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INTRODUCTION 
 

Bladder cancer (BC) is one of the most common forms 

of malignant tumors affecting the urinary tract. Although 

there are many methods to diagnose and remove solid 

neoplasms, the high recurrence rate and mortality of BC 

are still not well controlled [1]. Therefore, there is an 

urgent need for effective diagnostic and prognostic 

biomarkers for BC. Although there are several treatment 

options, such as chemotherapy, for controlling the 
disease, there is still no effective guidance on how to 

choose chemotherapeutic drugs [2]. For this reason, 

strategies to individualize treatment are being explored 

actively. However, studies aimed at finding a reliable 

measure to stratify treatment for patients with BC have 

not yet yielded the desired results [3]. 
 

Zinc finger proteins (ZNFs) represent the largest 

transcription factor family in the human genome. These 

proteins are involved in diverse biological processes, 

including differentiation, development, metabolism, 

apoptosis, autophagy, and stemness maintenance. Over 

the last few decades, increasing evidence has supported 

key roles for ZNFs in cancer onset, progression, and 
metastasis [4]. For example, Chen et al. reported that 

ZNF830 promotes homologous recombination repair and 

survival of cancer cells in response to DNA damage, and 

that high expression of ZNF830 is associated with poor 
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ABSTRACT 
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chemotherapy was revealed in the low-risk group. Finally, we conducted gene set enrichment analysis of the 
signature genes and established, by applying the ESTIMATE algorithm, distinct correlations between the two 
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effective risk stratification of BC patients, our novel ZNF gene signature may enable tailoring more intensive 
treatment for high-risk patients. 
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survival in lung and gastric cancer patients by mediating 

resistance to chemoradiotherapy [5]. Further examples 

include ZNF281 [6], which acts as an oncogene, 

ZNF185 [7] and ZNF750 [8], which serve as tumor 

suppressor genes, and ZEB1 [9] and ZBP89 [4], which 

appear to act as either oncogenes or tumor suppressor 

genes in different contexts. Interestingly, a recent study 

indicated that a single gene, encoding the zinc finger 

protein SPOP, can predict the prognosis of several 

tumors and guide stratification therapy [10]. 

 

Identification of biomarker signatures represents a 

valuable approach to mine the wealth of information 

contained within biological samples [11, 12]. Since the 

significance of ZNFs in BC diagnosis, treatment, and 

prognosis remains unclear developing a biomarker 

signature based on ZNF protein genes might be helpful 

to guide decision-making to select appropriate 

treatments and to predict prognosis for BC patients. 

Moreover, the prognostic performance of the signature 

can be enhanced by constructing nomograms that 

integrate, along with the corresponding expression 

profiles, the patient’s clinical variables, e.g. tumor status 

[13]. Therefore, the goal of this study was to construct a 

ZNF gene-based signature to stratify patients, predict 

individual prognosis, and guide BC treatment. We also 

developed and tested a nomogram based on the ZNF-

gene signature and clinical variables, assessed the 

signature’s association with stromal and immune cells in 

the tumor microenvironment and predicted, based on the 

expression of signature genes in low- and high-risk 

patients, their response to common chemotherapy 

agents. Our findings shed light on the potential 

contribution of ZNFs to the pathogenesis of BC and may 

inform clinical practice to guide individualized 

treatment. A flow chart depicting the analyses performed 

in this study is shown in Figure 1. 

 

RESULTS 
 

Identification of differentially expressed ZNF-coding 

genes in BC 

 

To determine the expression patterns of ZNF genes in BC, 

expression levels of 1818 human ZNF protein-coding 

genes retrieved from the UniProt database were evaluated 

in the transcriptional profiles of 403 muscle-invasive BC 

patients and 19 normal bladder controls, available in the 

TCGA (Figure 2A). A total of 319 upregulated and 139 

downregulated ZNF-coding, differentially expressed 

genes (DEGs) were thus identified (Figure 2B and 

Supplementary Table 1). 

 

 
 

Figure 1. Flow chart of the study. 
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Development of a ZNF gene-based prognostic 

signature for BC 

 

A prognostic signature was then established by first 

identifying survival-associated ZNF-coding DEGs in the 

TCGA-BC cohort using univariate Cox regression. After 

screening out significant DEGs using LASSO regression 

and multivariate Cox regression, 7 BC-specific, 

prognostic ZNF genes were selected (Figure 3). After 

extracting the corresponding coefficient values (Table 1), 

 

 
 

Figure 2. Identification of differentially expressed ZNF genes in the TCGA-BC cohort. (A) Heatmap depicting the expression levels of 

ZNF genes in tumor (T) and normal (N) samples. (B) Volcano plot representation of differentially expressed ZNF genes in the TCGA-BC cohort.  
 

 
 

Figure 3. Characteristics of BC‐specific ZNF genes. Forest plot showing hazard ratios (HRs) with 95% confidence interval (95% CI) of 

prognostic ZNF genes in BC based on multivariate Cox regression results. 
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Table 1. The coefficient of selected genes. 

Gene coefficient HR HR.95Low HR.95High P value 

ZHX3 0.148896 1.160553 0.989119 1.361699 0.067879 

ZNF350 -0.0615 0.940356 0.877571 1.007633 0.08111 

ZNRD1 -0.06775 0.934497 0.877895 0.994749 0.033577 

ZNF195 -0.11088 0.895049 0.823812 0.972446 0.008786 

SUZ12 0.064369 1.066486 1.035628 1.098264 1.73E-05 

APEX2 -0.03312 0.967418 0.943455 0.99199 0.009642 

EBF4 -0.04355 0.957387 0.912023 1.005007 0.078698 

 

individual risk scores were estimated based on 

coefficient-weighted expression levels of the selected 

genes. 

 

Following exclusion of three BC patients with no 

follow-up information in the TCGA cohort, the patients 

were stratified into a high-risk group (n=200) and a 

low-risk group (n=200) according to the median cut-off 

value (Figure 4A). As shown in Figure 4B, patients with 

high risk had a higher probability of early death than 

those with low risk. Consistently, the heatmap of 

expression profiles in the TCGA dataset showed distinct 

differences between groups (Figure 4C). Moreover, 

survival analysis indicated that patients in the high-risk 

group had a significantly worse OS than their low-risk 

counterparts (Figure 4D, P <0.001). The ZNF gene-

based prognostic signature showed good performance, 

with AUCs of 0.654 and 0.664 at 3- and 5-year follow-

up respectively (Figure 4E). Furthermore, the signature 

was significantly predictive of survival on univariable 

(Figure 3) and multivariable (Figure 3) analyses that 

included risk score, age, gender, tumor stage, and TNM 

(P<0.001 for all variables, except gender and tumor 

stage). 

 

External validation of the prognostic signature 

 

To verify the predictive value of our model, samples 

from patients in the GSE48276 cohort served as 

external testing data after categorizing them into  

high- or low-risk groups using the median value 

calculated with the same formula and cutoff value 

applied before (Figure 5A). The expression profiles 

corresponding to the signature genes are shown in 

Figure 5C. Similar to the results obtained in the 

original TCGA cohort, patients in the high-risk group 

were more likely to die earlier (Figure 5B) and had  

a reduced survival time compared with those in  

the low-risk group (Figure 5D; P= 0.001). Moreover, 
the prognostic performance of the ZNF gene-based 

prognostic signature showed acceptable discrimination, 

with AUCs of 0.723 and 0.834 at 3- and 5-year follow-

up, respectively (Figure 5E). 

Predictive accuracy of a ZNF gene-based nomogram 

 

After asserting the prognostic reliability of the 7-ZNF-

gene signature on BC outcomes, we used it along with 

patient clinicopathological data to construct a nomogram 

to forecast 1-, 2-, and 3-year OS (Figure 6A). The 

calibration plot of the nomogram indicated optimal 

predictive accuracy, with a close overlap between 

predicted and actual survival rate (Figure 6B). 

 

The ZNF-gene signature predicts differences in BC 

microenvironment 

 

To assess whether the ZNF-gene signature can help 

distinguish differences in the tumor microenvironment 

of BC, we employed the ESTIMATE tool to compare 

gene expression signatures of stromal and immune cells 

among risk groups. The stromal score ranged from -

788.35 to -267.74 (Figure 7A), the immune score ranged 

from 379.45 to 715.66 (Figure 7B), and the ESTIMATE 

score ranged from -408.9 to 447.92 (Figure 7C), with 

statistically significant differences (P<0.001 for all 

scores) detected between the high-risk and low-risk 

groups. Meanwhile, a lower tumor purity, distributed 

between 0.76 and 0.83 (Figure 7D) was observed in the 

high-risk group (P<0.001). 

 

Correlation between tumor-infiltrating immune cells 

and the ZNF-gene signature 

 

To further investigate the relationship between the ZNF 

gene signature’s risk score and the tumor’s immune 

status, the enrichment scores of diverse immune cell 

subpopulations, and their related functions or pathways, 

were quantified in the TCGA-BC cohort using ssGSEA. 

The results showed that scores for cell types related to 

the antigen presentation process, including dendritic 

cells (DCs), activated DCs, plasmacytoid DCs, tumor-

infiltrating lymphocytes (TILs), B cells, macrophages, 
mast cells, neutrophils, CD8 T cells, T helper (Th) cells, 

Th1 cells, T follicular helper cells (Tfhs), and regulatory 

T cells (TRegs) were significantly different between 

risk groups (adjusted P < 0.05 for all; Figure 8A). On 
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KEGG analysis, cytokine-cytokine receptor interaction 

showed a higher score in the high-risk group (adjusted 

P < 0.05; Figure 8B). Moreover, the high-risk group 

showed also enrichment in the activity of checkpoint 

molecules and higher scores for macrophages or Tregs, 

whereas scores for type II IFN response, type I IFN 

response, and NK cells were instead lower (adjusted  

P< 0.05, Figure 8A, 8B). 

 

 
 

Figure 4. Development of a prognostic signature for BC based on 7 ZNF genes. (A) Distribution and median value of the risk scores 

in the TCGA cohort. (B) Survival status of patients in the different risk groups. (C) Heatmap of the expression profiles of the 7 ZNF genes 
included in the prognostic signature. (D) Time-dependent ROC curve of the 7-gene signature. (E) Survival analysis of the signature-defined risk 
groups. (F) Univariable and (G) multivariable analyses adjusting for risk score, age, gender, tumor stage, and TNM. 
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Figure 5. Validation of the 7-ZNF-gene prognostic signature in a GEO dataset. (A) Distribution and median value of the risk scores in 

the GSE48276 cohort. (B) Survival status of low-risk and high-risk patients. (C) Heatmap of the expression profiles of the 7-ZNF-gene 
signature. (D) Time-dependent ROC curve of the prognostic signature. (E) Survival analysis of signature-defined risk groups. 
 

 
 

Figure 6. Construction of a nomogram based on the 7-ZNF-gene signature. (A) Nomogram based on the ZNF-gene signature and 

clinical information. (B) Decision curve analysis evaluating the clinical utility of the nomogram at 3-year survival. 
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Figure 7. Comparison of tumor microenvironment composition between risk groups in the TCGA-BC cohort. (A) Comparison of 
stromal scores between risk groups (P<0.001). (B) Comparison of immune scores between risk groups (P<0.001). (C) Comparison of ESTIMATE 
scores between risk groups (P<0.001). (D) Comparison of tumor purity between risk groups (P<0.001). 
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The ZNF-gene signature predicts chemotherapy 

response in BC 

 

Considering that chemotherapy is still the most effective 

adjuvant measure to treat BC, we accessed the Genomics 

of Drug Sensitivity in Cancer (GDSC) database to 

estimate the response of low-risk and high-risk BC 

patients to commonly used drugs. The correlation 

between risk groups and IC50 values for 138 

chemotherapeutic agents was visualized using 

scatterplots. We found significant discrimination between 

groups in the estimated IC50 values of 28 drugs  

(Figure 9, P< 0.05 for all). Hence, we concluded that the 

low-risk group may be more sensitive to common 

chemotherapies during clinical treatment. 

 

Association of the ZNF signature genes with BC 

progression 

 

To gain insight into the functions of the 7 ZNF protein-

coding genes included in our signature, we performed 

KEGG enrichment analysis based on GSEA enrichment 

scores. The results indicated that the expression patterns 

that conformed to the high-risk group were enriched in 

KEGG terms related to tumor progression, such as 

extracellular matrix (ECM)-receptor interaction, adherens 

junction, chemokine signaling pathway, and gap junction 

(Figure 10, P< 0.05 for all). Interestingly, our ZNF-gene 

signature was closely correlated with other malignancies, 

for instance melanoma, pancreatic cancer, and glioma. 

These results suggest that the ZNF protein genes 

comprising our BC signature may also drive the onset or 

progression of other types of cancers. 

DISCUSSION 
 

BC, a common urinary malignancy, is associated with 

poor prognosis in advanced stages. Thus, identification of 

novel biomarkers will help assess prognosis, screen out 

patients in need of systemic therapy, and guide individual 

treatment. ZNFs represent highly promising biomarkers 

for BC. First, they are one of the most abundant groups 

of proteins and have a wide range of molecular functions. 

Second, ZNFs are involved in tumorigenesis, cancer 

progression, and metastasis formation. Third, ZNFs may 

act as oncogenes or tumor suppressors and thus serve as 

valuable prognostic factors. Fourth, ZNF protein genes 

are closely involved in the oncogenesis of BC. For 

instance, activation of MDM2, a ZNF domain-containing 

E3 ubiquitin ligase, leads to ubiquitylation and 

proteasomal degradation of p53, a major tumor 

suppressor protein closely involved in the occurrence, 

progression, and metastasis of BC [14]. Furthermore, 

ZNFs’ genes are involved in telomere maintenance and 

genome integrity in cancer and aging [15]. Therefore, in 

this study we conducted bioinformatics analysis to 

explore whether differential expression of ZNF genes 

could be exploited to predict BC outcomes and aid risk 

stratification. 

 

Based on transcriptional data from the TCGA-BC cohort, 

we identified 7 prognostic ZNF-coding genes that may 

serve as valuable biomarkers in the clinical setting. 

Similar to other analyses [16, 17], the prognostic 

signature based on the 7 ZNF genes categorized BC 

patients into two subgroups with different survival 

outcomes. Importantly, the ability of the gene signature 

 

 
 

Figure 8. Comparison of ssGSEA scores between risk groups in the TCGA-BC cohort. (A) Scores of 16 immune cell types.  
(B) Functions enriched in the 7-ZNF-gene signature. CCR, cytokine-cytokine receptor; ns, not significant; *, P< 0.05; **, P< 0.01; ***, P< 0.001 
(adjusted P values). 
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Figure 9. Predicted responses to chemotherapy for risk groups in the TCGA-BC cohort. Boxplots exhibiting the estimated IC50 

values of 28/138 screened drugs for tumors cells from the two risk groups (P<0.05 for all). 
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to distinguish high-and low-risk patients, and to estimate 

OS, was independently validated in the GSE48276 

dataset. 

 

The increasing use of nomograms, based on integrated 

analysis of tumor signatures (gene expression) and 

patient-specific clinicopathological data, has the potential 

to drastically improve disease prognostication [13]. Based 

on the 7-ZNF-gene prognostic signature, we constructed a 

nomogram that showed high predictive accuracy for OS. 

Moreover, besides predicting survival outcomes, the 

ZNF-based prognostic signature also predicted differences 

in the composition of the tumor microenvironment, 

determined by differential representation of stromal and 

immune cells. In addition, by inputting the ZNF-gene 

signature profiles of the BC risk groups into the GDSC 

database, we found that patients in the low-risk group may 

be more sensitive to common chemotherapies during 

clinical treatment. 

 

Our ZNF protein gene-based signature included 7 genes, 

i.e., ZHX3, ZNF350, ZNRD1, ZNF195, SUZ12, APEX2, 

and EBF4. Among these, 4 genes (ZHX3, ZNF350, 

ZNF195, and SUZ12) have been implicated, as discussed 

below, in the onset and progression of BC. Two signature 

genes (ZHX3 and SUZ12) were positively correlated 

with the occurrence of BC, while a negative correlation 

was instead determined for the remaining 5 genes 

(ZNF350, ZNRD1, ZNF195, APEX2, and EBF4). In line 

with a recent study [18], our results showed that ZHX3 

plays an oncogenic role in BC pathogenesis. 

Interestingly, ZHX3 has also shown to act as a tumor 

suppressor in renal cell carcinoma [19], breast cancer 

[20], and liver cancer [21]. A role for SUZ12 

overexpression in BC is also supported by previous 

studies. Fan et al. showed that SUZ12 overexpression 

promoted BC progression by stimulating colony 

formation, migration, and invasiveness of BC cells [22]. 

In turn, Lee at al. reported a gene signature that includes 

E2F1-EZH2-SUZ12 and shows predictive value for 

prognosis in BC [23]. All these data strongly indicate that 

ZHX3 and SUZ12 act as oncogenes in BC, and suggest 

that a signature based on these two genes may be of 

significance to guide patients’ treatment and improve 

prognosis. 

 

The 5 protective genes included in our signature were 

further retrieved and analyzed. Our results showed that 

ZNF350 expression was associated with reduced BC risk, 

which is consistent with previous results [24]. Similarly, 

another report associated high expression levels of 

ZNF195 with favorable survival in BC [25]. In contrast, 

the roles of ZNRD1, APEX2, and EBF4 in BC onset and 

development had not, to our knowledge, been as yet 

explored. Interestingly, upregulated expression of zinc 

ribbon domain containing 1 antisense RNA 1 (ZNRD1-

AS1), a negative regulator of ZNRD1, was detected in 

BC [26]. This finding indirectly supports the reduction in 

ZNRD1 expression detected by our analysis. The protein 

encoded by APEX2 plays an important role in both 

 

 
 

Figure 10. KEGG pathway enrichment analysis of signature genes. ECM, extracellular matrix. 
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nuclear and mitochondrial base excision repair [27]. Our 

findings on APEX2 are supported by evidence that this 

ZNF protein serves as a synthetic lethal target in 

BRCA1- and BRCA2-deficient colonic and ovarian 

cancer cell lines [28]. In contrast, APEX2 overexpression 

has been reported in liver cancer [29] and myeloma [30]. 

Jensen et al. recently explored the expression of APEX2 

in multiple cancers and indicated that this gene possesses 

tissue-specific characteristics [31]. Little research has 

been done on the role of EBF4 in cancer [32, 33], and a 

few evidences suggest that it plays important roles in 

neural development and B-cell maturation [34]. Based on 

current knowledge, and pending further investigation, our 

findings suggest that the 7 genes included in our 

signature may exert important roles in the tumorigenesis 

and progression of BC. 

 

The ZNF-gene signature identified by us showed a close 

association with the tumor microenvironment, as it 

predicted differential representation of stromal and 

immune infiltrating cells among risk groups. These cells 

form the major fraction of non-tumor cells in tumor 

tissues and establish key interactions that influence 

growth, survival, and metastasis of tumor cells [35]. 

Based on expression patterns of our ZNF-gene signature 

among risk groups, higher stromal, immune, and 

ESTIMATE scores, as well as lower tumor purity, were 

calculated for the high-risk group. The presence of 

distinct subsets of immune cells within the tumor 

microenvironment does not only influence tumor 

progression, but impact treatment responses as well. 

Our results showed that tumor-infiltrating immune cell 

populations were more abundant in the high-risk than in 

the low-risk group. In particular, the representation of 

immune cell types involved in antigen presentation was 

significantly greater in the high-risk group. A 

mechanistic explanation of this phenomenon may 

involve a distinct effect of ZNFs on the expression of 

chemokines, leading to enhanced recruitment of tumor-

infiltrating cells. 

 

Our ZNF-gene signature for BC was able to predict 

chemotherapy sensitivity and may thus help guide 

treatment selection. Although there are many chemo-

therapeutic options for BC treatment, there are so far no 

consensual guidelines in this regard. GDSC is the largest 

public database containing information on drug 

sensitivity of cancer cell lines and molecular markers of 

drug response based on large genomic data. Here, we built 

statistical models based on gene expression and drug 

sensitivity data derived from BC cell lines. Our findings 

showed that the IC50 of 28 chemotherapeutic agents, 

including gemcitabine and methotrexate [36], predicted 
using the GDSC dataset, were lower for the low-risk 

group. While these data suggest that low-risk BC patients 

are more sensitive to chemotherapy, additional analyses 

implementing new tools like CancerTracer, which allows 

further assessment of intratumor heterogeneity, will 

further help guide chemotherapy drug selection for 

personalized treatment [37]. 

 

In light of evidence that links deregulation of ZNFs’ 

expression with either pro-oncogenic or tumor-

suppressing activities, the significance of ZNFs in 

cancer tumorigenesis, progression, and metastasis is a 

topic of intense research. To our knowledge, our study 

is the first to document a full ZNF gene-based signature 

with prognostic ability in BC. Nevertheless, there are 

multiple limitations to the present study. First, since 

matched, normal bladder samples were far fewer than 

the BC specimens analyzed, the results need to be 

verified by expanding the number of controls. Second, 

the functional relationship between the ZNF gene 

signature members and non-tumor cells in the tumor 

microenvironment, especially infiltrating immune cells, 

could not be elucidated and requires future in vitro and 

in vivo studies. 

 

In summary, we established a novel ZNF gene-based 

prognostic signature that divides BC patients into two 

subgroups with different survival outcomes and 

constructed a nomogram to help clinical decision-makers 

provide optimal treatment. The prognostic signature is 

associated with differences in stromal and immune cell 

components of the tumor microenvironment, and predicts 

sensitivity to chemotherapeutic agents in low risk and 

high risk BC patients. Our study may stimulate further 

research on the role of ZNFs on BC and help guide 

stratified therapy to provide individualized treatment. 

 

MATERIALS AND METHODS 
 

Sample information and data collection 

 

The transcriptional data and corresponding clinical 

information of 403 chemotherapy-naïve BC patients and 

19 normal bladder control samples were downloaded 

from the TCGA website (https://www.cancer.gov/tcga.) 

[38]. Gene expression profiles were normalized by the 

“limma” R package. The GSE48276 [39] dataset, 

containing mRNA expression profiles from 73 BC 

tissues, was downloaded from the GEO database 

(https://www.ncbi.nlm.nih.gov/geo/) and used as external 

validation data. By accessing the UniProt [40] website 

(http://www.uniprot.org), we retrieved the latest list of 

ZNF-coding genes, which includes 1818 genes. 

 

Construction and validation of a prognostic model 

 
Differentially expressed genes (DEGs) between tumor 

and matched normal tissues were identified in the TCGA 

cohort by the “limma” R package using a false discovery 

https://www.cancer.gov/tcga
https://www.ncbi.nlm.nih.gov/geo/
http://www.uniprot.org/
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rate (FDR) < 0.05. ZNF-coding genes with prognostic 

value were screened out by univariate Cox analysis of 

overall survival (OS) and p values were adjusted by 

Wilcoxon tests. To minimize the risk of overfitting, a 

prognostic model was constructed using LASSO 

penalized Cox regression analysis [41]. Variable 

selection and shrinkage of the prognostic model were 

achieved by running the LASSO algorithm in the 

“glmnet” R package. The independent variables of the 

model were the DEGs with prognostic values, and the 

response variables were OS and status of patients in the 

TCGA cohort. To improve the reliability and objectivity 

of the results, 1000 cross-validation runs were performed 

to determine the optimal value of the penalty parameter 

(λ). The normalized expression level of each gene and its 

corresponding regression coefficient were used to 

calculate the risk score of patients. The formula was 

established as follows: score = esum (each gene’s 

expression × corresponding coefficient). The patients 

were stratified into high-risk and low-risk groups 

according to the median value of the risk score. To 

evaluate the predictive power of the gene signature, a 

time-dependent ROC curve was built with the 

“survivalROC” R package. Clinical characteristics, 

including age, gender, stage, and tumor-node- metastasis 

(TNM) status were collected from TCGA database. 

Univariable and multivariate Cox regression analysis 

were run using clinical data and risk scores to determine 

whether the predictive value of the risk scores was 

independent of the clinical characteristics. P< 0.05 was 

considered statistically significant. 

 

The prognostic signature, with an identical risk score 

formula and threshold, was then verified against the BC 

dataset GSE48276. Performance of the prognostic model 

on the validating dataset was represented via risk score-

based plots depicting prognostic gene expression, risk 

score distribution, and survival status among patients. 

 

Construction of a ZNF-based nomogram 

 

A nomogram combining the risk score model  

derived from the prognostic ZNF signature and 

clinicopathological factors was constructed using the 

“rms” R package. Discrimination of the nomogram was 

verified using ROC analysis at 1-, 2-, and 3-year follow-

up, and predictive accuracy was assessed through a 

calibration plot contrasting predicted vs actual survival. 

 

Estimation of stromal and immune scores 

 

Stromal and immune cells play a fundamental role in 

shaping the tumor microenvironment [42]. To further 
confirm the predictive power of our prognostic signature 

on tumor progression, the ESTIMATE algorithm in R 

was used to assign stromal and immune scores to the 

high-risk and low-risk groups defined by the model. The 

ESTIMATE score, reflecting tumor purity, was thereby 

derived [35]. 

 

Analysis of tumor-infiltrating immune cells 

 

The “clusterProfiler” R package was employed to 

perform Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analyses based on the DEGs (|log2FC| ≥ 1, FDR 

< 0.05) between the high-risk and low-risk groups. P 

values were adjusted with the Wilcoxon test. Tumor 

infiltration scores for 16 immune cell types and activation 

status for 13 immune-related pathways were assessed 

with the single-sample gene set enrichment analysis 

(ssGSEA) function [43] in the “gsva” R package. 

 

Prediction of chemotherapeutic response 

 

The chemotherapeutic response of each BC patient  

in the TCGA cohort was predicted according to the 

public pharmacogenomic database Genomics of Drug 

Sensitivity in Cancer (GDSC, https://www.cancerrx 

gene.org/). The GDSC database contains data from a 

large collection of human cancer cell lines, anticancer 

compounds, and experimental data on drug sensitivity 

[44]. The prediction of drug sensitivity (IC50) values was 

conducted using the R package “pRRophetic” [45], 

which uses a ridge regression model based on cancer cell 

lines’ expression profiles in the GDSC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The DEGs related-ZNFs in bladder cancer. 


