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INTRODUCTION 
 

Globally, Hepatocellular carcinoma (HCC) represents 

the predominant histological form of liver cancer 

(accounting for 75%-85% of all cases), which is a 

commonly diagnosed malignancy with an increasing 

incidence rate and ranked fourth in mortality among all 

cancers [1]. In 2018, HCC leads to more than 781,000 

deaths and about 841,000 newly diagnosed cases all over 

the world [1]. Hepatitis C virus (HCV) infection is one 

of the major causes of HCC, especially in western 

countries and Japan [1]. According to a survey of 

227,808 participants, the anti-HCV-positive rate was 

3.0%, but more than 60% of the participants were not 

aware of their infection [2]. While the introduction of the 

vaccine has reduced the prevalence of Hepatitis B virus 

(HBV) infection with promise to decrease the incidence 

of HBV- associated HCC (HBV-HCC) in certain high-
risk countries, there is no vaccine available for HCV 

infection [1]. On the other hand, although great advances 

have been achieved for the investigation of HCC in the 

last decades, its underlying mechanisms of different 
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ABSTRACT 
 

Hepatitis C virus-associated HCC (HCV-HCC) is a prevalent malignancy worldwide and the molecular 
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network analysis (WGCNA) to identify the most significant module correlated with the overall survival. 10 hub 
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approaches (Protein-protein interaction networks of the DEGs and of the significant module by WGCNA, and 
diagnostic and prognostic values), and their abnormal expressions, diagnostic values, and prognostic values 
were successfully verified. A four hub gene-based prognostic signature was built using the least absolute 
shrinkage and selection operator (LASSO) algorithm and a multivariate Cox regression model with the ICGC-LIRI-
JP cohort (N =112). Kaplan-Meier survival plots (P = 0.0003) and Receiver Operating Characteristic curves (ROC = 
0.778) demonstrated the excellent predictive potential for the prognosis of HCV-HCC. Additionally, upstream 
regulators including transcription factors and miRNAs of hub genes were predicted, and candidate drugs or 
herbs were identified. These findings provide a firm basis for the exploration of the molecular mechanism and 
further clinical biomarkers development of HCV-HCC. 
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etiologies vary dramatically, therefore extensive efforts 

are still needed to establish a better understanding of 

carcinogenesis and pathogenesis of HCV- associated 

HCC (HCV-HCC). 

 

Recently, a growing number of candidate biomarkers 

for diagnosis or prognosis of HCC have been identified 

[3–12], among which the most commonly reported 

biomarkers are dysregulated genes [3, 6, 11], significant 

members of a certain gene family or gene set [4, 10], 

potential CpG methylation status [7, 9], and alternative 

splicing signatures [5, 12]. For example, a 24-mRNA-

based risk signature has been developed as an 

independent risk classifier for the prediction of early 

recurrence in HCC patients [6]. Similarly, a nine 

immune-related mRNA signature was generated to 

predict the overall survival (OS) of HCC [10]. While 

most of the studies focused on HCC prognosis, its 

diagnosis has not yet been fully investigated. Besides, 

few studies characterized the stratified categorization by 

different risk factors (especially HCV infection), 

however, they may exert contrary outcomes even for the 

same risk group. Thus, additional markers are required 

for a more accurate risk prediction in HCV-HCC 

patients. 

 

Of note, single cohort-based studies may result in false-

positive outcomes because of the small sample size and 

limitation of technology platforms. Therefore, an 

integrated analysis combining multiple public databases 

such as The Cancer Genome Atlas (TCGA), The Gene 

Expression Omnibus (GEO), and International Cancer 

Genome Consortium (ICGC) could improve the accuracy 

and reliability of the results tremendously, providing an 

effective approach for the exploration of molecular 

landscape and the discovery of potential therapeutic 

targets or important biomarkers for diagnosis and 

prognosis of cancer. Thus, with the aim to identify the 

candidate crucial genes for diagnosis and prognosis of 

HCV-HCC from multiple public databases, which might 

also give a clue for seeking therapeutic targets in HCV-

HCC, we enrolled eight gene expression datasets from 

TCGA, GEO, and ICGC, including a total of 304 HCV-

HCC samples and 290 adjacent normal tissues in the 

present study. 240 differentially expressed genes (DEGs) 

were screened in the first step, followed by the 

identification of 10 hub genes with a combined analysis. 

Then, the diagnostic and prognostic values of these hub 

genes were verified. The least absolute shrinkage and 

selection operator (LASSO)-based penalized Cox 

regression (LASSO-COX) was performed to construct a 

prognostic risk signature, which was further evaluated by 

Kaplan-Meier curves and ROC plots. The relationships 
between the risk signature and tumor infiltration immune 

cells were also determined by Spearman correlation 

analysis. Moreover, Upstream regulations of the 10 hub 

genes including miRNAs and transcription factors were 

also predicted. At last, network pharmacological analysis 

was conducted to seek possible small molecular drugs for 

HCV-HCC. Collectively, this study identified 10 hub 

genes concerning the crucial roles in the carcinogenesis 

of HCV-HCC, which may provide a firm basis for 

understanding the transcriptional regulatory mechanisms 

and advancing studies in clinical biomarker discovery of 

HCV-HCC. The flowchart summarizing the general 

process of this study was shown in Figure 1. 

 

RESULTS 
 

Screening of robust DEGs in HCV-HCC 

 

By using GEO2R and the screening criteria of |log Fold 

change (FC)| > 1 and FDR (adj.P.Val) <0.05, we 

extracted 1722 DEGs (842 upregulated and 880 

downregulated) from GSE6764, 1459 DEGs (496 

upregulated and 963 downregulated) from GSE41804, 

1761 DEGs (1050 upregulated and 711 downregulated) 

from GSE62232, and 1163 DEGs (276 upregulated and 

887 downregulated) from GSE107170. In the TCGA 

dataset, we fetched 3740 DEGs (1468 upregulated and 

2272 downregulated) between HCV-HCC and normal 

tissues with the same threshold. As shown in Figure 2A, 

2B, a total of 240 overlapping DEGs were identified, 

including 58 commonly upregulated genes, and 182 

commonly downregulated genes. To increase the 

robustness of these common DEGs, we integrated the 

four microarray datasets into a combined dataset. The 

Combat function embedded in sva package was used to 

remove the batch effect. Plots of the Principal component 

analysis (PCA) indicated that after expression 

normalization, the batch effect was all removed 

successfully (Figure 2C, 2D). In addition, tumor samples 

and normal samples were clustered independently after 

batch removal (Figure 2E). Differential analysis by 

limma package revealed that all the 240 DEGs were still 

significant in the combined dataset (Figure 2F and 

Supplementary Table 2). 

 

Co-expression network construction and identification 

of the most important module 

 

WGCNA is a useful approach to uncover gene 

expression patterns and to identify significant gene 

modules from multiple samples. We conducted WGCNA 

to disclose the most important module associated with 

HCV-HCC survival status. Briefly, 807 DEGs of the 

ICGC-LIRI-JP dataset were filtered (Supplementary 

Table 3), which were used to evaluate the outlier samples 

through sample hierarchical clustering using the average 

linkage method (Figure 3A). After the filtration, we 

obtained the adjacency matrix by using the appropriate 

soft threshold of 5 (scale-free R2 = 0.87), which was 
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transformed into the TOM, and transited into the 

dissTOM, followed by the accomplishment of the gene 

clustering dendrogram and module identification (Figure 

3B). Highly similar modules were then merged by the cut 

line of 0.3. Seven modules were remained (Figure 3C). 

The Pearson correlation heatmap showed the turquoise 

module including 357 DEGs has the most significant 

correlation with survival status and thus was selected for 

further study (Figure 3D). Figure 3E presented the GS 

and MM for each gene in the turquoise module. 

 

PPI network construction 

 

We constructed a PPI network with the 240 overlapping 

DEGs using the STRING online database and the 

Cytoscape software (Supplementary Figure 1). The 

network gave 129 nodes and 585 edges, and showed 41 

upregulated genes and 88 downregulated genes. The 

average number of neighbors was 9.07 and the 

clustering coefficient was 0.461. Using the MCODE 

app, a significant sub-cluster was screened out with a 

cluster score of 29.5, comprising 30 nodes and 428 

edges (Figure 4A). Interestingly, all of the 30 genes 

showed high degrees of connectivity by cytohuber 

analysis (>20 for all cluster genes), indicating their 

potential hub roles for HCV-HCC tumorigenesis. 

 

Besides, the 357 genes in the turquoise module by 

WGCNA were also used to construct a PPI network to 

identify candidate hub genes. The WGCNA-PPI 

network was composed of 245 nodes and 2581 edges 

(Figure 4B). There were 50 genes satisfied with the 

degree cutoff of ≥50 and defined as WGCNA-PPI-hub 

genes. 

 

 
 

Figure 1. Flowchart of this study. 
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Figure 2. Differential gene expression between HCV-HCC tumor and adjacent normal tissues. (A, B) The combination of Venn plot 

and Upset plot showing the common upregulated genes (A) and the common downregulated genes (B) in HCV-HCC according to five public 
datasets. The screening criteria was set as |log Fold change (FC)| > 1 and FDR (adj.P.Val) <0.05. (C, D) Principal component analysis (PCA) for 
the gene expression profiles from four microarray datasets before (C) and after (D) batch effect removal. The colors represent different 
datasets. (E) scatter plots visualizing the identified clusters of the tumor and normal samples based on the combined dataset. (F) Heatmap of 
the 240 DEGs showing their expression values for each patient. The scale bar indicates the gene expression value. Red indicates high 
expression level, and blue indicates low expression level. HCV-HCC, HCV- associated HCC. DEGs, differentially expressed genes. 
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Figure 3. Building a WGCNA network to identify the most significant module correlated with survival status. (A) Sample 

clustering tree with clinical traits. (B) Heatmap showing the eigengene networks according to the topological overlap matrix (TOM) based 
dissimilarity. (C) Gene clustering dendrogram, with each color corresponding to an individual gene module. (D) Pearson correlation analysis 
between module eigengenes and clinical traits. (E) scatter plot showing the gene significance (GS) vs module membership (MM) for the 
turquoise module. WGCNA, Weight Gene Co-expression Network Analysis. 
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Hub genes identification 

 

Based on the 30 DEGs-PPI-hub genes and the 50 

WGCNA-PPI-hub genes, we preliminarily obtained a 

total of 26 overlapping genes (data not shown). Then we 

evaluated the AUROC scores of the 26 genes for 

discriminating HCV-HCC from normal tissue samples 

using the ICGC-LIRI-JP dataset. As a result, 10 genes 

(CCNB1, AURKA, TOP2A, NEK2, CENPF, NUF2, 

CDKN3, PRC1, ASPM, RACGAP1) showed superior 

discriminatory abilities with AUROC scores of ≥0.95 

(Figure 4C, 4D), suggesting their excellent diagnostic 

values. More importantly, all of the 10 genes were also 

revealed significantly associated with the overall 

survival outcome of HCV-HCC patients by UniCox 

analysis, indicating their potential prognostic powers in 

clinical use (Figure 4E). Thus, we consider these 10 

genes as hub genes in HCV-HCC. 

Functional enrichment analysis 

 

To understand the biological functions of the robust 

DEGs and the turquoise module in HCV-HCC, we 

performed GO and KEGG analysis. GO enrichment 

analysis revealed that the commonly 58 upregulated 

genes were mostly involved in cell division, cell cycle 

phase transition, spindle, and other important GO 

terms, mainly related to cell proliferation (Figure 5A). 

The 182 commonly downregulated genes were mainly 

related to the monocarboxylic acid metabolic process, 

cellular response to cadmium ion, and oxidoreductase 

activity (Figure 5B). For the 357 genes in the turquoise 

module, mitotic nuclear division, oxidoreductase 

activity, and monocarboxylic acid metabolic process 

were the top GO terms (Figure 5C). On the other hand, 

KEGG analysis suggested that the most KEGG 

pathways associated with the upregulated genes were 

 

 
 

Figure 4. Identification of hub genes in HCV-HCC. (A) The most significant cluster identified from the DEGs-PPI network. (B) The 

WGCNA-PPI network constructed by the turquoise module. (C, D) ROC curves showing the AUROC scores and AUC (95%CI) of the 10 hub 
genes for discriminating tumor from normal samples based on the ICGC-LIRI-JP dataset. Colored lines indicate the ROC curve for each hub 
gene, and the grey line indicates the reference line. (E) Forest plot presenting the results of the univariate Cox regression analysis for the 10 
hub genes. HCV-HCC, HCV- associated HCC. DEGs, differentially expressed genes. PPI, protein-protein interaction. WGCNA, Weight Gene Co-
expression Network Analysis. ROC, receiver operating characteristic. 95%CI, 95% confidence interval. 
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Figure 5. GO and KEGG analysis of the 240 common DEGs and the turquoise module. (A–C) GO enrichment analysis for the 

upregulated genes (A), downregulated genes (B), and the turquoise module (C) (Top 20 are shown). (D–F) Enrichment of KEGG pathways for 
the upregulated genes (D), downregulated genes (E), and the turquoise module (F). GO, gene ontology. KEGG, Kyoto Encyclopedia of Genes 
and Genomes. DEGs, differentially expressed genes. 
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cell cycle, p53 signaling pathway, and oocyte meiosis 

(Figure 5D), while the tryptophan metabolism, retinol 

metabolism, and mineral absorption were the top  

three pathways for the downregulated genes (Figure 

5E). Moreover, the turquoise module was mostly 

associated with cell cycle, retinol metabolism,  

and metabolism of xenobiotics by cytochrome P450 

(Figure 5F). 

Hub genes expression validation 
 

For the validation of the expression patterns, based on 

the external validation datasets of GSE69715 and 

GSE12941, we observed significantly elevated gene 

expression levels of every hub genes in tumor samples 

compared with that of the adjacent normal samples 

(Figure 6A, 6B). A closer examination of the internal 

 

 
 

Figure 6. Confirmation of the abnormal expression of the 10 selected hub genes and their expression correlations. (A, B) Two 

external datasets (GSE69715 and GSE12941) to validate the increased expression levels of the hub genes in tumors compared with adjacent 
normal tissues. (C) Internal validation by ICGC-LIRI-JP dataset to verify the elevated levels of the hub genes concerning tumor stage. (D, E) 
Strong correlations among all of the hub genes according to the ICGC-LIRI-JP and TCGA-LIHC datasets. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. 
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validation set of ICGC-LIRI-JP showed that the 

dysregulations of all the hub genes were statistically 

significant regardless of the tumor stage (Figure 6C), 

indicating the robustness of their crucial roles in tumor 

initiation of HCV-HCC. Strikingly, it was determined 

that in both ICGC-LIRI-JP and TCGA datasets, the 

relative expression levels of the hub genes were highly 

correlated with each other (Pearson correlation 

coefficient > 0.75 for all gene pairs in both ICGC-LIRI-

JP and TCGA-LIHC), suggesting their strong inter-

actions and key roles in the development of HCV-HCC 

(Figure 6D, 6E). 

Validation of the diagnostic value 

 

We presume that excellent discrimination capability 

may have great potential for cancer diagnosis to  

benefit HCV-HCC patients. Thus, we validated the 

performance of hub genes by plotting ROC curves of 

GSE69715, GSE107170, and TCGA-LIHC (Figure 7A–

7F). Two hub genes (CENPF and RACGAP1) showed 

consistently high AUROC scores in all three datasets 

(>0.95), indicating their penitential utility as diagnostic 

biomarkers. Moreover, we used the internal validation 

set of ICGC-LIRI-JP to assess the distinguishing 

 

 
 

Figure 7. Validation of the diagnostic efficiency for each of the 10 hub genes. (A–F) Performance of the 10 hub genes in 

discriminating HCV-HCC from normal control based on GSE69715 (A, B), GSE107170 (C, D), and TCGA-LIHC (E, F). (G, H) Potential utilities of 
the hub genes for early tumor detection based on ICGC-LIRI-JP. HCV-HCC, HCV- associated HCC. 
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abilities of the hub genes for early phase tumor samples 

from adjacent normal tissue samples (Figure 7G, 7H). 

Surprisingly, ROC curves by all the hub genes revealed 

their great potential for early detection of HCV-HCC 

(AUROC score > 0.94 for each hub gene). 

 

Survival analysis 

 

Due to the limited sample sizes of other datasets, we 

were only able to include the ICGC-LIRI-JP cohort that 

contained more than 100 HCV-HCC patients with 

adequate survival information to conduct the survival 

analysis (N = 112). Kaplan–Meier curves indicated that 

the overall survival of the high-risk group was 

significantly lower than that of the low-risk group  

(P < 0.01 for all hub genes, Figure 8A). Furthermore, the 

LASSO-COX regression was used to reduce the 

variables with 10-fold cross-validation for the selection 

of the optimal turning parameter (Figure 8B). At the 

minimum lambda value, four hub genes were chosen 

with non-zero coefficients, including CCNB1, NEK2, 

RACGAP1, and AURKA (Figure 8C), which were next 

used to perform the multivariate Cox hazards regression 

analysis (Figure 8D). A risk signature was then 

generated to evaluate the risk score of HCV-HCC 

patients with the following formula: risk score = 0.6819* 

EXPCCNB1 + 0.8859*EXPNEK2 -1.3715*EXPRGCGAP1 + 

0.4831*EXPAURKA. Patients were divided into the high- 

or low-risk groups according to the median risk score of 

0.8822715 (Figure 9A). A significantly higher risk score 

 

 
 

Figure 8. Kaplan–Meier curves for overall survival of the 10 selected hub genes and construction of a prognostic signature 
using LASSO Cox regression. (A) OS Kaplan–Meier curves of the 10 hub genes based on ICGC-LIRI-JP. (B) 10-fold cross-validation to select 
the optimal tuning parameter. The λ value of 0.015 was chosen with the lambda.min method. (C) LASSO coefficient profiles of the 10 hub 
genes. (D) Forest plot presenting the hazard ratio and 95% CI by multivariate Cox regression analysis for the four selected hub genes. OS, 
overall survival. LASSO, Least absolute shrinkage and selection operator. 95% CI, 95% confidence interval. 
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was observed in the high-risk group than that of the low-

risk group (Figure 9B). The ROC curve at 3 years overall 

survival showed the area under the curve (AUC) value of 

0.778 (Figure 9C), indicating a good predictive 

performance for the OS of HCV-HCC. Kaplan-Meier 

survival plots suggested the relatively poor survival in  

the high-risk group (Figure 9D). Besides, we carried out 

the stratified analysis using clinical parameters. 

Consequently, in almost all subsets of patients with 

different age, gender, vein invasion status, alcohol 

consumption, and smoking status, the four-hub gene-

based risk signature was still a significant prognostic 

factor (Supplementary Figure 2). Although the TNM 

staging system was considered as an important prognostic 

factor for HCC patients, conflict survival outcomes may 

exist for patients at the same stage. Therefore, we also 

 

 
 

Figure 9. Performance of the defined four mRNA-based risk signature with ICGC-LIRI-JP. (A) Gene expression, risk score, and 
clinical outcome for all the patients in distinctive risk groups. (B) differential risk scores between high- and low-risk groups. (C) ROC plot at 3 
years OS showing the AUROC score of 0.778. (D) OS Kaplan-Meier survival curves for high- and low-risk patients. (E, F) OS Kaplan-Meier 
survival curves for different risk groups of early stage (E) and advanced stage patients (F). ****, P < 0.0001. OS, overall survival. ROC, receiver 
operating characteristic. AUROC, the area under the receiver operating characteristic curve. 
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performed the stratification survival analysis based on 

the TNM stage. Notably, patients in the low-risk group 

possessed a better OS compared with the high-risk group 

in the early stage subset (N = 73, P < 0.01) (Figure 9F), 

while no significant difference was observed for the 

advanced stage of HCV-HCC (N = 39, P = 0.11) (Figure 

9F). Besides, we also conducted the univariate Cox 

analysis to evaluate the other underlying risk factors, 

however, no significant associations were observed at a 

statistical level of 0.05, which might partly due to the 

small sample size. 

The risk signature was associated with the abundance 

of immune infiltration cells 
 

Based on the ICGC-LIRI-JP cohort, we achieved the 

landscape of the 22 tumor immune infiltration cells for 

HCV-HCC via the CIBERSORT algorithm (Figure 

10A). Then the Spearman correlation coefficient and 

corresponding P value between risk score and 

infiltration level of each immune cell were calculated. 

As a result, monocytes were positively associated with 

the risk score and the expression of NEK2, CCNB1, and 

 

 
 

Figure 10. Relationship between the identified risk signature and tumor immune cell infiltration based on the ICGC-LIRI-JP 
cohort. (A) The landscape of immune infiltration in each of the tumor samples of low- and high-risk groups. (B) Heatmap representing the 

correlation matrix of the four signature genes, risk score, and relative abundance of 22 immune cell types. Red indicates the positive 
correlation, while green indicates the negative correlation. * P < 0.05, ** P < 0.01. 
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AURKA. Activated CD4 memory T cells displayed 

negative correlations with the risk score and all of the 

four signature hub genes. Other immune cells 

manifested no significant correlation with the risk score, 

except resting dendritic cells and M0 macrophages, 

which were negatively associated with the expression of 

RACGAP2, NEK2, and CCNB1. T cells regulatory 

Tregs were negatively associated with the expression of 

NEK2, CCNB1, and AURKA (Figure 10B). 

Prediction of upstream regulations 

 

Next, crucial transcription factors in the upstream of the 

10 hub genes were determined by the TRRUST database 

that was integrated into the web-based application of 

miRNet (Supplementary Table 4). A transcription factor-

hub gene network was then constructed and visualized by 

a Sankey diagram. 23 transcription factors and 7 hub 

genes were found in this network (Figure 11A). Among 

 

 
 

Figure 11. Upstream regulations of the ten hub genes and GO semantic similarities analysis. (A) The transcription factor-hub 
gene network predicted by miRNet. (B) 10 function MTIs predicted through miRTarBase 8.0. (C) Raincloud plot showing the ranking list of 
function semantic similarities for the 10 hub genes using the ICGC-LIRI-JP dataset. ASPM, CENPF, and PRC1 were the top three hub genes with 
the highest scores. (D–F) GSEA results of ASPM, CENPF, and PRC1 based on the hallmark gene set. (G–I) GSEA results of ASPM, CENPF, and 
PRC1 based on the KEGG database. GO, gene ontology. MTIs, miRNA-target interactions. KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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all the genes, CCNB1 was the most important node with 

the highest degree, which was regulated by a total of 19 

transcription factors, including several important tumor-

associated genes, such as BRCA1, MYC, TP53, and 

three E2Fs family members (E2F1, E2F3, and E2F4). 

Moreover, miRNA-hub gene interactions were predicted 

by employing miRTarBase 8.0 to explore the underlying 

regulatory mechanism by miRNAs in human. A total of 

428 miRNA-hub gene interaction pairs were obtained, 

including 10 function MTIs, 417 weak function MTIs, 

and one none function MTI (Supplementary Table 5).  

As illustrated in Figure 11B, among the 10 function  

MTIs, CCNB1 gave the highest connection degree, 

which was targeted by four miRNAs (hsa-miR-132-3p, 

hsa-miR-212-3p, hsa-miR-548b-3p, hsa-miR-410-3p)  

in experiment validation, suggesting its increasing 

correlation with human cancer. Other predictive weak 

function MTIs were still needed to be investigated in the 

future. Hence, the transcription factor-hub gene 

interaction network and the identified miRNA-hub gene 

pairs could provide insight into the further exploration of 

the molecular mechanisms of HCV-HCC. 

 

Semantic similarities and GSEA 

 

In order to achieve a deeper and better understanding of 

the molecular mechanism of the 10 hub genes, we 

adopted the geometric mean of CCs and MFs with GO 

semantic similarity analysis. ASPM, CENPF, and  

PRC1 were the top three hub genes with the highest-

ranking scores (Figure 11C), which were verified by 

GSEA analysis with the ICGC-LIRI-JP dataset. The top 

5000 genes that correlated with the ASPM, CENPF, and 

PRC1 were used to operate the GSEA, and the most 

significant terms that enriched by the hallmark gene set 

(h.all.v7.0) were similar (HALLMARK_E2F_TARGETS, 

HALLMARK_G2M_CHECKPOINT, HALLMARK_ 

MYC_TARGETS_V1, and HALLMARK_MITOTIC_ 

SPINDLE were the top four gene sets for all of the three 

hub genes) (Figure 11D–11F). For the pathways 

distribution from the KEGG database (c2.cp.kegg.v7.0), 

ASPM, CENPF, and PRC1 shared three important tumor-

associated terms (KEGG_CELL_CYCLE, KEGG_ 

OOCYTE_MEIOSIS, and KEGG_SPLICEOSOME) in 

the top five significant pathways (Figure 11G–11I). 

These findings were in agreement with the above-

mentioned results that hub genes may strongly interact 

with each other and strengthened the pivotal roles of 

the hub genes in the tumor initiation and development 

in HCV-HCC. 

 

Drug-hub gene network and candidate compounds 

identification 

 

The aforementioned results prompted us to focus on the 

therapeutic utility of the hub genes. Thus, we searched 

the DGIdb to obtain the potential drug-gene interactions. 

As a result, four (TOP2A, AURKA, NEK2, and 

RACGAP1) of the 10 hub genes were targeted by 

therapeutic drugs that were approved by FDA. Then a 

drug-hub gene network was established including the 

four hub genes and 29 anti-neoplastic drugs (Figure 12A 

and Supplementary Table 6). As presented in Figure 

12A, TOP2A might be inhibited by most of the drugs, 

followed by AURKA. Among these drugs, Etoposide 

was supported by the largest number of literature as the 

cancer chemotherapeutic drug including HCC [13]. 

Additionally, TCM-MESH and TCM-ID were used to 

investigate candidate active ingredients and herbs that 

may target these hub genes. A network consisting of 3 

hub genes (TOP2A, CCNB1, and NUF2), 9 effective 

compounds, and 40 related herbs was constructed 

(Figure 12B). Similarly, TOP2A was putatively targeted 

by most compounds (3,3',4',5,5',7-hexahydroxyflavone, 

proanthocyanidin b2, epigallocatechin 3-gallate, 

howiinol a, and betulic acid). Among all the compounds, 

proanthocyanidin b2 and plumbagin showed the top two 

nodes with the highest degrees (proanthocyanidin b2 

was contained in 17 herbs and plumbagin was contained 

in 9 herbs). Proanthocyanidin b2 was well-documented 

with anticarcinogenic properties via anti-inflammator 

and antioxidant potential, and was demonstrated to exert 

anti-tumor efficacy for HCC in vitro and in vivo [14]. 

Plumbagin was also indicated to suppress HCC 

carcinogenesis through induction of cell arrest and 

cellular apoptosis [15]. These data may shed light upon 

target therapy for HCV-HCC patients. 

 

Comparison of the hub genes and pathways between 

HCV-HCC and HBV-HCC 

 

In a previous study, we reported 17 hub genes with 

diagnostic and prognostic values in HBV-HCC [16]. 

Interestingly, three of them (CCNB1, TOP2A, NEK2) 

were also identified as crucial genes in HCV-HCC, 

which might to some extent reflect the common 

transcriptome regulatory mechanisms in liver cancer 

induced by viral hepatitis. We also compared the robust 

DEGs between HCV-HCC and HBV-HCC, as the result, 

we found 38 common upregulated DEGs and 95 

common downregulated DEGs. Notably, commonly 

important KEGG pathways enriched by robust DEGs 

were identified between HCV-HCC and HBV-HCC 

including cell cycle, p53 signaling pathway, oocyte 

meiosis, progesterone-mediated oocyte maturation, 

Human T-cell leukemia virus 1 infection, cellular 

senescence, retinol metabolism, tryptophan metabolism, 

complement and coagulation cascades, drug metabolism - 

cytochrome P450, tyrosine metabolism (Supplementary 
Figure 3). Knowledge like that may reveal indispensable 

and key pathways for the complete transition from 

hepatitis to HCC, and therefore would throw light on the 
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yielding of possible predictors or biomarkers during the 

process. 

 

DISCUSSION 
 

Despite intense efforts that have been made for the 

investigation of HCC pathogenesis and its candidate 

biomarker searching, the overall prognosis for HCC 

patients was still unfavorable, and the comprehensive 

explanation for its transcriptional and genetic 

mechanisms remained elusive, especially for HCV 

associated HCC. In the current study, 240 robust DEGs 

of HCV-HCC were, for the first time, screened based on 

five public datasets, including 58 upregulated genes and 

 

 
 

Figure 12. Network pharmacological analysis to identify candidate drugs and effective compounds for therapeutic targets of 
HCV-HCC. (A) Drug-hub gene network identified from the DGIdb. Green nodes indicate the predictive miRNAs and red nodes indicate the 
targeted hub genes. (B) Herb-compounds-hub gene network predicted by TCM-MESH and TCM-ID. red nodes indicate hub genes, blue nodes 
indicate the active compounds and green nodes indicate the putative herbs containing these compounds. 
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182 downregulated genes. The upregulated genes mainly 

participated in cell cycle-associated GO terms, such as 

cell division, cell cycle phase transition, and spindle. 

Cell-cycle aberration was considered a hallmark of 

cancer [17]. In the present study, those cell cycle-related 

genes such as CDK1, CCNB1, CDC20, NEK2, AURKA, 

RACGAP1, CDKN2A, CDKN2B, CDKN3, RRM2, and 

ASPM were significantly upregulated in HCV-HCC. 

downregulated genes were mostly involved in the 

monocarboxylic acid metabolic process, cellular response 

to cadmium ion, and oxidoreductase activity. KEGG 

analysis revealed that, while the upregulated genes were 

significantly related to cell cycle, p53 signaling pathway, 

and oocyte meiosis, the downregulated genes were 

associated with tryptophan metabolism, retinol 

metabolism, and mineral absorption. The common 

pathways identified via a deeper examination between 

HCV-HCC and HBV-HCC may help reveal the 

generality of the transition from viral hepatitis to HCC. 

 

Subsequently, 10 hub genes were identified through 

multiple approaches by overlapping a panel of 30 closely 

correlated DEGs-PPI-hub genes and 50 WGCNA-PPI-

hub genes, as well as assessing their diagnostic and 

prognostic power. Interestingly, in comparison with the 

adjacent normal tissues, all of the hub genes were 

overexpressed in the tumor tissue samples, suggesting 

their tumor-driven function in oncogenesis. Next, the 

consistent and significant expression trend of the hub 

genes was validated internally and externally. Notably, 

the expression levels of all the hub genes were associated 

with each other, indicating their tight connections and 

pivotal roles during HCV-HCC. Moreover, ROC curves 

revealed that CENPF and RACGAP1 exhibited robust 

discrimination between tumor and normal tissue samples. 

More importantly, all of the hub genes displayed great 

potential for early diagnosis of HCV-HCC according to 

the ICGC-LIRI-JP dataset. 

 

To improve the reliability of their prognostic values, we 

depicted the Kaplan–Meier OS survival plot for each of 

the hub genes, combined with a log-rank test. As a 

result, all the hub genes showed a negative impact on 

patients’ OS. Furthermore, we generated a four-hub 

gene-based risk signature (CCNB1, NEK2, RACGAP1, 

and AURKA) via LASSO-COX proportional regression 

analysis, which was demonstrated to have excellent 

prognostic accuracy for OS of HCV-HCC patients. It 

was worth noting that even though the TNM staging 

system was most frequently used to predict the 

outcomes of HCC, our model could still offer additional 

value for subgroups with different TNM stages and 

other clinicopathological variables. 
 

In previous studies, all of the four risk signature genes 

had been reported to play oncogenic roles in HCC and 

their elevated expression levels were closely related to 

the reduced overall survival of HCC patients [18–27], 

which is in agreement with this study. For example, 

CCNB1 and AURKA were proved to be significantly 

associated with the prognosis of HCC and HBV-HCC 

and proposed as hub genes in these cancers [16, 19, 25–

28]. Weng, L. et al. demonstrated that the elevated 

expression of CCNB1 was an independent prognostic 

indicator for the recurrence in HBV-HCC patients [27]. 

Recently, CCNB1 was used to build an mRNA risk 

signature to predict the prognosis of HCC [28], and 

AURKA was also involved in a 24 mRNA-based 

signature for early relapse prediction of HCC [6]. NEK2 

was showed to promote tumor growth, angiogenesis, 

and metastasis in vivo. Its overexpression was found in 

liver tumor tissues on both mRNA and proteomic 

levels, and was associated with the poor survival of 

HCC [20]. Another study revealed RACGAP1 as a 

prognostic factor for early recurrence of HCC. Silencing 

of RACGAP1 could significantly inhibit Hep3B and 

MHCC97-H cell invasion and migration [22]. Other hub 

genes were also reported to be predictors for HCC 

prognosis. It is notable that TOP2A was a widely 

accepted hub gene in both HCC and HBV-HCC [16, 19, 

28, 29], and it was also used to establish an mRNA-

based signature for prognosis prediction in HBV-HCC 

previously [16]. Moreover, CENPF was correlated with 

higher cumulative recurrence rates and shorter overall 

survival of HCC [30, 31]. Besides, high expression 

levels of NUF2 [32], CDKN3 [33], ASPM [33], PRC1 

[34] were also related to poor prognosis of HCC. 

What’s important, CDKN3 was linked to the activated 

or inhibited cell cycle modules for the transformation of 

non-malignancy-associated hepatitis/cirrhosis to HCC. 

 

Given that dynamic crosstalk among tumor immune 

infiltration cells in the tumor microenvironment may 

trigger and accelerate tumor growth or progression [35], 

we put emphasis on the correlations between risk score 

and relative abundance of immune cells. Eight putative 

immune cell types were found to have significant 

correlations with risk score or signature hub genes. 

 

To gain insights into the upstream regulatory 

mechanisms of these hub genes, a transcription factor-

hub gene network and 10 function MTIs were identified. 

Remarkably, most of the transcription factors were well-

established oncogenes or tumor suppressor genes. 

Among the 10 experimentally verified miRNAs, most of 

them, including miR-128-3p [36], miR-132-3p [37], 

miR-148a-5p [38], miR-192-5p [39], miR-205-5p [40], 

miR-212-3p [41], miR-32-5p [42] were previously linked 

to tumor cell proliferation, invasion, migration and 
prognosis of HCC. Meanwhile, further researches are still 

required to elucidate the biological functions of the 

remaining three miRNAs (miR-129-1-3p, miR-410-3p, 
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and miR-548b-3p) on tumorigenesis and progression of 

HCC. Moreover, GO semantic similarity analysis and 

GSEA suggested that ASPM, CENPF, and PRC1 may 

share common molecular mechanisms during the 

pathogenesis of HCV-HCC. 

 

For the evaluation of therapeutic implications of the hub 

genes, we carried out network pharmacological analysis. 

We found that four of the hub genes (TOP2A, AURKA, 

NEK2, and RACGAP1) can serve as tumor therapeutic 

targets for drugs approved by FDA. Specifically, a set of 

TOP2A inhibitors were determined as potential 

chemoprotective drugs in various types of cancer, such as 

doxorubicin in solid tumors, leukemias and lymphomas 

[43], Idarubicin in HCC [44], acute myelogenous 

leukemia, advanced breast cancer, multiple myelom, non-

Hodgkin's lymphoma, and other malignancies [45], and 

etoposide in several malignant tumors [46–50] and 

metastatic tumors (such as brain metastasis of breast 

cancer) [51, 52]. Next, we identified candidate herbs and 

their effective components that may have an inhibitory 

impact on tumor progression via three hub genes 

(TOP2A, NUF2, and CCNB2). Proanthocyanidin b2 and 

plumbagin were the most common compounds in herbs 

related to TOP2A and CCNB1, showing good potential 

for cancer treatment including HCC [14, 15]. 

 

Compared with previous studies, the present study has at 

least several strengths: first, most studies only enrolled 

one cohort or single method to screen DEGs in cancer, 

while a total of eight high-quality gene expression 

profile datasets with stringent approaches (combining 

the overlapping strategy and the integrating strategy) 

improved the robustness. Second, we performed four 

approaches to identify potential key genes in HCV-HCC, 

which was different from those derived from only one 

algorithm (such as PPI network or WGCNA). Third, 

unlike previous studies that neglected population 

stratification while constructing a gene signature, we 

focused on a specific cohort of HCC that was influenced 

by HCV. Furthermore, the comparison between HCV-

HCC and HBV-HCC may help understand the generality 

and specificity of the transformation from hepatitis B or 

hepatitis C to HCC. Additionally, the hub gene-based 

drugs or effective compounds may provide new insight 

for targeted therapy in HCV-HCC. 

 

Several limitations, however, should be addressed in this 

study. First, due to the strict patient inclusion criteria 

applied in this study, only one available cohort (ICGC-

LIRI-JP) was included for survival analysis, which may 

introduce imprecision or potential bias in the evaluation 

of risk factors, and increase the risk of overfitting during 
the construction of the prognostic gene signature. 

Therefore, more external validation cohorts with larger 

sample sizes are required to validate our prognostic 

signature and their relevance to immune cell infiltration. 

Second, more in vitro and in vivo experiments should be 

performed to uncover the molecular mechanisms of the 

predicted transcription factor-hub gene pairs and 

putative miRNAs that may target the hub genes during 

HCC tumorigenesis and cancer progression. Third, it 

should be noted that the candidate drugs and potential 

active components targeting the hub genes should be 

further investigated, from structural analysis (such as 

molecular docking) to in-depth experimental studies for 

functional exploration, which may help accelerate the 

development of novel promising drugs for target therapy 

of HCC. 
 

In summary, we identified 10 hub genes, which may play 

crucial roles in the carcinogenesis and pathogenesis of 

HCV-HCC, from multiple datasets with comprehensive 

bioinformatics approaches. The dysregulation of the hub 

genes was linked to tumor diagnosis and prognosis and 

might serve as potential therapeutic targets of HCV-HCC 

patients. A risk signature was constructed for OS survival 

classification. A transcription factor-hub gene network 

and a series of targeted miRNAs were predicted. 

Potential drugs and candidate compounds for these hub 

genes were identified. All these results from the multi-

dimension analysis provide a strong foundation for a 

better understanding of the complex transcriptional 

regulatory mechanisms underlying HCV-HCC, which 

might shed light on the discovery of potential biomarkers 

for early diagnosis, prognosis, and treatment for HCV-

HCC patients. 

 

MATERIALS AND METHODS 
 

Data acquisition 
 

Six gene expression profiles of HCC were selected from 

the GEO (https://www.ncbi.nlm.nih.gov/geo/) database 

with the GSE number of GSE6764 [53], GSE41804 [54], 

GSE62232 [55], GSE107170 [56], GSE12941 [57], and 

GSE69715 [58]. These datasets met the following strict 

criteria: (1) including both tumor and normal human 

tissues; (2) with information of HCV infection; (3) 

containing at least six HCC-HCV samples. HCV-HCC 

cases were carefully examined and picked out. Five 

datasets (GSE6764, GSE41804, GSE62232, GSE107170, 

GSE69715) were based on GPL570 (Affymetrix Human 

Genome U133 Plus 2.0 Array) and GSE12941 was based 

on GPL5175 (Affymetrix Human Exon 1.0 ST Array). 

We also collected the pretreated data of HCV-HCC 

samples and the corresponding clinical information of 

TCGA-LIHC (http://www.tcga.org/) and ICGC-LIRI-JP 

(https://icgc.org/) from the HCCD database [59]. Five of 
them (GSE6764, GSE41804, GSE62232, GSE107170, 

and TCGA-LIHC) were served to screen DEGs, and the 

remaining three sets were used for further analysis. All of 

https://www.ncbi.nlm.nih.gov/geo/
http://www.tcga.org/
https://icgc.org/
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the above studies comprised a total of 304 HCV-HCC 

and 290 adjacent normal, and detailed information was 

summarized in Supplementary Table 1. 

 

Screening of differentially expressed genes (DEGs) 

 

Differential analysis for each of the above-mentioned 

microarray datasets was performed by GEO2R 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/) with default 

settings. For the TCGA-LIHC dataset, the level three 

normalized mRNA expression profile was downloaded 

from the HCCD database, and the limma package [60] 

was adopted to pick out DEGs between HCV-HCC 

and normal samples. Statistical significance was  

set as |log Fold change (FC)| > 1 and FDR (adj.P.Val) 

<0.05. Thereafter, the intersected DEGs were obtained 

and visualized by the UpSetR [61] and VennDiagram 

[62] packages. In order to further validate the 

robustness of the DEGs, we conducted the integrated 

analysis and differential analysis of the four micro-

array datasets with the aid of sva and limma packages 

[63]. 

 

Weight Gene Co-expression Network Analysis 

(WGCNA) and module identification 

 

The WGCNA network was constructed by the 

WGCNA package [64] based on the gene expression 

data of ICGC-LIRI-JP. In the beginning, the DEGs 

from ICGC-LIRI-JP dataset were screened by limma 

package at the cutoff of |log Fold change (FC)| > 1  

and FDR <0.05, which were used to detect and 

eliminate outlier samples through the sample 

clustering tree. Next, an appropriate soft threshold was 

used to obtain scale-free networks. Then topological 

overlap matrix (TOM) and the dissimilarity (dissTOM) 

were computed and used to implement the gene 

dendrogram and module recognition (minClusterSize = 

30). Similar modules were merged into larger ones at a 

cutline of 0.3. To determine their relevance to clinical 

traits, Pearson correlations between module 

eigengenes and clinical phenotypes including age, 

gender, TNM stage, alcohol consumption, smoking 

status, survival time, and survival status were 

calculated and shown with a correlation heatmap. In 

this study, we chose the most significant module that 

correlated with survival status for further analysis, and 

gene significance (GS) and module membership (MM) 

were also calculated. 

 

Protein-protein interaction (PPI) network 

construction 

 
PPI network is a useful approach to explore molecular 

interactions related to tumorigenesis and progression. In 

this study, a PPI network comprising the overlapping 

DEGs was constructed by the Search Tool for the 

Retrieval of Interacting Genes (STRING) database 

(version 11.0; http://string-db.org/). A comprehensive 

interaction score of ≥ 0.7 was set as the threshold (high 

confidence). Visualization of the PPI network was done 

by Cytoscape (version 3.2.1; http://www.cytoscape.org) 

[65]. The MCODE plugin of Cytoscape was used to 

obtain the most significant cluster in the network. 

Topological parameters were calculated by cytohuber 

app [66] and we chose the top 30 nodes that had a 

degree of > 20 as DEGs-PPI hub genes. Besides, to 

fetch the hub genes in the significant module that 

correlated with survival status, we also uploaded the 

corresponding genes in the selected module to the 

STRING database to establish the WGCNA-PPI 

network, which was used to identify WGCNA hub 

genes according to the node degree threshold (≥50). 

 

Hub genes identification 

 

In addition to their putative pivotal role in fostering 

tumorigenesis of cancer, we envisaged that hub genes 

would provide diagnostic and prognostic values in 

HCV-HCC patients. So, we picked out the overlapping 

genes in the PPI hub genes and the WGCNA hub genes 

and assessed their predictive capabilities for diagnosis 

and prognosis based on the expression profile of the 

ICGC-LIRI-JP dataset. For the assessment of their 

diagnostic powers, we depicted the ROC curves of the 

overlapping genes by the pROC package [67] to rank 

their area under the receiver operating characteristic 

curve (AUROC) scores from high to low, and an 

AUROC score of > 0.95 was used set as the criterion for 

selection. To evaluate their prognostic values, only 112 

HCV-HCC patients with complete clinicopathologic 

characteristics (age, gender, TNM stage, vein invasion, 

alcohol consumption, and smoking status) and available 

follow-up information (overall survival outcome) were 

included. The prognostic powers of overlapping genes 

were estimated by univariate Cox regression (UniCox) 

with a P-value threshold of less than 0.05. A forest plot 

was drawn to present the hazard ratio (HR) and P-value 

obtained from UniCox analysis. Only genes that 

satisfied all these conditions were regarded as hub genes 

in this study. 

 

Function enrichment 

 

Metascape database [68] was used to perform the gene 

ontology (GO) analysis of the upregulated genes, the 

downregulated genes and of the most significant 

module in the WGCNA network. Significant terms were 

defined with a P < 0.01 and count > 3. For the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 

analysis, the “clusterProfiler” package [69] was utilized 

and FDR < 0.05 was set as a cutoff. 

https://www.ncbi.nlm.nih.gov/geo/geo2r/
http://string-db.org/
http://www.cytoscape.org/
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Validation of the hub genes’ dysregulation patterns 

 

Three gene expression datasets including ICGC-LIRI-

JP, GSE69715, and GSE12941 were used for the 

validation of the expression patterns of the identified 

hub genes. We firstly used GSE69715 and GSE12941 

as the external datasets to compare the expression levels 

of the hub genes in tumor vs normal by t-test, followed 

by the investigation of the comparison of that according 

to different TNM stages, which was conducted through 

the internal validation set of ICGC-LIRI-JP. Moreover, 

Pearson correlations of the hub genes’ expression 

values were also carried out with ICGC-LIRI-JP and 

TCGA datasets. 

 

Validation of the hub genes’ diagnostic abilities 

 

For the evaluation of the hub genes’ diagnostic 

efficiencies, we depicted the ROC curves of GSE69715, 

GSE107170, and TCGA-LIHC with the pROC package, 

using the corresponding gene expression profiles. To 

explore their performance in differentiating the early 

phase of HCV-HCC from normal liver tissues for early 

detection possibilities, we used the ICGC-LIRI-JP 

dataset to generate ROC curves to quantify their 

predictive powers to discriminate between early stage 

tumor samples (N =73) and normal control (N =98). 

 

Survival analysis and construction of the risk 

signature 

 

To further validate the prognostic values of the identified 

hub genes, Kaplan–Meier overall survival (OS) curves 

and log-rank tests were carried out based on the gene 

expression profile of the ICGC-LIRI-JP dataset. Patients 

were assigned to different risk groups according to the 

median expression value, then the survival package [70] 

was used to measure HR and clinical significance. To 

construct a prognostic risk signature, we conducted 

LASSO-COX analysis with the glmnet package [71] to 

identify the most important hub genes for OS of HCV-

HCC. Genes retained by the LASSO regression 

algorithm were used to build a linear combination to 

generate the risk score for each patient with the following 

formula: risk score = Σ (coef (hub gene) × expression 

value of hub gene). Patients were separated into high- or 

low-risk groups according to the median risk score, and 

survival difference between the two groups were 

compared by Kaplan–Meier curves. The predictive power 

of the risk signature was investigated by the ROC curve 

at 3 years, which was accomplished with the 

survivalROC package [72]. Besides, Stratified analysis 

was also performed for clinicopathological features 
including TNM stage, age, gender, vein invasion status, 

alcohol consumption, and smoking status. For all 

statistical tests, P<0.05 was set as the significant cutoff. 

Correlations between immune response and the risk 

signature 

 

To explore the relationship between our risk signature 

and immune response, we utilized the CIBERSORT 

algorithm [73] to obtain the estimation of the percentage 

for 22 immune cell types in each of the HCV-HCC 

patients based on the ICGC-LIRI-JP cohort. The 

relative abundance of immune cells in high- and low-

risk groups was computed and presented by a heatmap 

plot. Spearman correlation analysis was applied to 

determine the relevance of risk score and immune cell 

infiltration. Besides, the correlation between each of the 

risk signature genes and the immune cell was also 

investigated and visualized by a correlation heatmap. 

 

Prediction of upstream regulators for the hub genes 

 

The upstream transcription factors of hub genes were 

explored by miRNet 2.0 [74], an up to date 

comprehensive platform illustrating “multiple-to-

multiple” relationships and functional interpretation via 

network-based visualization. We chose the TRRUST 

database [75] to capture the possible transcription 

factor-hub gene interactions in the current study, which 

offered 8,444 TF-target regulatory relationships of 800 

human TFs derived from PubMed articles. Besides, we 

predicted the putative targeted miRNAs of all the hub 

genes with miRTarBase 8.0, which collected the most 

updated experimentally validated miRNA-target 

interactions (MTIs) that were validated by reporter 

assay, western blot, microarray, and next-generation 

sequencing experiments [76]. The transcription factor-

hub gene interactions and predictive miRNA-hub genes 

interactions were visualized in Sankey diagrams. 

 

Semantic similarities and GSEA 

 

The GOSemSim package [77] was used to compute the 

semantic similarities of the identified hub genes among 

GO terms with Wang's methods. The geometric mean in 

cellular components (CCs) and molecular functions 

(MFs) was adopted to evaluate the similarity index for 

each hub gene. The top three hub genes with the highest 

similarity index were further verified by GSEA using the 

gene expression profile of ICGC-LIRI-JP. Briefly, we 

calculated the Spearman correlation coefficients and 

corresponding P values between each of the genes  

in the profile and all of the three hub genes and selected 

the top 5000 of the most significantly correlated genes 

that had the largest correlation coefficients at a P-value  

of < 0.01. GSEA was performed using the clusterProfiler 

package [69] with the pre-ranked gene lists by correlation 
coefficients, which was based on the database  

of h.all.v7.0.symbols and c2.cp.kegg.v7.0.symbols, 

respectively. 
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Network pharmacology analysis for HCV-HCC 

 

The drug-gene interaction database (DGIdb) 

(https://dgidb.genome.wustl.edu/; version: 4.2.0 - 

sha1 afd9f30b) [78] was used to determine the 

promising drugs that target the identified hub genes. It 

contains more than 100,000 drug-gene interactions 

mined from PharmGKB, DrugBank, Chembl, TTD, 

Drug Target Commons, and others. Possible drugs 

were prefiltered by FDA approval and anti-neoplastic 

function. TCM-MESH [79] and TCM-ID [80] were 

used to predict the potential herbs and active 

components that targeting the hub genes. Only 

compounds supported by both of the two databases 

were regarded as potential effective herbal 

ingredients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. PPI network of 240 DEGs based on the STRING database. Red nodes denote the upregulated genes, while 

blue nodes denote the downregulated genes. PPI, protein-protein interaction. DEGs, differentially expressed genes. PPI, protein-protein 
interaction. STRING, Search Tool for the Retrieval of Interacting Genes. 
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Supplementary Figure 2. Stratified survival analysis according to clinicopathological features. 
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Supplementary Figure 3. Common KEGG pathways enriched by robust DEGs of HBV-HCC and HCV-HCC. (A) Venn plot showing 

the common or individual pathways enriched by the upregulated genes of HCV-HCC and HBV-HCC. (B) Venn plot showing the common or 
individual pathways enriched by the downregulated genes of HCV-HCC and HBV-HCC. HBV-HCC, HBV - associated HCC. HCV-HCC, HCV- 
associated HCC. KEGG, Kyoto Encyclopedia of Genes and Genomes. DEGs, differentially expressed genes. 
  



 

www.aging-us.com 12893 AGING 

Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 2, 3, 5, 6. 

 

Supplementary Table 1. Characteristics of all datasets enrolled in this study. 

Study Platforms Etiology 
Sample number 

Technology 
Tumor Normal Total 

GSE6764 GPL570 HCV 35 10 45 microarray 

GSE41804 GPL570 HCV 20 20 40 microarray 

GSE62232 GPL570 HCV 9 10 19 microarray 

GSE107170 GPL570 HCV 44 31 75 microarray 

TCGA-LIHC Illumina Hiseq HCV 30 49 79 RNA-seq 

HCCD-ICGC Illumina Hiseq HCV 123 98 221 RNA-seq 

GSE12941 GPL5175 HCV 6 6 12 microarray 

GSE69715 GPL570 HCV 37 66 103 microarray 

HCV, Hepatitis C virus. 
 

Supplementary Table 2. Differential analysis of the overlapping 240 DEGs by the combined microarray dataset. 

 

Supplementary Table 3. DEGs of the ICGC-LIRI-JP dataset. DEGs, differentially expressed genes. 
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Supplementary Table 4. Putative upstream regulatory transcription factors of the hub genes. 

ID Accession Target TargetID Experiment Literature Tissue 

ATF1 466 TOP2A 7153 Unknown 12104051 Not Applicable 

BRCA1 672 ASPM 259266 + 16123590 Not Applicable 

BRCA1 672 CCNB1 891 Unknown 12647291 Not Applicable 

CUX1 1523 RACGAP1 29127 Unknown 21886810 Not Applicable 

E2F1 1869 AURKA 6790 + 20300951 Not Applicable 

E2F1 1869 CCNB1 891 Unknown 22508987 Not Applicable 

E2F1 1869 RACGAP1 29127 Unknown 21886810 Not Applicable 

E2F1 1869 TOP2A 7153 + 11313881 Not Applicable 

E2F3 1871 AURKA 6790 + 18776222 Not Applicable 

E2F3 1871 CCNB1 891 Unknown 17098936 Not Applicable 

E2F4 1874 CCNB1 891 Unknown 22508987 Not Applicable 

FOXJ1 2302 ASPM 259266 Unknown 16809635 Not Applicable 

FOXM1 2305 CCNB1 891 + 19276163 Not Applicable 

IRF1 3659 CCNB1 891 - 22200613 Not Applicable 

KLF4 9314 CCNB1 891 - 14627709 Not Applicable 

KLF5 688 CCNB1 891 + 21951574 Not Applicable 

MED1 5469 AURKA 6790 + 16574658 Not Applicable 

MYC 4609 CCNB1 891 Unknown 11522645 Not Applicable 

NFKB1 4790 CCNB1 891 + 11861406 Not Applicable 

NFKB1 4790 CCNB1 891 Unknown 19610058 Not Applicable 

OTX2 5015 AURKA 6790 + 21047732 Not Applicable 

PTTG1 9232 CCNB1 891 + 22475756 Not Applicable 

RELA 5970 CCNB1 891 + 11861406 Not Applicable 

RELA 5970 CCNB1 891 Unknown 19610058 Not Applicable 

TBP 6908 CCNB1 891 Unknown 17098936 Not Applicable 

TFAP2A 7020 CCNB1 891 Unknown 7739559 Not Applicable 

TP53 7157 CCNB1 891 - 11892838 Not Applicable 

TP53 7157 PRC1 9055 - 12889596 Not Applicable 

UHRF1 29128 TOP2A 7153 Unknown 10646863 Not Applicable 

USF1 7391 CCNB1 891 Unknown 10548544 Not Applicable 

YBX1 4904 CCNB1 891 - 20596676 Not Applicable 

YBX1 4904 CDKN3 1033 + 20596676 Not Applicable 

YBX1 4904 TOP2A 7153 Unknown 10597187 Not Applicable 
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Supplementary Table 5. putative miRNA-mRNA pairs by experiments based on miRTarbase 8.0. 

 

Supplementary Table 6. Anti-neoplastic drugs predicted by DGIdb. 


