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INTRODUCTION 
 
Age-related macular degeneration (AMD), the leading 
cause of irreversible blindness in the developed world, 
is marked histologically by the accumulation of  
lipid-rich deposits in and around the retinal  
pigment epithelium (RPE). Intracellular lipid-rich 
accumulations are termed lipofuscin while extracellular 
accumulations are termed drusen [1, 2]. The RPE is a 
polarized monolayer, facing a fenestrated capillary bed 
termed the choroid basolaterally and a photoreceptor 
cell layer apically. The RPE is a high-volume consumer 

of lipid via uptake of lipoprotein particles from the 
choroidal circulation and daily ingestion of lipid-rich 
outer segments (OS) from photoreceptor cells. The 
RPE is also a prolific lipid secretor, with lipoprotein 
particles directed apically providing lipid for 
photoreceptor OS synthesis and lipoprotein particles 
directed basolaterally sending unneeded lipid through 
Bruch’s membrane to the choroid [3]. The 
accumulation of intracellular lipofuscin in AMD is 
likely the result of inefficient breakdown of 
phagocytosed OS [4, 5], while the accumulation of 
extracellular drusen likely derives from lipoprotein 
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ABSTRACT 
 
Dry age-related macular degeneration (AMD) is marked by the accumulation of extracellular and intracellular 
lipid-rich deposits within and around the retinal pigment epithelium (RPE). Inducing autophagy, a conserved, 
intracellular degradative pathway, is a potential treatment strategy to prevent disease by clearing these 
deposits. However, mTOR inhibition, the major mechanism for inducing autophagy, disrupts core RPE functions. 
Here, we screened autophagy inducers that do not directly inhibit mTOR for their potential as an AMD 
therapeutic in primary human RPE culture. Only two out of more than thirty autophagy inducers tested reliably 
increased autophagy flux in RPE, emphasizing that autophagy induction mechanistically differs across distinct 
tissues. In contrast to mTOR inhibitors, these compounds preserved RPE health, and one inducer, the FDA-
approved compound flubendazole (FLBZ), reduced the secretion of apolipoprotein that contributes to 
extracellular deposits termed drusen. Simultaneously, FLBZ increased production of the lipid-degradation 
product β-hydroxybutyrate, which is used by photoreceptor cells as an energy source. FLBZ also reduced the 
accumulation of intracellular deposits, termed lipofuscin, and alleviated lipofuscin-induced cellular senescence 
and tight-junction disruption. FLBZ triggered compaction of lipofuscin-like granules into a potentially less toxic 
form. Thus, induction of RPE autophagy without direct mTOR inhibition is a promising therapeutic approach for 
dry AMD. 
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particles secreted by the RPE and trapped in the 
underlying basement membrane [3]. Improving the 
RPE’s capacity for lipid handling may alleviate each of 
these histologic hallmarks of AMD. 
 
Autophagy is a major cellular mechanism for degrading 
both molecules and organelles. A de novo double-
membrane autophagosome engulfs target cargo and then 
fuses with the lysosome to promote degradation of the 
engulfed content. Autophagy has been implicated in 
degradation of insoluble pathologic aggregates in 
neurodegenerative diseases [6] and intracellular lipid 
droplets in adipocytes and hepatocytes [7]. Thus, 
autophagy activation in the RPE may improve the 
clearance of insoluble lipofuscin while promoting 
degradation of the daily lipid load faced by RPE during 
OS phagocytosis and lipoprotein particle uptake. 
Efficient degradation of ingested lipids may, in turn, 
decrease secretion of drusen-inducing lipoprotein 
particles. Further, breakdown of fatty acids may induce 
ketone body (KB) production by the RPE. In turn, KB 
secretion by the RPE, which is almost exclusively 
apically directed towards photoreceptors, has been 
shown to provide photoreceptors with an alternate fuel 
source and may promote photoreceptor survival under 
stress [8, 9]. Thus, autophagy activation has multiple 
theoretical mechanisms for alleviating AMD 
phenotypes [10, 11]. 
 
While hundreds of small molecule and protein targets 
for autophagy induction have been published [12–34], 
we and others have previously shown that small 
molecule inducers of autophagy in one cell type often 
do not induce autophagy in other cell types [13]. Almost 
none of the hits from prior autophagy inducer screens 
have been tested for efficacy and toxicity in RPE. 
Further, most of the autophagy inducers tested in RPE 
directly inhibit mTOR or its immediate upstream 
kinases. Strong mTOR inhibition may disrupt RPE 
phagocytosis and has failed in a randomized-controlled 
trial for advanced dry AMD [35–37]. These data 
suggest methods other than direct mTOR inhibition are 
needed for exploring the therapeutic potential of 
autophagy in the RPE. 
 
Non-primate models that replicate the features of dry 
macular degeneration are not available. While some 
genetic mouse models simulate some features of drusen, 
none closely recapitulate human drusen morphology 
and composition [38–40]. Additionally, the structure 
and composition of lipoprotein particles that underpin 
human drusen development are markedly different in 
mice [41]. To complement shortcomings in mouse 
models, primary human RPE culture models of 
lipoprotein secretion and drusen formation have been 
established [40, 42, 43]. 

Here, we screened small molecule activators of 
autophagy in primary human RPE culture that are not 
known to directly target mTOR or its proximal 
upstream kinases. One of these activators, an FDA-
approved anti-helminthic called flubendazole (FLBZ), 
promotes degradation rather than secretion of ingested 
lipids, leading to production of photoreceptor-protective 
KBs while decreasing secretion of drusen-forming 
apolipoprotein. FLBZ also decreases the burden of 
lipofuscin accumulation while alleviating lipofuscin-
induced senescence and tight-junction disruption. In 
toto, these induced changes are predicted to alleviate 
pathology in dry AMD. 
 
RESULTS 
 
Identifying autophagy inducers in RPE 
 
We selected over 30 putative autophagy inducers that 
are not known to directly inhibit mTOR or its 
immediate upstream kinases and tested these inducers in 
a primary human fetal RPE (hfRPE) culture system 
[44]. Nearly all of the autophagy inducers chosen were 
FDA-approved compounds or have a clearly defined 
protein target under pharmacologic development. 
Previous literature suggested all compounds should 
induce autophagy at a low µM concentration, with the 
exception of fenofibrate and metformin, which have 
high serum concentrations at clinically relevant doses. 
Compounds with highly toxic mechanisms (e.g. 
alkylating agents) were excluded from testing, and 
within a pharmacologic class, no more than two 
compounds were tested (Table 1). 
 
To test for autophagy induction, we measured 
lipidation of the core autophagy protein LC3 by 
mobility shift on Western blots 24 hours after each 
compound was added to hfRPE cultures [45]. We first 
confirmed that primary RPE cultures upregulate 
autophagy in response to classical inducers, including 
mTOR inhibition using the mTOR-specific inhibitor 
Torin1 (Torin, Figure 1A) and the upstream pan-
phosphoinositide-3-kinase and mTOR dual inhibitor 
GSK1059615 (GSK, Figure 1A) as well as amino 
acid/serum starvation (Supplementary Figure 1). Of the 
more than 30 putative autophagy inducers tested, only 
five produced an increased ratio of LC3-II/LC3-I, 
consistent with increased autophagy (Figure 1A). 
 
Autophagy induction was confirmed by assaying for the 
formation of LC3-positive puncta (autophagosomes) by 
immunocytochemistry [45]. Puncta formation was 
quantified in automated/unbiased fashion using a 
previously published customized macro in the 
Fiji/ImageJ platform [44]. Besides Torin and GSK, only 
two compounds, D4476, a casein kinase 1 inhibitor, and 
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Table 1. Putative autophagy inducers selected for study in primary human RPE cultures. 

Name Abbreviation Concentration tested in 
this study Citation 

GSK 1059615 GSK 10 µM [46] 
Torin1 Torin 1 µM [47] 
D4476  10 µM [20, 48] 
Flubendazole FLBZ 12 µM [12] 
Amiodarone  10 µM [49] 
GW7647  1 µM [14] 
JNJ-47965567 JNJ 10 µM [33] 
2-Acetyl-5-tetrahydroxybutyl Imidazole THI 10 µM [21] 
Ac-Calpastatin  10 µM [50] 
AZ-10606120  10 µM [33] 
Bortezomib  50 nM [51] 
BRD5631  10 µM [30] 
Carbamazepine  10 µM [52] 
Clonidine  10 µM [52] 
Entinostat MS-275 10 µM [53, 54] 
Erlotinib  10 µM [55] 
Fasudil HA-1077 10 µM [56] 
Fenofibrate  200 µM [57] 
Fluphenazine  10 µM [58] 
K604  10 µM [27] 
Loperamide  4 µM [23] 
Metformin  1 mM [28] 
ML246 Metarrestin 10 µM [19] 
Mocetinostat  10 µM [53, 54] 
Nilotinib  10 µM [59] 
Nilvadipine  10 µM [60] 
Oxaprozin  10 µM [31] 
Rilmenidine  10 µM [61] 
Saroglitazar  10 µM [62, 63] 
Sertraline  10 µM [64] 
Spermidine  10 µM [26] 
Trifluoperazine  1 µM [23] 
(±)-Verapamil  10 µM [28] 

Direct mTOR inhibitors that induced autophagy in primary human fetal RPE cultures are 
highlighted in red. Compounds that do not directly inhibit mTOR but did induce autophagy in RPE 
cultures by both analysis of LC3 lipidation and LC3 puncta formation are highlighted in orange. 
Compounds that induced autophagy in RPE culture by only LC3 lipidation but not puncta 
formation are highlighted in green. All other compounds failed to induce LC3 lipidation in RPE 
cultures. 

FLBZ, an FDA-approved anti-helminthic, also induced 
autophagy by this second assay (Figure 1B). 
 
Increases in both LC3 lipidation and autophagosome 
formation could result from downstream blockade of 
autophagy at the lysosome. To confirm that our hits 
were genuine inducers of RPE autophagy flux, we 
disrupted the last step of autophagy flux, lysosomal 

degradation, through alkalinization of the lysosome 
with ammonium chloride, a well-accepted method for 
confirming autophagy flux [45]. As expected for 
elevated autophagy flux rather than downstream 
autophagy blockade, levels of lipidated LC3 rose for all 
small molecule autophagy inducers (Figure 1C) and for 
amino acid/serum deprivation (Supplementary Figure 
1). Autophagy flux can also be demonstrated by the 
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Figure 1. Identification of autophagy inducers in primary hfRPE culture. (A) Induction of autophagy by analysis of LC3 lipidation 
(LC3-II/LC3-I ratio). Cultures were exposed to compounds or vehicle (DMSO) for 24 hours. Torin n=8, GSK n=10, FLBZ n=10, D4476 n=8, 
GW7647 n=11, JNJ n=10, Amiodarone n=8. (B) Induction of autophagy by analysis of LC3 puncta formation (LC3 staining in green) using LC3 
Puncta Index described previously [44]. Scale bar: 10 µm. Torin n=7, GSK n=3, FLBZ n=4, D4476 n=7. (C) Autophagy flux assays. After 
application of inducers or vehicle (DMSO) for 22.5 hours, 25mM of NH4Cl, a lysosomal alkalizing agent, or H2O were added for a final 1.5 
hours to inhibit autophagy flux. Resulting increases in the LC3-II/LC3-I ratio indicate that the compound induces autophagy flux. Torin n=6, 
GSK n=3, FLBZ n=6, D4476 n=5. Uncropped blots for Figure 1 in Supplementary Figure 3. *p < 0.05, **p < 0.01. 
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appearance of puncta containing phosphorylated 
ATG16L1, which decorates newly formed 
autophagosomes but, unlike LC3, rapidly dissociates as 
the autophagosome matures [65]. Thus, the number of 
phospho-ATG16L1 puncta does not change with 
downstream blockade of autophagy. Phospho-
ATG16L1 immunofluorescence confirms increased 
autophagy flux for both mTOR-independent autophagy 
inducers, FLBZ and D4476, while also demonstrating 
an expected decreased autophagy flux for the lysosomal 
poison chloroquine (Supplementary Figure 2). 
 
Safety of autophagy inducers 
 
To evaluate the safety of D4476 and FLBZ, we 
assessed trans-epithelial electrical resistance (TEER), a 
measure of tight-junction integrity, in our RPE cultures 
after prolonged exposure to each compound. As well-
formed tight-junctions require myriad cell processes to 
be optimally coordinated, assessing TEER provides an 
easily measurable, ongoing, and non-invasive marker 
for general RPE cell health [66]. While both mTOR 
inhibitors, Torin and GSK, dramatically reduced 
TEER, D4476 had a more modest impact and FLBZ 
had no negative effect on TEER (Figure 2A). Reduced 
RPE pigmentation is associated with increased 
susceptibility to oxidative insults [67], and in contrast 
to cultures treated with repeated doses of FLBZ or 
vehicle for at least 20 days, Torin reduced RPE 
pigmentation (Supplementary Figure 4). Lactate 
dehydrogenase (LDH) release, a combined marker of 
necrotic and late-stage apoptotic cell death [68, 69], 
was reduced compared to vehicle for all four verified 
RPE autophagy inducers (Figure 2B). Exposure of RPE 
cultures to the oxidant tert-butyl hydroperoxide 
confirmed the ability of the assay to detect cell death 
(Supplementary Figure 5). 
 
Daily OS phagocytic uptake and degradation is a core 
RPE function necessary for retinal function [70]. A 
previous study suggested that induction of autophagy in 
the RPE leads to impaired OS degradation after initial 
phagocytic internalization since autophagy and RPE 
phagocytosis share overlapping protein machinery [29]. 
While we found that autophagy induction with mTOR 
inhibitors did indeed impair breakdown of OS, D4476 
and FLBZ had no effect on OS degradative capacity 
(Figure 2C). 
 
Effects of autophagy inducers on the balance 
between lipid degradation and lipid secretion 
 
The RPE handles an enormous lipid burden on a daily 
basis, including OS ingestion from its apical side and 
lipoprotein particle absorption from its basolateral side. 
Rather than storing excess lipid, the RPE may choose to 

degrade or secrete surplus lipids (Figure 3A). A marker 
of lipid degradation is the production of KBs, which are 
secreted by the RPE apically and serve as an energy 
source for photoreceptors [8, 9]. A marker of lipid 
secretion is the production of the apolipoprotein, apoE, 
which is a major component of drusen [71]. We 
hypothesized that autophagy inducers may promote 
ketogenesis through degradation of ingested lipids, 
reducing the stimulus for secretion of drusen-promoting 
apoE. In our primary RPE cultures, only FLBZ both 
increased production of the major KB, β-
hydroxybutyrate (β-HB), and reduced the apical and 
basolateral secretion of apoE, suggesting that FLBZ-
mediated autophagy induction changes the lipid-
handling profile of RPE away from drusen promotion 
(Figure 3B, 3C). 
 
Effects of autophagy inducers on lipofuscin-like 
accumulation 
 
We have developed and extensively characterized a 
model of lipofuscin-like material accretion through 
repeated feeding of photo-oxidized OS (oxOS) to 
primary hfRPE culture [72]. Twenty-plus oxOS 
feedings over the course of a month results in a 
significant and stable autofluorescent granule burden 
(Figure 4A). With time, these granules, which we term 
undigestible autofluorescent material (UAM), resemble 
the size and emission spectrum of lipofuscin. Like 
lipofuscin, UAM stain with Nile Red, a marker of 
neutral lipids, and frequently combine with 
melanosomes to form melanolipofuscin granules [72]. 
 
The concurrent feeding of oxOS and FLBZ at 12μM 
over the course of a month resulted in significantly less 
UAM accumulation compared to feedings of oxOS plus 
vehicle (Figure 4B). Since FLBZ has no effects on 
phagocytosis efficiency (Figure 2C), this reduction in 
UAM accumulation was not due to less uptake of oxOS 
in the FLBZ group. We also saw LC3 colocalization 
with UAM granules, supporting a role of autophagy in 
clearing UAM (Figure 4C). Remaining UAM granules 
in FLBZ-treated cultures were smaller than untreated 
cultures (Figure 4D). In contrast, treatment with Torin 
at 1μM over the course of a month resulted in more 
UAM accumulation (Figure 4B), possibly due to 
inhibitory effects of Torin on phagocytic degradation 
(Figure 2C). 
 
To determine whether FLBZ could reduce UAM after it 
had accumulated, we fed our cultures with oxOS 
twenty times over the course of a month, then 
extensively washed off OS from the cultures, and 
subsequently treated with twenty repeated drug 
feedings over the course of an additional month. FLBZ 
led to significantly lower levels of UAM and smaller 
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granule size, confirming that UAM is compactable 
and/or removable even after its accrual in the RPE 
(Figure 4B, 4D). 
 
We and others have shown that cultures with a high 
UAM burden demonstrate significant senescence  
[72, 73], which in the RPE can contribute to the para-
inflammatory state characteristic of AMD [74]. 

Cofeeding cultures with oxOS and FLBZ resulted in 
less senescence compared to feeding of oxOS plus 
vehicle (Figure 5A). Interestingly, when we treated 
cultures with FLBZ after UAM had already 
accumulated, cell senescence was not decreased, 
suggesting that established RPE senescence may be 
difficult to reverse (Figure 5A). Nevertheless, FLBZ 
still improved cell health, as assessed by tight-junction 

 

 
 

Figure 2. Safety of confirmed autophagy inducers in primary hfRPE culture. (A) Tight-junction integrity, as measured by trans-
epithelial electrical resistance (TEER), is a general marker of RPE health. Drug or vehicle (DMSO) replaced daily with measurement just before 
drug replacement. FLBZ shows enhanced TEER while all others, especially mTOR inhibitors Torin and GSK, demonstrate progressively lower 
tight-junction integrity. n=6. (B) Cytotoxicity as measured by percent of total possible LDH release into the apical supernate. Drug or vehicle 
(DMSO) replaced daily with supernate collected just before drug replacement. All compounds demonstrated slightly lower cytotoxicity than 
DMSO control. Note scale break on Y-axis, indicating all conditions, including vehicle, demonstrated minimal LDH release. n=6. (C) Outer 
segment (OS) phagocytosis efficiency, as measured by disappearance of rhodopsin, the primary protein in OS. Purified OS are fed to RPE 
cultures and Western blotting for rhodopsin (Rho) indicates undigested OS remaining, as elaborated in Methods. Direct mTOR inhibition 
(Torin, GSK) reduces phagocytosis efficiency, whereas D4476 and FLBZ have no effect on phagocytosis. Representative blot below each graph, 
with GAPDH bands demonstrating equal cell mass across Transwells used for the phagocytosis assays. Torin n=12, GSK n=4, FLBZ n=9, D4476 
n=3. Uncropped blots for Figure 2 in Supplementary Figure 6. ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. 
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integrity, in cultures with already established UAM 
(Figure 5B). 
 
DISCUSSION 
 
Dry AMD may be a disease of perturbed lipid 
homeostasis, characterized by extracellular deposition 
of lipid-rich drusen. The accumulation of lipid-rich 
intracellular lipofuscin may also be linked to AMD 

and Stargardt macular dystrophy [75, 76]. Efficient 
degradation of ingested lipid by the RPE produces 
KBs that are secreted and then utilized by 
photoreceptors for metabolism. RPE ketogenesis  
may promote survival of metabolically-stressed 
photoreceptors deprived of their primary energy 
source, glucose [8, 9]. For all these reasons, improving 
RPE lipid handling is an attractive therapeutic 
approach for the treatment of dry AMD. 

 

 
 

Figure 3. Impact of confirmed autophagy inducers on RPE lipid metabolism. (A) Proposed model of RPE lipid handling. Lipid-rich 
shed OS are phagocytosed from the apical side and lipoprotein complexes are consumed from the basolateral side daily. Incomplete lipid 
degradation contributes to lipofuscin accumulation. With the remaining lipid load, we postulate that the RPE daily determines the balance 
between complete lipid degradation, as assessed by KB production, and secretion of lipid via lipoprotein particles, as assessed by apoE 
secretion. (B) KB production (as assessed by β-hydroxybutyrate, β-HB) in the presence of vehicle (DMSO) or confirmed autophagy inducers 
for 24 hours. β-HB is secreted almost exclusively into the apical supernate. Only FLBZ increased lipid degradation. Torin n=4, GSK n=7, FLBZ 
n=6, D4476 n=4. (C) Apolipoprotein secretion (as assessed by apoE) in the presence of vehicle (DMSO) or confirmed autophagy inducers for 
24 hours. Both apical and basolateral media contain apoE. While increasing lipid degradation in (B), FLBZ also decreases secretion of drusen-
promoting apolipoprotein. Apical: Torin n=4, GSK n=5, FLBZ n=11, D4476 n=4. Basal: Torin n=4, GSK n=5, FLBZ n=9, D4476 n=3. ns p > 0.05, *p 
< 0.05, **p < 0.01. 
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Autophagy induction, which promotes lipid degradation 
and turnover of otherwise undigestible cellular 
constituents, has the potential to favorably impact RPE 
lipid homeostasis. However, in this study, we show that 
mTOR inhibition, the most common pathway for 
inducing autophagy, disrupts multiple RPE-specific 
functions. Furthermore, the mTOR inhibitor, sirolimus, 
failed to demonstrate therapeutic benefit in a 
randomized controlled trial of advanced dry AMD [37]. 
While researchers have pharmacologically induced 
autophagy in the RPE in a variety of cell and animal 
culture models [77–79], no explicit attempt has been 
made to identify lead compounds that do not directly 

inhibit mTOR or its immediate upstream kinases. We 
therefore sought to identify non-toxic autophagy 
inducers in primary human RPE independent of direct 
mTOR inhibition. 
 
Of more than 30 putative autophagy inducers we tested, 
only two, D4476 and FLBZ, reliably induced autophagy 
in our primary human RPE cultures. Our results support 
prior assertions that autophagy inducers are often cell 
specific [13]. 
 
In evaluating autophagy inducers in the RPE, we found 
that mTOR inhibition disrupted RPE-specific functions, 

 

 
 

Figure 4. Autophagy inducer FLBZ reduces accumulation of lipofuscin-like material. (A) Lipofuscin-like UAM accumulates in RPE 
after repeated feedings of photo-oxidized outer segments (oxOS). UAM granules (green). DAPI (blue). Phalloidin stain of F-actin outlining cell 
borders (pink). Scale bar: 10 µm. (B) Effects of FLBZ or Torin on UAM accumulation (left) and elimination (right). FLBZ or Torin is fed together 
with oxOS daily for 20 days in a month (left, n=5) or fed daily for 20 days in a month after completion of oxOS feedings to stimulate UAM 
accumulation (right, n=7). Unlike Torin, FLBZ both reduces UAM accumulation and increases UAM elimination. DMSO as vehicle control. UAM 
normalized to DMSO condition. (C) LC3 colocalization to UAM granules in the human RPE cell line, ARPE-19, treated with FLBZ. UAM (red). 
LC3 (green). DAPI (blue). Arrows indicate LC3 puncta surrounding a lipofuscin granule. Scale bar: 2 µm. (D) Effects of FLBZ on UAM granule 
size. Compared to vehicle (DMSO), FLBZ decreases UAM granule size both during oxOS feedings (left) and after UAM buildup has already 
occurred (right). n=40. ns p > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001. 
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including tight-junction integrity, OS phagocytosis, and 
pigmentation. The role of mTOR in RPE health is 
multifaceted. On the one hand, over-activation of 
mTOR leads to RPE dedifferentiation through an 

epithelial-to-mesenchymal transition [80]. mTOR 
activation is also associated with RPE senescence [81] 
and less efficient phagocytosis of OS [82]. On the other 
hand, timely activation of mTOR and upstream kinases 

 

 
 

Figure 5. FLBZ alleviates UAM-induced senescence and tight-junction disruption. (A) (Top) FLBZ reduces senescence when fed 
concurrently with oxOS during UAM accumulation. (Bottom) FLBZ is unable to reverse established senescence induced by already 
accumulated UAM. FLBZ is fed daily together with oxOS for 20 days in a month (top) or after one month of 20 oxOS feedings to induce UAM 
buildup (bottom). DMSO as vehicle control. Senescence measured by β-galactosidase activity (blue). Scale bar: 50 µm. n=6. (B) While FLBZ 
does not reduce senescence when added to culture after UAM accumulation has already occurred, it does improve RPE cell health, as 
assessed by tight-junction integrity (TEER measured after 20 FLBZ feedings) (right). Left graph n=6, right graph n=12. ns p > 0.05, *p < 0.05, 
***p < 0.001. 
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during OS ingestion is integral to coordinated 
phagocytosis [35, 36, 83], and activation of mTOR may 
be important for RPE survival under stress [84]. Given 
the deleterious effects of mTOR inhibition on RPE 
function in our primary culture system, we propose that 
the RPE requires a careful and time-dependent balance 
between mTOR activating and deactivating signals. 
Direct or immediate upstream modulation of mTOR 
may not, therefore, be therapeutically tractable. 
 
In our model of RPE lipid handling (Figure 3A), the 
RPE ingests OS and lipoprotein particles as part of a 
daily lipid challenge. If OS are incompletely degraded, 
lipofuscin develops. Lipid that is fully degraded in the 
lysosome transits the endoplasmic reticulum and is 
packaged as lipid droplets. The lipid droplets that form 
after an RPE lipid challenge, however, dissipate quickly 
[85], in contrast to the longer-lived lipid droplets of 
adipocytes or hepatocytes. Further, the accumulation of 
bloated lipid vacuoles, a feature of many age-related 
diseases including atherosclerosis [86], cardiomyopathy 
[87], liver disease [86], and neurodegeneration [88, 89], 
is not a feature of RPE degeneration in macular 
degeneration. Thus, the RPE’s large daily lipid load is 
actively degraded or secreted rather than stored long-
term. Tipping the balance towards degradation may 
provide photoreceptors with KBs, an alternative fuel 
source, and decrease the amount of secreted lipoprotein 
that contributes to drusen formation. We found FLBZ 
altered the balance between degradation vs. secretion of 
lipid in our primary human RPE culture. By reducing 
lipid secretion, FLBZ has the potential to work 
synergistically in dry AMD with pharmacologic 
programs aimed at clearing already deposited 
lipid/drusen in Bruch’s membrane [90, 91]. 
 
Current pharmaceutical approaches to lipofuscin 
reduction have focused on disrupting the retina’s visual 
cycle, which produces the retinoids that contribute to 
lipofuscin accumulation. However, all visual cycle 
modulators have failed to date in human clinical trials, 
likely because the visual cycle is so integral to visual 
function [92]. Avoiding the disadvantages of visual 
cycle modulation, we found that autophagy induction 
both prevented and reduced the accumulation of 
lipofuscin-like material (i.e. UAM [72]) in primary RPE 
culture. 
 
Autophagy may clear lipofuscin both by wholesale 
engulfment of granules in a process akin to autophagic 
engulfment of lysosomes [93] and by the natural 
upregulation of lysosomal capacity that accompanies 
autophagy induction [94, 95]. Alternatively, 
components of lipofuscin are known to trigger 
accumulation of cholesterol in the lysosome and reduce 
cholesterol concentration in cell membranes [96]. As 

phagosome transport to the lysosome depends on 
cholesterol-rich lipid rafts [97], alterations in 
cholesterol composition of cell membranes retards 
phagosome maturation, which may lead to further 
accumulation of lipofuscin. There is also evidence that 
lipofuscin-mediated accumulation of cholesterol in the 
lysosome indirectly triggers altered microtubule 
dynamics which, in turn, slows phagosome and 
autophagosome maturation [98], leading to further 
lipofuscin accumulation. Induction of autophagy may 
directly or indirectly alter the cholesterol 
dyshomeostasis triggered by lipofuscin, leading to 
improved degradation of OS components and decreased 
lipofuscin accumulation. 
 
Under conditions where FLBZ prevented UAM 
accumulation, the drug also reduced senescence 
associated with UAM. Reduced senescence may 
decrease AMD-associated inflammation and 
neovascularization [99, 100], and drugs that specifically 
eliminate senescent cells are in early stage clinical 
development for macular degeneration [101, 102]. 
Consistent with reports on the difficulty of reversing 
senescence [103], FLBZ did not reduce senescence in 
cultures where UAM had already accumulated. 
Nevertheless, delaying FLBZ treatment until after UAM 
had fully accumulated still reduced UAM burden, 
compacted remaining UAM granules, and modestly 
improved cell health, as assessed by tight-junction 
integrity. We have previously shown that UAM 
granules slowly compact over 12 months in culture; the 
acceleration of this compaction process by autophagy 
may diminish reactivity and toxicity of lipofuscin-like 
granules [72]. Consistent with this hypothesis, 
lipofuscin granules in AMD are larger than those in 
normal age-related controls [104]. 
 
The mechanism of FLBZ’s induction of autophagy is 
not fully understood. FLBZ is an agonist of ATG4, a 
cysteine protease necessary for cleaving the core 
autophagy protein LC3 into its active form [105]. 
Additionally, FLBZ appears to trigger 
depolymerization of dynamic microtubules (MT), 
while stabilizing acetylated MTs, a property unique 
among a range of other microtubule depolymerizing 
agents [12]. MT acetylation-triggered activation of the 
stress kinase JNK1 leads to Bcl-2 phosphorylation 
which, in turn, releases the upstream autophagy 
inducer Beclin1 from its inhibitory complex with Bcl-
2 [12]. Interestingly, the single largest genetic risk 
factor for AMD, the HTRA1 locus, codes for a serine 
protease that, like FLBZ, has significant effects on MT 
stability [106]. Whether FLBZ’s effects on autophagy 
and AMD histologic phenotypes described here 
depend on HTRA1 allele status is an area for further 
research. 
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Our study utilized primary human fetal RPE to model 
aspects of AMD. There are advantages and limitations 
with this model. Any culture model lacks the complete 
retinal ecosystem that contextualizes RPE function in 
animal models [107], and there is clear evidence for the 
involvement of the choroid, Bruch’s, RPE, and 
photoreceptors in AMD pathogenesis. On the other 
hand, no AMD mouse model truly recapitulates drusen 
formation [3]. Certain models show Bruch’s membrane 
thickening with potential cholesterol deposition but 
without the lipoprotein particle composition that 
dominates human drusen [3, 108]. Further, the entire 
lipoprotein system, fundamental for drusen formation in 
humans, is markedly different between mice and 
humans [41]. 
 
The fetal origin of our human RPE cultures is also 
conceptually at odds with modeling a disease whose 
overwhelming principal risk factor is age. Indeed, while 
lipofuscin formation and oxidative stress may play a role 
in AMD, human fetal RPE cultures demonstrate a robust 
resistance to lipofuscin accumulation [72] and oxidative 
stress, tolerating doses of the oxidant tert-butyl 
hydroperoxide that typically trigger significant damage 
and death in other RPE culture models [109–112]. On the 
other hand, our hfRPE cultures demonstrate deposition of 
apoE and hydroxyapatite drusen-like deposits in the 
Transwell, characteristic of AMD [113] (data not shown). 
Further, in contrast to primary adult human RPE cultures, 
hfRPE expresses the drusen-promoting apolipoprotein, 
apoE, at a high level that closely approximates apoE 
expression in human RPE in vivo (data not shown). To 
ensure our hfRPE cultures mimic in vivo RPE to the 
maximum extent possible, we grow hfRPE exclusively 
on Transwells for, on average, at least 3 months; only 
cultures with high TEER (usually > 500 Ω*cm2), high 
pigmentation, and uniformly cobblestone morphology are 
utilized for all experiments. We have previously shown, 
under these conditions, that the RPE maintains numerous 
characteristics of in vivo RPE [44]. 
 
In summary, we demonstrate that activation of 
autophagy through mechanisms that do not involve 
direct mTOR inhibition can mitigate the processes 
associated with extracellular drusen formation and 
intracellular lipofuscin accumulation without causing 
RPE toxicity. As drusen and lipofuscin are pathologic 
hallmarks of dry AMD, FLBZ is a promising candidate 
drug for this disease. 
 
MATERIALS AND METHODS 
 
Primary hfRPE and ARPE-19 culture 
 
Human fetal eyes were obtained from Advanced 
Bioscience Resources (ABR, Alameda, California) and 

cultured according to previously published methods 
[44]. hfRPE was plated on Transwells at passage 1, and 
experiments were performed on hfRPE that was in 
culture, on average, for three months or more. All 
Transwell cultures demonstrate high pigmentation, 
cobblestone morphology, absence of any intertwined 
fibroblastic patches, and TEER of at least 375 Ω*cm2. 
Step-by-step directions for our hfRPE culture are 
available at https://medicine.umich.edu/sites/default/ 
files/content/downloads/Human_RPE_Culture_Protocol
.pdf. ARPE-19 cells were a gift from the Hjelmeland 
laboratory [114] and were cultured at passage 19 as 
previously described [72]. 
 
Assaying for autophagy 
 
Cell cultures were exposed to each putative autophagy 
inducer at a concentration indicated in Table 1 for 24 
hours, lysed with 36μL of SDS sample buffer with β-
mercaptoethanol, with 15µg of lysate loaded on a 4-
15% gradient gel followed by transfer to a PVDF 
membrane. Blots were incubated with 1:1000 of 
LC3A/B antibody (Cell Signaling Technology, #4108s) 
overnight. Quantifying LC3-II/LC3-I ratio is a well-
accepted method for determining autophagy induction 
[45], and this ratio was quantified in a non-saturated, 
linear range using the Azure c500 Imaging System 
(Azure Biosystems, Dublin, CA, USA) and a 
combination of AzureSpot and ImageJ software. The 
data in Figure 1A are not normalized, whereas the data 
in Figure 1B, 1C are normalized to the average 
combined value of the vehicle and drug groups within 
each experimental repeat. The extreme pigmentation of 
human fetal cultures, combined with the destruction of 
the LC3 epitope with melanin bleaching protocols, 
makes detection of LC3 by immunofluorescence in 
hfRPE difficult. We previously extensively tested a 
range of LC3 staining and puncta quantification 
protocols specifically adapted to pigmented hfRPE 
culture, and those were employed for this study [44]. At 
least five fields of view were randomly chosen, imaged 
with a Leica SP5 confocal microscope, and averaged 
together for each experimental replicate. Vendor and 
product number for autophagy inducers are listed  
in Supplementary Table 1. Phospho-ATG16L1  
puncta immunofluorescence was performed on 
paraformaldehyde-fixed cells permeabilized with 
50µg/mL of digitonin in PBS for 10 minutes at room 
temperature, followed by detergent-free conditions for 
the blocking, primary antibody, secondary antibody, 
and wash steps. The primary antibody (Abcam, 
#195242) was incubated in PBS + 1% BSA for 1 hour 
at room temperature at a dilution of 1:100. Autophagy 
flux in these experiments was blocked by incubating 
with 30 µM chloroquine (Sigma, #C6628) for 24 hours. 
Phospho-ATG16L1 puncta quantification was 

https://medicine.umich.edu/sites/default/files/content/downloads/Human_RPE_Culture_Protocol.pdf
https://medicine.umich.edu/sites/default/files/content/downloads/Human_RPE_Culture_Protocol.pdf
https://medicine.umich.edu/sites/default/files/content/downloads/Human_RPE_Culture_Protocol.pdf
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determined by counting puncta number for each 
condition and then normalizing this number to the 
average puncta number across all fields of view for both 
the control and treatment condition. This is reported as 
the “Puncta Index” in Supplementary Figure 2. 
 
TEER and cell death assays 
 
TEER and cell death were measured as outlined 
previously [72]. For cell death assays, maximum 
possible LDH release per Transwell was measured 
immediately after 2μL of the final experimental 
supernate was taken. The Transwell and supernate was 
then treated with 0.2% Triton X-100 for 15 minutes at 
37° C followed by collection of an additional 2μL of 
supernate. Each experimental LDH release value was 
first normalized to total LDH release from the vehicle 
condition at that timepoint. All TEER and LDH release 
measurements were then additionally normalized to the 
vehicle group at the zero hour timepoint. Step-by-step 
directions for our measurement of TEER in hfRPE 
cultures on Transwells are available at https://medicine. 
umich.edu/sites/default/files/content/downloads/Measur
ing_Transepithelial_Electrical_Resistance.pdf. 
 
Phagocytosis assays 
 
Phagocytosis assays using bovine outer segments was 
performed using the “pulse-only” method described 
previously [44]. Briefly, in order to capture the total 
consumption of OS introduced to RPE in a single 
Transwell, the apical chamber of each Transwell is 
incubated with 50µL of media containing 4×106 OS/mL 
and OS phagocytosis bridging ligands (recombinant 
human milk fat globule-EGF factor −8 (MFG-E8) 
(1.5µg/mL, Sino Biological, #10853-H08B) and 
purified Protein S (ProS) (4µg/mL, Enzyme Research 
Laboratories, #HPS)). In contrast to the pulse-chase 
method used in classical phagocytosis assays, OS were 
added (“pulse”) but not washed off (“chase”). At 
various times after OS “pulse”, we added 50µL T-PER 
lysis buffer (Thermo, #78510) plus complete protease 
inhibitor mini-tab (Thermo, #PIA32955) to the apical 
chamber. The collected lysate thus included both the 
RPE cell layer as well as the media above, containing 
the non-consumed OS. Once collected, the “supernatant 
+ cell” lysate is subjected to SDS-PAGE and blotted 
with an N-terminally directed anti-rhodopsin antibody 
(1:5000 dilution, Encor BioTech, #MCA-B630). This 
assay provides an assessment of total OS consumption 
by staining for all non-consumed OS, whether  
those OS were in the media, bound on the RPE  
cell surface, or internalized but incompletely  
degraded. Rhodopsin values at the zero hour  
timepoint were used for normalization. Step-by-step 
directions for our OS isolation protocol are available at 

https://medicine.umich.edu/sites/default/files/content/do
wnloads/Photoreceptor_Outer_Segment_Isolation.pdf. 
 
Measuring ApoE secretion and ketogenesis 
 
After 24 hours of exposure to drugs, supernates were 
collected and subjected to western blotting for apoE 
detection and a fluorometric assay for β-HB detection 
(AAT Bioquest, #13831), as previously described [72]. 
Twelve microliters of apical and basolateral supernates 
for apoE were mixed with 4 μl of 4x sample buffer, run 
on SDS-PAGE, and blotted with antibody (Millipore, 
#AB947) at a dilution of 1:2000. ApoE secretion was 
assessed in the presence of our standard RPE culture 
media with 5% fetal bovine serum. Blotting of 
equivalent volumes of just RPE media with 5% fetal 
bovine serum demonstrates negligible amounts of apoE 
(data not shown), confirming that measured apoE in our 
experiments derive from RPE secretion and not bovine 
serum. ApoE and β-HB values were normalized to the 
average value of the vehicle and experimental group 
within each experimental repeat. 
 
Undigested autofluorescent material 
 
UAM accumulation and quantification as well as assays 
on senescence were carried out as previously described 
[72]. UAM granule size was measured with Leica LAS 
X software using the length of the long axis of the 
granule ellipse. 
 
Statistical analysis 
 
Means were compared using paired or unpaired two-
tailed Student’s t-test, as appropriate. All error bars 
represent standard error of the mean unless otherwise 
specified. For apoE secretion experiments, there were 
non-balanced technical replicates between experiments 
and within treatment groups of a given experimental 
repeat. To ensure our normalization scheme did not lead 
to bias, we confirmed the magnitude and significance of 
our findings using mixed effects modeling in R [115]. All 
results from the mixed effects analysis were concordant 
with values and significance reported in this study. 
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https://medicine.umich.edu/sites/default/files/content/downloads/Measuring_Transepithelial_Electrical_Resistance.pdf
https://medicine.umich.edu/sites/default/files/content/downloads/Measuring_Transepithelial_Electrical_Resistance.pdf
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(US) Federal Drug Administration; FLBZ: 
flubendazole; GSK: GSK 1059615 (dual mTOR and 
phosphoinositide-3-kinase inhibitor); hfRPE: human 
fetal retinal pigment epithelium (cultures); JNJ: JNJ-
47965567 (P2X7 purinergic receptor antagonist); KB: 
ketone body; LC3: microtubule-associated protein 
1A/1B-light chain 3; LDH: lactate dehydrogenase; 
mTOR: mammalian target of rapamycin; MT: 
microtubule; OS: (photoreceptor) outer segments; 
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RPE: retinal pigment epithelium; TEER: trans-
epithelial electrical resistance; Torin: torin1 (mTOR 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 
 

 

 
 

Supplementary Figure 1. Serum and amino acid starvation induce autophagy flux in hfRPE. Serum and amino acid starvation is 
induced by incubating hfRPE in Hank’s Balanced Salt Solution for 6 hours, with normal media as control. The lysosomal alkalinizing agent 
NH4Cl (25 mM) was added 1.5 hours prior to harvest. In control wells, the increase in LC3-II/LC3-I ratio after blockade of autophagy flux by 
NH4Cl demonstrates that hfRPE has high baseline levels of constitutive autophagy. Amino acid and serum starvation with Hank’s Balanced 
Salt Solution induces autophagy flux above baseline levels. n=6. **p < 0.01, ***p < 0.001. 
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Supplementary Figure 2. Phospho-ATG16L1 puncta formation confirms that serum and amino acid starvation, FLBZ, and 
D4476 stimulate autophagy flux. Serum and amino acid starvation induced by incubating hfRPE in Hank’s Balanced Salt Solution 
(HBSS) for 4 hours. Control cultures were incubated with normal media. FLBZ, D4476, and the lysosomal alkalinizing agent, chloroquine 
(30 μM), were incubated for 24 hours prior to immunostaining, with control wells containing the drug vehicle for FLBZ, D4476, or 
chloroquine. Phospho-ATG16L1 puncta staining demonstrates increased autophagy flux for serum and amino acid starvation, FLBZ, and 
D4476, and an expected decrease in flux with chloroquine treatment. Calculation of the puncta index is detailed in Methods. Scale bar:  
10 μm. ns p > 0.05, *p < 0.05, **p < 0.01. 
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Supplementary Figure 3. Uncropped western blots for Figure 1. Symbols (+ or -) indicate presence or absence of NH4Cl. 

 

 
 

Supplementary Figure 4. mTor inhibitor Torin1 reduces hfRPE pigmentation. Whole mounted Transwells (in duplicate) are 
photographed. Daily feeding of oxOS and Torin together during UAM buildup resulted in reduced pigmentation (20 drug changes over 4 
weeks). In contrast, an identical feeding protocol involving oxOS and FLBZ or oxOS and vehicle (DMSO) together during UAM buildup resulted 
in preserved pigmentation. 
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Supplementary Figure 5. Lactate dehydrogenase (LDH) assay accurately assesses cell death, as determined by exposure to 
the oxidant tert-butyl hydroperoxide (tBHP). Primary fetal RPE cultures were exposed to tBHP for 24 hours at a concentration known to 
cause partial but not complete cell death on the Transwell. There is a corresponding marked increase in LDH release. Data normalized to 
maximum possible LDH release as well as to the no tBHP condition. 
 

 
 

Supplementary Figure 6. Uncropped western blots for Figure 2. The phagocytosis blots for GSK in Figure 2C are uncropped and 
therefore do not appear above. 
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Supplementary Table 
 
Supplementary Table 1. Commercial sources for autophagy inducers in this study. 

Name  Abbreviation Company Product number 
GSK 1059615  GSK Sigma-Aldrich SML0083 
Torin1  Torin ApexBio A8312 
D4476  Cayman 13305 
Flubendazole  FLBZ Sigma-Aldrich 34091 
Amiodarone  Cayman 15213 
GW7647  Cayman 10008613 
JNJ-47965567  JNJ Cayman 21895 
2-Acetyl-5-tetrahydroxybutyl Imidazole  THI Cayman 13222 
Ac-Calpastatin  Cayman 16501 
AZ-10606120  Tocris 3323 
Bortezomib  Cayman 10008822 
BRD5631  Broad Institute MTA* 
Carbamazepine  Sigma-Aldrich C4024 
Clonidine  Sigma-Aldrich C7897 
Entinostat  MS-275 Cayman 13284 
Erlotinib  Cayman 10483 
Fasudil  HA-1077 Cayman 10010559 
Fenofibrate  Cayman 10005368 
Fluphenazine  MP Biomedical ICN15370691 
K604  Otava LTD 7070707145 
Loperamide  Cayman 14875 
Metformin  Cayman 13118 
ML246  Metarrestin AOBious AOB1384 
Mocetinostat  Cayman 18287 
Nilotinib  Cayman 10010422 
Nilvadipine  Sigma-Aldrich SML0945 
Oxaprozin  Cayman 15476 
Rilmenidine  Sigma-Aldrich R134 
Saroglitazar  Zydus-Cadila MTA* 
Sertraline  Cayman 14839 
Spermidine  Sigma-Aldrich S2626 
Trifluoperazine  Sigma-Aldrich T8516 
(±)-Verapamil  Sigma-Aldrich V4629 

Direct mTOR inhibitors that induced autophagy in primary human fetal RPE cultures are highlighted in red. Compounds that 
do not directly inhibit mTOR but did induce autophagy in RPE cultures by both analysis of LC3 lipidation and LC3 puncta 
formation are highlighted in orange. Compounds that induced autophagy in RPE culture by only LC3 lipidation but not puncta 
formation are highlighted in green. All other compounds failed to induce LC3 lipidation in RPE cultures. *=Materials Transfer 
Agreement. 


