrhage expansion; IVH= intraventricular hemorrhage; PLT= platelet; INR= international normalized ratio; APTT= 
activated partial thromboplastin time; Rad-score= radiomics score. 
Continuous variables were presented as medians (interquartile range, [IQR]) and categorical variables were presented as 
counts (with percentages). P values were calculated by using χ2 test or Wilcoxon rank-sum test. *Data are the number of 
patients, with percentages in parentheses. 

 

Table 3. Relationship between Rad-score, severe IVH and poor outcome at discharge. 
(Variables were presented as counts [percentages]). 

N (%) Severe IVH (Greab score, ≥6) Poor outcome (GOS, ≤3) 

Rad-score≥-1.7259179 (%)* 50.0(22.6) 197.0(89.1) 

Rad-score<-1.7259179 (%)* 55.0(13.6) 289.0(71.4) 

P value 0.004 <0.001 

P values were calculated by using χ2 test. *Data are the number of patients, with percentages in 
parentheses. 
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Among the seven radiomics features used to construct the 

Rad-score, features from group GLZSM characterized the 

texture homogeneity of lesions, and the Feature Haralick 

Correlation from group GLCM measured the degree of 

image gray level similarity. Previous reports indicated that 

hematoma heterogeneity was a sign of active bleeding and 

could predict hematoma development [10, 12]. We 

inferred that the radiomics features captured the 

intrahematomal heterogeneity. Nevertheless, interpreting 

the association between the radiomics features and the 

underlying biological processes is challenging. The Rad-

score incorporates multiple radiomics features and serves 

as a multi-factor panel that reduces the complexity of 

multi-feature studies [13]. For example, the Rad-score 

could differentiate between similar hematomas in two 

patients and specify their different outcomes (Figure 4). 

 

Our study also found that increasing INR levels and 

baseline Graeb scores are predictors for IVH growth. A 

higher INR implies longer prothrombin time and worse

 

 
 

Figure 1. A bar chart demonstrating the relationship between the Rad-score and glasgow outcome scale at discharge.

 

 
 

Figure 2. Receiver operator curves (ROC) of the radiomics-clinical model in the training (A) and testing (B) cohorts.
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Table 4. Performance of the radiomics-clinical model. 

 ACC AUC Sensitivity Specificity PPV NPV 

Training cohort 0.75 0.78 0.83 0.66 0.27 0.96 

Testing cohort 0.71 0.71 0.81 0.64 0.26 0.95 

ACC=area under the receiver operating curve; ACC=accuracy; PPV=positive predictive value; NPV=negative 
predictive value. 

 

coagulation function, which could cause bleeding and 

lead to further IVH growth, as seen in both ventricular 

[14] and parenchymal hemorrhage growth [15–18]. The 

Graeb score is a grading system of 0–12, which can be 

used to quantify the amount of blood in each ventricle 

[19]. Increases in the Graeb score indicates a larger 

ventricular hemorrhage and can be used to predict IVH 

growth. 

 

A history of hypercholesterolemia was associated with a 

lower risk of IVH growth in our study. Higher serum 

cholesterol is negatively correlated to ICH volume and 

HE risk in parenchymal hematoma [20, 21]. There is also 

a protective association between hypercholesterolemia 

and ICH risk (especially in non-lobar lesions) [22–24], 

regardless of whether the patient uses statins [20, 22]. 

These correlations might be explained by the role of 

serum cholesterol in maintaining vascular integrity and 

promoting platelet aggregability [21]. Moreover, a higher 

level of triglycerides is related to a lower rate of deep 

microbleeds [25]. Thus, hypercholesterolemia may 

contribute to the maintenance of deep penetrating 

arterioles [22] and prevent IVH growth. 

 

An increasing number of studies have focused on the 

contribution of IVH severity to prognosis and the tools 

for grading IVH extent [1, 26, 27]. A Graeb score of ≥5 

was reported as an independent predictor of poor 

outcome [1]. External ventricular drain (EVD) 

placement or prior treatment was recommended for 

patients with a Graeb score of >5 [28]. Thus, we defined 

patients with a follow-up Graeb score of ≥6 as having 

severe IVH. Our results showed that the Rad-score 

could predict IVH growth, and distinguish patients who 

might develop severe IVH (Graeb score, ≥6) or have 

poor outcomes (GOS, ≤3) at the first CT scan.  

 

 
 

Figure 3. Decision curve analysis for the two models. The y-axis indicates the net benefit; the x-axis indicates threshold probability. 

The grey line represents the assumption that all patients have IVH growth. The black line represents the assumption that no patients have 
IVH growth. The blue line and red line represent the net benefit of the single clinical model and radiomics-clinical model, respectively. The 
radiomics-clinical model had a higher net benefit compared with the single clinical model across most threshold probabilities 

= − −
−

R R

R
Net benefit TPR  P    (1 ),

1
FPR P

R
 P represents the prevalence of the disease; R represents the threshold probability; TPR= true 

positive rate; FPR= false positive rate). 
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Currently, IVH management involves EVD, 

intraventricular fibrinolysis, neuro-endoscopic procedure, 

and lumbar drainage [29–31]. However, there is no 

precise clinical threshold that determines the need for 

EVD or thrombolysis [15]. Furthermore, there are 

complications regardless of the method chosen, and the 

net benefit of these invasive therapies remains unclear 

[5]. Some studies reported no significant difference in the 

outcome of patients who received two different 

treatments [32]. This emphasizes the need for early 

identification of patients at high risks for IVH growth and 

offering them targeted treatment when the rate of 

hematoma growth is highest [2, 5]. 

 

The radiomics-clinical model in our study can identify 

the high-risk patient group by a noninvasive method. 

Accordingly, this can help clinicians judge the patient’s 

condition and select a treatment.  

 

There were several limitations in our study. First, this is 

a retrospective study. The time for repeating the CT 

scan is varied, which may underestimate the extent of 

IVH expansion and hydrocephalus. Second, the single-

center enrollment is limited in its generalizability. 

Hence, a future prospective and multi-institutional study 

is needed. Third, it takes approximately two to five 

minutes to segment a complete ROI. This manual 

delineation of hematomas is time-consuming and has a 

relatively low reproducibility. Consequently, we are 

exploring the feasibility of an automated or semi-

automated delineation of hematoma. Finally, a threshold 

of 2 mL may exclude patients with a volume increase of 

<2 mL but who still developed severe IVH. For 

instance, a previous study found an expansion of 1 mL 

in IVH volume was associated with poor outcomes [3]. 

Therefore, additional studies are required to further 

confirm the cut-off value that correlates to poor 

outcome. 

 

In conclusion, we confirmed that the Rad-score at 

admission was associated with severe IVH and poor 

outcome. Our model incorporates radiomics and clinical

 

 
 

Figure 4. Non-contrast CT images of two patients with similar hematoma but different experiences. Pictures in the lower right 

corner are the 3-D images of the IVH. Image (A, B) are the baseline and follow-up CT images, respectively, of patient A: a 61-year-old male 
who had a Rad-score of -2.2119681 (<-1.7259179). Image (C, D) are the baseline and follow-up CT images, respectively, of patient B: a 67-
year-old female with a Rad-score of -1.6176548 (>-1.7259179). Within 24 hours from symptom onset, the IVH volume of patient A changed 
from 5.62 mL to 6.84 mL, and the IVH volume of patient B changed from 0.5 mL to 12.4 mL. Patient B experienced IVH growth while patient A 
did not. 
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variables and was developed using the SVM method. 

The radiomics-clinical model predicted IVH growth 

with good performance and may help clinicians target 

patients who have a high IVH growth risk.  

 

MATERIALS AND METHODS 
 

Our study was approved by the Medical Ethics 

Committee of The First Affiliated Hospital of Wenzhou 

Medical University and written informed consent was 

waived. 

 

Patients and clinical data 

 

Patients with ICH seen between September 2013 and 

August 2018 in The First Affiliated Hospital of 

Wenzhou Medical University were retrospectively 

reviewed. Those who were >18 years old and received 

baseline and follow-up CT scans within 6 h and 72 h 

from the onset were included. Exclusion criteria were as 

follows: (1) secondary ICH caused by aneurysm, 

arteriovenous malformation, neoplasm, hemorrhagic 

infarction, or traumatic brain injury; (2) surgery or 

interventional therapy before follow-up CT scan; (3) 

primary IVH; (4) non-deep ICH location (lobar, 

cerebellum or brain stem hematoma); (5) use of 

anticoagulants or antiplatelet drugs before ICH onset; 

and (6) CT images with severe artifacts. Finally, a total 

of 896 patients were included and randomly divided 

into the training (N=626) and testing (N=270) cohorts.  

 

Demographic data (age and sex), medical history (history 

of hypertension, diabetes, hypercholesterolemia, 

hemorrhage, and alcohol consumption), initial clinical 

data (Glasgow coma scale, time to initial CT, and baseline 

ICH volume), and laboratory data (blood glucose, platelet 

count, international normalized ratio, and activated partial 

thromboplastin time) were recorded after admission. The 

Glasgow Outcome Scale (GOS) was evaluated at 

discharge, and poor outcome was defined as having a 

GOS of ≤3 [33, 34]. 

 

Neuroimage acquisition and analysis 

 

New IVH refers to patients who had no baseline IVH 

but developed a new IVH lesion in follow-up CT 

images (<72 h) (Figure 5A, 5B). IVH expansion was 

defined as an absolute increase from the baseline IVH 

volume of >2 mL between the initial and follow-up CT 

images (Figure 5C, 5D). We chose a threshold of 2 mL 

to define IVH expansion because it is correlated with 

poor outcome and mortality [32]. IVH growth includes 

new and expanding IVH. We restricted hematoma to the 

deep brain region for several reasons. First, deep ICH 

locations are more likely to have HE [35]. Second, 

hematomas in the deep region (thalamus and basal 

ganglia) are closer to ventricle systems and have a 

higher risk of IVH growth and poor outcome [36, 37]. 

Third, in this exploratory study, we tried to exclude as 

many confounders as possible. Thus, we decided to 

exclude the non-deep hematomas and focus on the 

hematomas that had a greater risk for IVH growth (deep 

hematomas).  

 

All CT images were acquired using a 64-channel 

multidetector CT scanner (LightSpeed VCT 64; GE 

Medical Systems, Milwaukee, WI, USA) with a scan 

thickness of 5 mm, reconstruction interval of 5 mm, 

tube voltage of 120 kV, tube current of 80 mAs, and 

matrix size of 512 × 512. Radiological data was 

acquired by two radiologists (two years of experience 

each) who were blinded to patients’ information. The 

baseline and follow-up IVH volume were measured 

using the “level tracing” function of 3D Slicer software 

(version 4.10.2; http://www.slicer.org). We also 

evaluated IVH severity by calculating the Graeb score 

[19] from the baseline and follow-up CT images. A 

Graeb score of ≥6 was defined as severe IVH based on 

the literature for IVH severity indicators [28, 33]. 

 

The segmentation process followed a consistent 

standard. Regions of interest (ROIs) were first manually 

segmented along the hematoma profile on each slice of 

non-enhanced CT (NECT) images (Figures 5, 6). Skull, 

peri-hemorrhagic edema, and normal brain parenchyma 

were manually excluded. All ROIs were first segmented 

by a radiologist with two years of experience. Then,  

to measure the inter-observer segmentation 

reproducibility, 100 images were randomly selected to 

be segmented by another radiologist with five years of 

experience [38, 39]. An inter-class correlation 

coefficient (ICC) of >0.75 was considered a good inter-

observer agreement. A window width of 70 and a 

window level of 35 were set to clearly distinguished 

hematomas from brain parenchyma. All ROIs were 

examined by a senior radiologist with 10 years of 

experience. 

 

A total of 396 radiomics features were extracted using 

the Artificial Intelligence Kit software (version 3.0.0.R; 

GE Healthcare). There were six categories: (1) 

Histogram, (2) Texture, (3) Form factor, (4) Grey level 

co-occurrence matrix (GLCM), (5) Grey level run-

length matrix (GLRLM), and (6) Gray level size zone 

matrix (GLSZM) (more details about extracted features 

are shown in the Supplementary Table 1). To remove 

the unit data limits of each feature, the extracted 

features were standardized by z-score (Supplementary 

Material 1). The least absolute shrinkage and selection 
operator (LASSO) is suitable for feature selection in 

high-dimensional data [40]. Hence, we used the LASSO 

method to select the most valuable features. The 

http://www.slicer.org/
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parameter (λ) is a penalty parameter that varies for each 

model fitting step. As the value of λ increased, 

radiomics features with non-zero coefficients decreased. 

The optimal λ was selected by a 10-fold cross-

validation, and the IVH growth-related radiomics 

features were subsequently chosen. The radiomics score 

(Rad-score) was calculated through the linear 

combination of selected features by multiplying with 

their respective LASSO coefficients. We categorized 

the Rad-score into groups by quartiles and cut-off value 

to explore the association between Rad-score, IVH 

severity, and clinical outcome. The workflow of ROI 

segmentation, feature extraction, and model 

construction is shown in Figure 6. 

 

Statistical analysis 

 

Statistical analysis was performed with SPSS (version 

24.0; IBM, Armonk, NY, USA) and R (version 3.6.1; 

http://www.R-project.org). Continuous variables are

 

 

 

Figure 5. Representative illustration of new IVH, IVH expansion, and manual region of interest (ROI) segmentation. Images (A, 

B) are non-contrast CT images (axial view) of a 54-year-old male who experienced a new IVH. There was no baseline IVH (A), but the 
hematoma broke into ventricles on the follow-up CT (B). Images (C, D) are non-contrast CT images (axial view) of a 68-year-old female who 
experienced IVH expansion; (C) shows an initial IVH with a volume of 2.53 mL; follow-up CT (D) shows that the volume of IVH increased to 
22.31 mL within 72 h. 

 

 
 

Figure 6. (A) Regions of interest were manually segmented. (B) A total of 396 features were extracted. (C) Features were selected using 
LASSO method. (D) Rad-score was calculated. (E) Predicting model was developed using support vector machine. 

http://www.r-project.org/
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presented as medians (interquartile range, [IQR]), and 

categorical variables are shown as counts (with 

percentages). First, we performed univariate analysis to 

select potential clinical risk factors of IVH growth. 

Differences in continuous variables (age, time to initial 

CT, ICH volume, blood glucose, platelet count, 

international normalized ratio, Rad-score, and activated 

partial thromboplastin time) were examined using 

Student t-tests or Wilcoxon rank-sum test. The χ2 test or 

Fisher exact test (two-tailed) were performed for 

categorical variables (sex, GCS, history of 

hypertension, diabetes, hypercholesterolemia, hemor-

rhage, GOS, and alcohol consumption). A multivariable 

logistic regression with an enter method was performed 

to identify factors that were independently associated 

with IVH growth. Variance inflation factor (VIF) was 

used to detect multicollinearity, and a VIF of ≥5 was 

defined as multicollinearity [41]. Receiver-operator 

curve (ROC) analysis was conducted to derive the Rad-

score cut-off value for IVH growth prediction, and the 

optimal cutoff value was selected using Youden’s 

index. A two-sided p value of <0.05 indicates a 

statistical difference. 

 

Machine learning and model performance evaluation 

 

Support vector machine (SVM) is a type of supervised 

machine learning method that classifies data points by 

maximizing the margin between classes in a high-

dimensional space [42]. The independent predictors 

identified in multivariable analysis were introduced into 

the SVM model. A five-fold cross-validation was used in 

the training cohort to determine the optimal hyper-

parameter, reduce overfitting, construct a stable model, 

and evaluate model performance [43]. The independent 

testing cohort was used to simulate the prediction and 

further test the model performance. (additional details 

about SVM modeling are shown in Supplementary 

Material 2). The machine learning process was 

performed using the scikit-learn packages (0.21.3) of 

Python (version 3.7; http://www.python.org). 

 

The model performance was evaluated by the area 

under the receiver operating curve (AUC). Confusion 

matrix-derived metrics, including accuracy (ACC), 

sensitivity, specificity, true positive rate (TPR), true 

negative rate (TNR), positive predictive value (PPV), 

and negative predictive value (NPV), were also 

calculated. 

 

Evaluation of clinical usefulness  
 

Decision curve analysis (DCA) measures the clinical 
utility of models by quantifying the net benefits at 

different threshold probabilities [44]. DCA was 

performed to compare the overall net benefits of the 

radiomics-clinical model and single clinical model 

without the Rad-score in the cohort. The net benefit was 

defined as the summation of benefits minus the holistic 

cost [45], and calculated using the formula: 

( )R RNet benefit TPR  P     1
1

R
FPR P

R
= − −

−
, where P is 

the disease prevalence; R is a threshold probability at 

which a patient will opt for treatment; TPRR represents 

the proportion of cases with a model-calculated risk 

above threshold probability; and FPRR represents the 

proportion of cases with a model-calculated risk lower 

than the threshold probability [45]. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Materials 1  
 

Z-score normalization 

 

z-score normalization to make the image intensities 

have the properties of a standard normal distribution by 

scaling values to a mean of 0 and a standard deviation 

of 1 using the following formula:  

 

z
 



−
=  

 

where μ was the mean value of the images, and σ was 

the standard deviation of images. 

 

Supplementary Materials 2  
 

Support vector machine model construction 

 

We introduced five features, including history of 

hypercholesterolemia, baseline Graeb score, time to 

initial CT, INR and Rad-score, to the SVM model. 

Radial basis function (RBF) kernel function were 

applied and the optimal parameters of SVM were 

selected by grid-search method. Parameter C was 

3.58e+01and parameter gamma was 6.87e-04. The 5-

fold cross-validation was employed to validate  

the model performance in training cohort. The  

model was further validated in an independent testing 

cohort.  

 

Supplementary Materials 3  
 

Radiomics signature calculation formula 

 

Rad-score = - 

2.1378+0.135×Correlation_AllDirection_offset1_SD 

-0.1723×Correlation_angle0_offset7 

+0.5072×Correlation_angle0_offset4 

-0.6258×HaralickCorrelation_AllDirection_offset4_SD 

-0.1004×HaralickCorrelation_angle90_offset1 

-0.353×ShortRunEmphasis_AllDirection_offset7_SD  

+ 0.2577×ZonePercentage  

 

Note: “SD” indicate the value reflects the standard 

deviation among the different directions. 

 



 

www.aging-us.com 12846 AGING 

Supplementary Figures 

 

 

 

 

Supplementary Figure 1. Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) 
regression model. (A) Using 10-fold cross-validation to select tune parameter (λ). 7 features with non-zero coefficients were selected. 

Dotted lines on the left and right represent the minimum criterion and 1-standard error criterion (1-SE), respectively. The 1-SE criterion was 
applied in our study. A λ value of 0.03, with log (λ) of -3.46 was chosen (1-SE criteria). (B) LASSO coefficient profiles of the 396 radiomics 
features. The vertical line shows the optimal value of λ and 7 features with non-zero coefficients. 

 

 

Supplementary Figure 2. Receiver operator curves (ROC) of Rad-score to predict poor out come (Glasgow Outcome Scale, ≤3) in training 

cohort (A) and testing cohort (B). 
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Supplementary Tables 
 

Supplementary Table 1. Radiomics features extracted from regions of interest. 

Group Number Feature 

Histogram Parameters 42 

Histogram parameters are concerned with properties of individual pixels. They describe the distribution of voxel 

intensities within the CT image through commonly used and basic metrics. Let X denote the three-dimensional 

image matrix with N voxels and P the first order histogram divided by Nl discrete intensity levels. 

Texture Parameters 54 

Texture is one of the important characteristics used in identifying objects or regions of interest in an image, texture 

represents the appearance of the surface and how its elements are distributed. It is considered an important concept 

in machine vision, in a sense it assists in predicting the feeling of the surface (e.g. smoothness, coarseness ...etc.) 

from image. Various texture analysis approaches tend to represent views of the examined textures form different 

perspectives. 

Form Factor 

Parameters 
9 These group of features includes descriptors of the three-dimensional size and shape of the tumor region. 

GLCM Parameters 100 

The Grey level co-occurrence matrix (GLCM) P (I, j|Ө, d) represents the joint probability of certain sets of pixels 

having certain grey-level values. It calculates how many times a pixel with grey-level i occurs jointly with another 

pixel having a grey value j. By varying the displacement vector d between each pair of pixels. The rotation angle of 

an offset: 0°, 45°, 90°, 135° and displacement vectors (distance to the neighbor pixel: 1, 2, 3 ...), different co-

occurrence distributions from the same image of reference. GLCM of an image is computed using displacement 

vector d defined by its radius, (distance or count to the next adjacent neighbor preferably is equal to one) and 

rotational angles. 

RLM Parameters  

 
180 

The grey level run-length matrix (RLM) Pr(i, j | Ө ) is defined as the numbers of runs with pixels of gray level i 

and run length j for a given direction θ. RLMs is generated for each sample image segment having directions 

(0°,45°,90° and 135°), then the following ten statistical features were derived: short run emphasis, long run 

emphasis, grey level non- uniformity, run length non-uniformity, Low Grey Level Run Emphasis, High Grey Level 

Run Emphasis, Short Run Low Grey Level Emphasis, Short Run High Grey Level Emphasis, Long Run Low Grey 

Level Emphasis and Long Run High Grey Level Emphasis. 

GLZSM Parameters 

 
11 

The gray level Size Zone Matrix (SZM) is the starting point of Thibault matrices. 

For a texture image f with N gray levels, it is denoted GSf(s, g) and provides a statistical representation by the 

estimation of a bivariate conditional probability density function of the image distribution values. It is calculated 

according to the pioneering Run Length Matrix principle: the value of the matrix GSf(s, g) is equal to the number 

of zones of size s and of gray level g. The resulting matrix has a fixed number of lines equal to N, the number of 

gray levels, and a dynamic number of columns, determined by the size of the largest zone as well as the size 

quantization. This matrix is particularly efficient to characterize the texture homogeneity, non periodicity or speckle 

like texture; it had provided betters characterizations than granulometry (or COM, RLM, etc.) for the classification 

of cell nuclei, dermis, road quality (bitumen condition) and some textures in PET images. 

 

Supplementary Table 2. Multivariable analysis of features associated 
with IVH growth. 

Variable  Odds ratio 95%CI P value 

Sex - - 0.116 

Glasgow Coma Scale - - 0.131 

Hypertension - - 0.076 

Baseline IVH score - - 0.423 

Baseline ICH volume - - 0.482 

Blood glucose - - 0.987 

PLT count - - 0.420 

Hypercholesterolemia 0.12 0.02-0.90 0.039 

INR 4.27 1.40-13.0 0.011 

Baseline Graeb score 1.26 1.16-1.36 <0.001 

Time to initial CT 0.70 0.58-0.86 <0.001 

Rad-score 2.3 1.6-3.3 <0.001 

Abbreviations: ICH=intracerebral hemorrhage; IVH=intraventricular 
hemorrhage; INR= international normalized ratio. 



 

www.aging-us.com 12848 AGING 

Supplementary Table 3. Details about the selected features. 

Feature name ICC Group 

Correlation_AllDirection_offset1_SD 0.91 Texture Parameters 

Correlation_angle0_offset7 0.89 Texture Parameters 

Correlation_angle0_offset4 0.90 Texture Parameters 

HaralickCorrelation_AllDirection_offset4_SD 0.81 GLCM 

HaralickCorrelation_angle90_offset1 0.90 GLCM 

ShortRunEmphasis_AllDirection_offset7_SD 0.80 GLRLM 

Zone Percentage 0.98 GLZSM 

Abbreviations: GLCM= Grey level co-occurrence matrix, GLRLM= Grey level run-length matrix, 
GLSZM= Gray level size zone matrix, ICC= Inter-class correlation coefficient. 

 

Supplementary Table 4. Confusion matrices of training cohort. 

Training cohort (N=626) 
Actual 

Positive Negative 

Predicted 
Positive 70 186 

Negative 14 356 

 

Supplementary Table 5. Confusion matrices of testing cohort. 

Testing cohort (N=270) 
Actual 

Positive Negative 

Predicted 
Positive 30 85 

Negative 7 148 

 


