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INTRODUCTION 
 

AD is a common degenerative disease of the central 

nervous system (CNS). It is the most common cause of 

dementia and one of the greatest health-care 

challenges of the 21st century [1]. Global dementia 

costs were estimated at US$ 957.56 billion in 2015 and 

are projected to reach US$ 2.54 trillion in 2030 and 

US$ 9.12 trillion in 2050, likely exceeding the 

predictions of the World Alzheimer Report 2015 [2]. 

AD’s primary clinical manifestation is a progressive 

decline in memory and thinking skills, which severely 

interferes with daily life. Studies suggest that AD 

pathogenesis is diverse, and three main hypotheses 

(i.e. amyloid, tau protein, and neuroinflammation) 

have been proposed in such regard [3]. The amyloid 

hypothesis is the mainstream theory of AD 

pathogenesis and is supported by AD’s key 

pathological feature, namely the presence of senile 

plaques defined by extracellular deposition of neuritic 

amyloid β-protein (Aβ) [4]. Aβ peptides are produced 

by cleavage of amyloid precursor protein (APP) by β- 
and γ-secretases; Aβ production is in turn prevented by 

α-secretase activity, which cleaves APP within the Aβ 

domain [5]. In AD patients' brains, Aβ peptides are 

typically arranged in β sheet conformations in the  

form of higher-order oligomers, protofibrils, and 

fibrils [6]. The tau protein hypothesis is backed by 

increasing evidence that suggests that tau 

hyperphosphorylation may be a significant driving 

factor of neurodegeneration in AD. Tau is a 

microtubule-associated protein (MAP) that promotes 

tubulin aggregation into microtubules, stabilizing the 

neuronal cytoskeleton to assure proper axonal 

transport, neurite outgrowth, and synaptic plasticity. 

Tau hyperphosphorylation contributes to the 

disassembly of microtubules, which leads to the 

impairment of neuronal and synaptic structures and the 

formation of nerve fiber tangles [3]. The neuro-

inflammation hypothesis of AD focuses on the innate 

immune response triggered by binding of misfolded and 

aggregated proteins to pattern recognition receptors on 

microglia and astroglia, which determines the release of 

inflammatory mediators contributing to disease 

progression and severity [7]. Notably, new research 

suggests that in addition to amyloid deposition,  

tau hyperphosphorylation, and neuroinflammatory 

mechanisms, imbalances in the intestinal flora (gut 

dysbiosis) may also increase the risk of AD and 

contribute to its development. 
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ABSTRACT 
 

Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disease characterized by memory loss, 
inability to carry out everyday daily life, and noticeable behavioral changes. The essential neuropathologic 
criteria for an AD diagnosis are extracellular β-amyloid deposition and intracellular accumulation of 
hyperphosphorylated tau. However, the exact pathogenic mechanisms underlying AD remain elusive, and 
current treatment options show only limited success. New research indicates that the gut microbiota 
contributes to AD development and progression by accelerating neuroinflammation, promoting senile plaque 
formation, and modifying neurotransmitter production. This review highlights laboratory and clinical evidence 
for the pathogenic role of gut dysbiosis on AD and provides potential cues for improved AD diagnostic criteria 
and therapeutic interventions based on the gut microbiota. 
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The gut microbiota encompasses the microorganisms, 

mostly bacteria, living in the intestinal tract of 

animals. There are about 100 trillion bacteria 

(approximately ten times the number of human cells), 

represented by 1,000~1,500 species, in the human 

alimentary canal [8]. Bacteroidetes and Firmicutes 

account for more than 90% of all gastrointestinal 

bacteria in healthy humans [9]. The gut microbiota 

plays a vital role in synthesizing amino acids and 

vitamins, metabolizing steroid molecules and 

bioactive compounds, and strengthening the immune 

system [10]. Although human gut microbes are 

typically homeostatic, the composition of the 

intestinal flora changes with age. Indeed, several 

studies have found that age-related processes can 

influence gut microbiota diversity and lead to 

metabolic alterations with potentially deleterious 

effects [11–14]. Research has shown that the diversity 

of the intestinal flora in the elderly is decreased, with 

a general trend towards decreased Bifidobacterium 

and increased Enterococcus species abundances. Also, 

both age-related decline in immune function (immune 

senescence) and a parallel increase in intestinal 

permeability further affect the composition and 

distribution of the intestinal flora [15]. 

Bifidobacterium and Lactobacillus are the two most 

essential probiotics in the human intestine, serving to 

maintain a healthy intestinal environment and 

 to regulate the immune function. Remarkably, 

differences in gut microbiota composition importantly 

determine an individual’s biochemical processes, 

influence epigenetic changes, and modulate 

psychological and cognitive functioning as well as 

susceptibility and resistance to disease [16, 17]. 

Mounting evidence links intestinal dysbiosis, resulting 

from external (environment) or internal (host-related) 

factors, with onset and progression of local 

inflammatory reactions and even systemic diseases 

such as AD, hypertension, diabetes, and depression 

[18–20]. In recent years, the relationship between the 

gut microbiota and AD has been addressed in clinical 

studies as well as in several animal models. Zhuang et 

al. compared the intestinal flora of 43 AD patients 

with that of 43 age- and sex-matched controls. 

Compared to the control group, a subgroup of 

inflammation-associated bacteria, including members 

of the Escherichia and Shigella taxa, was found to be 

increased in the AD cohort [21]. Vogt et al. have 

observed a significant decrease in the species 

diversity of intestinal flora from AD patients, with 

decreased abundance of Firmicutes and Bacilli and 

overrepresentation of the Bacteroides genus. In 

addition, a positive correlation was detected  
between cerebrospinal fluid (CSF) levels of  

YKL-40, an inflammatory biomarker associated with 

neurodegeneration, and the number of Bacteroides 

and Clostridium in the gut [22]. Shen et al. studied the 

relationship between gut microbiota and age in 

APP/PS1 transgenic and wild-type mice aged three, 

six, and eight months. They found that age-related 

changes in gut microbiota composition were 

associated with amyloid plaque burden and both 

spatial learning and memory impairment [23]. The 

results of the above studies suggest a correlation 

between gut microbiota and AD. 
 

The microbiota-gut-brain axis entails a two-way 

communication system involving cytokine, immune, 

hormonal, and neuronal signals that is currently the 

focus of intensive research [24, 25]. Experimental 

models have been essential for unmasking gut 

microbiota’s regulatory actions on brain functions 

such as learning and memory [26]. Moreover, some 

studies have found that the gut microbiota can 

influence AD's typical pathological features, such as 

deposition of Aβ, hyperphosphorylation of tau, and 

neuroinflammation through the microbiota-gut-brain 

axis [27]. In this review, we examine the roles of the 

gut microbiota in both aging and AD and provide an 

update on the mechanisms by which the gut 

microbiota influences the pathobiology of AD. In 

addition, we discuss some new therapeutic 

interventions based on gut microbiota manipulation 

that might provide clinical benefit for patients  

|with AD. 
 

The pathogenic role of gut microbiota in AD 
 

As mentioned above, several studies support the 

association between gut microbiota and AD. 

Collectively, available data indicates that gut microbiota 

composition and activity can promote the occurrence of 

AD through many pathways, including metabolites, 

neurotransmitters, chronic neuroinflammation, etc. 

(Figure 1 and Table 1). 
 

Gut microbiota and neuroinflammation 
 

Mounting evidence suggests that neuroinflammation 

plays a vital role in AD's pathogenetic mechanisms by 

aggravating AD features, including Aβ deposition  

and tau hyperphosphorylation, further triggering 

inflammatory responses and leading to a vicious  

circle of tissue destruction and inflammation  

[27, 28]. Significantly increased concentrations of  

pro-inflammatory cytokines, including interleukin  

(IL)-1β, IL-6, IL-12, IL-18, tumor necrosis factor  

(TNF)-α, TNF-β, and interferon (INF)-γ, have been 

detected in the brains of AD patients [27]. 
Interestingly, however, depending on its nature and 

magnitude, inflammation can be either beneficial or 

harmful to the brain. Whereas chronic inflammation 
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mediated by mild TLR4 stimulation can reduce  

tau hyperphosphorylation by activating neuronal 

autophagy, a more extensive inflammatory status can 

significantly promote AD [29]. 

 

Clinical research conducted by Cattaneo et al. showed 

that the abundance of pro-inflammatory taxa 

(Escherichia/Shigella) was increased, the representa-

tion of anti-inflammatory taxa (Eubacterium spp., 

Bacteroides fragilis) was decreased, and serum 

proinflammatory factors were significantly elevated in 

AD patients [30]. Population shifts in the gut 

microbiota can promote intestinal inflammation which 

would, over time, increase bacterial colonization and 

disrupt gut microbiota's dynamic balance [30, 31]. 

Moreover, a growing body of animal studies has also 

verified the relationship between gut microbiota and 

neuroinflammation. Wang et al. have found that 

alterations in gut microbiota in the 5×FAD AD mouse 

model lead to increased phenylalanine and isoleucine 

levels in peripheral blood, which stimulate the 

differentiation and proliferation of proinflammatory T 

helper 1 (Th1) cells. Following brain infiltration, Th1 

cells promote microglial activation, leading to AD-

related neuroinflammation and cognitive impairment 

[32]. Along these lines, using a Drosophila AD model, 

Wu et al. demonstrated that gut bacterial infection 

stimulates the recruitment of immune cells into the 

brain, exacerbating AD progression [33]. Furthermore, 

a study has implicated that supplementing the gut with 

Akkermansia muciniphila improves intestinal barrier 

function and increases about 3-fold the thickness of 

the colonic mucus layer in mice. Moreover, compared 

to control animals, a significant reduction in the 

expression of inflammation-related genes and 

pathways, as well as in B cell abundance, was 

observed in the colon of mice supplemented with A. 

muciniphila [34]. 

 

Altogether, this evidence confirms a close relationship 

between gut dysbiosis and exacerbation of the host’s 

inflammatory state, resulting from increased intestinal 

permeability and enhanced translocation of bacterial 

metabolites into the circulation. This triggers 

proinflammatory cytokine production and inflammatory 

responses that may disrupt blood-brain-barrier (BBB) 

integrity, facilitating the onset of nervous system 

diseases characterized by neurodegeneration and

 

 
 

Figure 1. Potential contribution of the gut microbiota to the pathogenesis of Alzheimer's disease. The gut microbiota can affect 
the occurrence and progression of AD through metabolites, neurotransmitters, and proinflammatory mediators to promote Aβ aggregation, 
accumulation of hyperphosphorylated tau, and chronic neuroinflammation. Parts of the figure are adapted from SMART (Servier Medical Art: 
https://smart.servier.com), licensed under a Creative Common Attribution 3.0 Generic License. 

https://smart.servier.com/


 

www.aging-us.com 13362 AGING 

Table 1. Pathogenic relationships between gut microbiota and AD. 

Factor(s) Study subjects Main effects References 

Bacterial abundance and 

anti-inflammatory factor 

levels 

AD patients 
Increased Escherichia/Shigella 

leading to increased proinflammatory factors 
Cattaneo et al. [30] 

Dysbacteriosis and 

neuroinflammation 
5×FAD AD mouse model 

Increased phenylalanine isoleucine 

stimulated Th1 cell differentiation and proliferation; 

activated microglia 

Wang et al. [32] 

Immune cells and 

neuroinflammation 
AD Drosophila model 

Stimulated immune hemocyte recruitment to the 

brain; exacerbated AD progression 
Wu et al. [33] 

LPS AD patients 
Increased brain contents of E. coli K99 protein and 

LPS; LPS can be used as a marker of AD 

Zhao et al.;  

Zhan et al. [37–39] 

Histamine Rat primary microglia 
Increased NO levels and stimulated 

neuroinflammation 
Dong et al. [43] 

SCFAs Germ-free AD mice model 

Regulated energy balance; promoted colon cell 

metabolism and had a powerful anti-inflammatory 

effect 

Alessio et al. [47] 

LPS and 

neuroinflammation 

Mouse model of episodic 

systemic inflammation 

Reduced exploratory activity and episodic and spatial 

memories 
D' Avila et al. [55] 

Peripheral inflammation  UC rat model 

Elevated inflammatory markers and increased 

intracellular inducible NO synthase and intercellular 

adhesion molecules; microglial activation and 

astroglial loss 

Villaran et al. [56] 

GABA 
Autopsy study of AD 

patients 

Correlation between GABA deficiency and AD 

occurrence 
Solas et al. [58] 

Lactobacillus 

ingestion/GABA 
BALB/c mice 

Reduced stress-induced corticosterone and anxiety-

like behavior 
Bravo et al. [59] 

5-HT and SSRI 
AD transgenic mouse 

models 

Decreased Aβ; activated α-secretase; inhibition of 

APP conversion into Aβ 
Sharma et al. [61] 

Gut microbiota and Aβ APPSWE/PS1ΔE9 mice 
Regulate host innate immunity mechanisms that 

impact Aβ amyloidosis. 
Minter et al. [64] 

tau Male mice 
Inflammation-related factors such as IL-1b, IL-6, IL-

10, and TNF-α accelerated tau hyperphosphorylation 
Savignac et al. [73] 

Abbreviations: AD: Alzheimer’s disease; 5xFAD: 5xFAD (APP K670N, M671L, I716V, PS1 M146L, L286V) mice. Th1: T 
helper 1 cells; LPS: lipopolysaccharide; NO: nitric oxide; SCFAs: short-chain fatty acids; GABA: gamma-aminobutyric 
acid; GF: germ-free; UC: ulcerative colitis; TLR2: Toll-like receptor 2; 5-HT:5-hydroxytryptamine; SSRI: selective 
serotonin reuptake inhibitor. 

cognitive/behavioral deficits such as AD, Parkinson’s 

disease, frontotemporal dementia syndromes, and 

amyotrophic lateral sclerosis, among others. 

 

Impact of gut microbiota metabolites on AD 
 

Under physiological conditions, the gut microbiota 

produces lipopolysaccharide (LPS), short-chain fatty 

acids (SCFAs), histamine, and other metabolites that 

can potentially affect the central nervous system 

(CNS). The intestinal mucosal barrier blocks the 

transfer of harmful substances into the circulation, 

protecting mucosal tissue and the circulatory system 

from microbes, microbial toxins, and other pro-

inflammatory substances. However, when the tight 

junctions that maintain intestinal mucosal barrier 

function are disrupted, intestinal leakage ensues and 

can induce various diseases. The permeability of both 

the intestinal mucosal barrier and the BBB also 

increase during physiological aging. Through high-

performance liquid chromatography analysis, 

Leblhuber et al. have found that the concentration of 

fecal calreticulin in the blood of AD patients is 

significantly increased, indicating that calreticulin can 

cross the intestinal barrier and reach the circulatory 

system to induce neuroinflammation [35, 36]. It is now 

well acknowledged that intestinal metabolites can 

cross the BBB and damage neuronal function, 

contributing to AD pathogenesis. However, not all 

intestinal metabolites are harmful to the nervous 

system. For instance, some metabolites, such as 

SCFAs (see below), can improve microglial function, 

aiding in the removal of brain debris, including 

neuritic plaques and other aggregates. 

 
The gut microbiota is an important source of LPS, a 

potent proinflammatory mediator produced by Gram-

negative bacteria. Zhao et al. were the first to report 
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the presence of LPS in the hippocampus and 

neocortex of the superior temporal lobe of AD 

patients. Compared with the control group, 

hippocampal LPS levels in elderly AD patients 

exhibited up to a 26-fold increase [37]. In turn, 

applying immunoblotting and immunohistochemistry, 

Zhan et al. further showed that E. coli K99 protein 

and LPS levels were higher in the brains of AD 

patients, compared to non-AD controls [38, 39]. 

Histamine is produced by enterochromaffin-like cells 

in the stomach, by mast cells and basophils as part of 

an immune response, and is also a product of 

intestinal microbial metabolism. Lactobacillus, 

Lactococcus, and Streptococcus, among other 

bacteria, possess histidine decarboxylase genes and 

can produce histamine [40]. Histamine is a 

physiological regulator of cell proliferation, allergic 

reactions, and immune cell function and acts as a 

neurotransmitter in the brain [41]. High-density 

histamine receptors on neurons in the striatum, 

thalamus, amygdala, and other regions indicate the 

extensive role of histamine in the CNS. It has been 

found that increases in histamine levels are related to 

AD and may increase nitric oxide production and 

stimulate neuroinflammation. This is consistent with 

the hypothesis that low-grade inflammation 

contributes to the development of neurodegenerative 

diseases [42, 43]. SCFAs are produced mainly by gut 

microbiota processing of undigested fibres and 

proteins. SCFAs have a beneficial effect on the host, 

especially in regulating systemic metabolism and 

energy balance. In addition, SCFAs play a key role in 

promoting colon cell metabolism and possess a 

powerful anti-inflammatory effect [44, 45]. Previous 

research suggested that SCFAs can inhibit the 

aggregation of Aβ in vitro [46]. Brain microglia are 

essential for clearance of protein aggregates, such as 

senile plaques, and several studies have found that 

SCFAs produced by microbes can improve damaged 

microglia function in germ-free (GF) animals [47]. 

Yuan et al. used isotope labelling reagents to label 

metabolites of different chemical groups and applied 

liquid chromatography-mass spectrometry to establish 

a database of fecal metabolomics in mice. Through 

similar analyses, the identification of metabolic 

changes in AD patients' stool may yield new 

biomarkers for AD diagnosis [48, 49]. 

 

Intestinal metabolites and neuroinflammation 
 

Mounting evidence links gut dysbiosis with 

neuroinflammation, an essential feature of the 

pathogenesis of AD. With increasing age, the 

permeability of the intestinal epithelium increases, 

promoting the translocation of Gram-negative bacteria 

and LPS into the blood [50]. Locally, Gram-negative 

bacteria invade the intestinal lamina propria and 

mesenteric lymph nodes and stimulate immune cells 

to release proinflammatory factors into the systemic 

circulation, leading to an intestinal inflammatory 

response that further increases intestinal and BBB 

permeability. This facilitates the entry of LPS into the 

brain, which triggers neuroinflammation by activating 

Toll-like receptors (TLRs) in microglia, thus favoring 

the development of AD [51, 52]. Zhao et al. showed 

that LPS contents in the neocortex and the 

hippocampus of AD patients showed a prominent 

perinuclear localization and were 2- and 3-fold higher, 

respectively, than those measured in samples from 

age-matched, healthy controls [39, 54]. In turn, it was 

reported that addition of LPS from Bacteroides 

fragilis (a major Gram-negative bacillus of the human 

gastrointestinal tract [53]) to a co-culture system of 

human neuronal and glial cells led to significant 

suppression of several synapsis-associated proteins, 

including NRXN1, SNAP25, SYN2, NLGN, and 

SHANK3 [54]. d' Avila et al. administered a low-dose 

LPS regimen to young (2 months old) and aged (12 

months old) mice and noted that the aged mice were 

more susceptible to sporadic systemic inflammation 

and showed also reduced exploratory activity and 

significantly decreased episodic and spatial memory 

functions [55]. Further evidence that peripheral 

inflammation induced by intestinal metabolites 

promotes the occurrence and development of 

neuroinflammation was provided by Villarán et al., 

who found that dopaminergic neurodegeneration 

induced by injection of LPS into the substantia nigra 

was potentiated in a rat model of ulcerative colitis. 

The observed changes included an increased 

inflammatory response defined by elevation of serum 

levels of inflammatory markers (TNFα, IL-1β, IL-6, 

and C reactive protein, increased expression of 

inducible NO synthase and intercellular adhesion 

molecules, enhanced microglial reactivity, and 

astrocyte death [38, 56]. 

 

Gut microbiota-derived neurotransmitters 
 

Stress and mood can cause the brain to influence gut 

microbial composition by releasing hormones and 

neurotransmitters. In turn, the gut flora can influence 

brain function by producing neurotransmitter 

precursors and regulating host neurotransmitter 

catabolism. The gut microbiota synthesizes numerous 

neurotransmitters, including γ-aminobutyric acid 

(GABA), norepinephrine, acetylcholine, and dopamine, 

and stimulate the secretion of 5-hydroxytryptamine (5-

HT) by enterochromaffin cells in the intestinal wall 

[57]. GABA and 5-HT are major neurotransmitters 

with important roles in mood and cognition. Suggesting 

a correlation between GABA deficiency and AD 
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development, Solas et al. found decreased GABA 

levels in the frontal, temporal, and parietal cortices of 

AD patients post-mortem [58]. Meanwhile, Bravo et al. 

found that feeding Lactobacillus rhamnosus (JB-1) to 

mice reduced the expression of GABAAα2 mRNA in the 

prefrontal cortex and amygdala and decreased stress-

induced corticosterone production and anxiety-like 

behavior. Of note, these effects were abrogated in 

vagotomized mice [59]. More than 95% of 5-HT is 

synthesized in the intestine, and intestinal bacteria can 

inhibit the synthesis of 5-HT. Linstow et al. analyzed 5-

HT levels in neocortical, hippocampal, striatal, 

brainstem, and cerebellar samples from AD transgenic 

mice aged 18 months. The results showed region-

specific changes in all monoamines in AD mice 

compared to wild-type mice, with 5-HT levels 

exhibiting a 30% reduction in the neocortex and an 

18% increase in the brainstem [60]. Studies have 

shown that using selective serotonin reuptake inhibitors 

(SSRIs) or directly increasing extracellular 5-HT 

significantly reduced (by 25%) Aβ content in brain 

interstitial fluid in mice. One of the mechanisms by 

which SSRIs decrease Aβ formation is by activating α 

secretase activity, which inhibits APP conversion into 

Aβ. Upon binding to 5-HT receptors, SSRI can also 

reduce Aβ aggregation by inhibiting 5-HT reuptake, 

thus increasing 5-HT concentration in the brain. Along 

these lines, it was reported that chronic (over four 

months) SSRI administration decreased Aβ plaque load 

by 50% in AD transgenic mice [61]. 
 

Given the tight relationship between intestinal flora 

composition, 5-HT production, and Aβ aggregation, 

new treatments that focus on restoring gut microbiota 

balance might, in combination with SSRIs, prove to be 

effective in normalizing brain 5-HT concentrations and 

attenuating Aβ aggregation in AD. 

 

Impact of the gut microbiota on cerebral 

amyloid and tau proteins 
 

The gut microbiota can affect the deposition of Aβ in 

the brain in a variety of ways. Proinflammatory 

cytokines can enhance the expression of APP and 

promote the formation of Aβ in the hippocampus. 

Multiple bacterial genera, such as Streptomyces, 

Staphylococcus, Bacillus, and Escherichia secrete 

functional amyloid proteins, similar in both structure 

and immunogenicity to the human Aβ42 peptide, 

which may act as pathogen-associated molecular 

pattern recognition molecules. Bacterial amyloids 

may promote AD by binding to microglial TLR2, 

leading to microglial activation through upregulation 

of Notch1 signaling [62–66]. A finding suggests the 

gut microbiota community diversity can regulate host 

innate immunity mechanisms that impact Aβ 

amyloidosis [67]. In turn, Pistollato et al. reported that 

soluble Escherichia coli LPS monomer can accelerate 

the polymerization of Aβ monomers into insoluble 

aggregates [68]. In summary, bacteria-derived 

products such as LPS and amyloid can promote  

AD through both direct (enhanced amyloid 

deposition) and indirect (TLR-mediated inflam-

mation) mechanisms.  

 

Neurofibrillary tangles formed by hyperphosphorylated 

tau are another major pathological characteristic of AD. 

Tau phosphorylation decreases its affinity for 

microtubules and causes microtubule disassembly; this 

compromises the structural integrity of neurons, leading 

eventually to their death [69]. Gut microbes can also 

increase or decrease tau phosphorylation in a variety of 

ways. The best-defined ones are related to oxidative 

stress, inflammation, and regulation of autophagy. 

Some beneficial effects of gut microbes on tau 

phosphorylation dynamics are exemplified by 

Clostridium sporogeneses, which uses tryptophan to 

produce the strong antioxidant 3-indole propionic acid, 

and by lactic acid bacteria, which synthesize metabolic 

factors that significantly improve the activity of SOD 

and GSH-Px, thus reducing oxidative stress and tau 

aggregation [70–72]. Savignac et al. designed a rat 

model of peripheral infection by tail vein injection of 

LPS. Results showed that inflammation-related factors 

such as IL-1b, IL-6, IL-10, and TNF-α accelerated tau 

hyperphosphorylation [73]. 

 

Conclusions and future perspectives 
 

AD, a neurodegenerative disease, is the most 

prevalent cause of dementia and a serious threat to 

human health and life quality. As AD incidence 

continues to increase, intensified research heralds 

renewed hope for more effective treatments. Although 

recent studies unequivocally affirm a close association 

between gut microbiota imbalances and cognitive 

impairment in AD patients, there is still a knowledge 

gap about the mechanisms behind these linkages. 

Nevertheless, the data available have important 

implications for future AD research directions, 

opening the door to novel AD diagnostic criteria and 

therapeutic interventions that consider, respectively, 

relevant alterations and targeted modulation of the gut 

microbiota. Still, given the considerable overlap 

between gut microbiota profiles from elderly 

individuals with and without AD (Table 2), further 

research on the mechanisms underlying the link 

between AD and gut microbiota is warranted to 

clearly identify candidate microbial biomarkers for 

AD diagnosis and treatment. In this regard, 

comparative studies addressing not only composition, 

but also metabolic activity of gut bacteria in AD and 



 

www.aging-us.com 13365 AGING 

Table 2. Gut microbiota alterations in elderly controls and AD patients. 

Bacterial species 
Alterations of abundance 

Mechanisms References 
Elderly AD patients 

Clostridiales IV 

 
↓ ↓ Butyric acid is associated with resistance to inflammation and aging Liu et al. [74] 

Clostridiales X, α ↓ ↓↓ 
Norepinephrine, acetylcholine and other neurotransmitters are related 

to cognitive and memory functions 
Wall et al. [75] 

 Lactobacillus ↓ ↓↓ 
Conversion of glutamate to GABA. Cognitive impairment may be 

due to disorders of the GABA system 
Zhuang et al. [21] 

Bifidobacterium ↓ ↓↓ 

Bacteria can provide energy through SCFA, which can be used to 

promote the synthesis and secretion of neurotransmitters and 

hormones and to reduce the inflammatory response 

Vogt et al. [22] 

Staphylococcus aureus ↑ ↑↑ 

Bacteria can secrete Aβ. Abnormal accumulation of Aβ activates 

diverse cellular receptors, leading to release of inflammatory factors 

which trigger  or intensify the inflammatory response 

Zhao et al. [62] 

Escherichia coli ↑ ↑↑ 
Bacterial metabolites exacerbate peripheral inflammation and can 

promote Aβ aggregation and cytotoxicity 
Radli et al. [76] 

Cyanobacteria ↑ ↑↑ 
The neurotoxic amino acid BMAA causes protein misfolding and is a 

possible mechanism for β-amyloid deposition in AD patients 

Banack et al. [77] 

 

Gram-negative bacteria ↑ ↑↑ 
LPS production stimulates the release of many inflammatory factors, 

promoting an inflammatory response 
Itzhaki et al. [78] 

Streptococcus / ↓ Promotion of disease through immune mechanisms Li et al. [79] 

Bacteroides fragilis, 

Eubacterium spp. 
/ ↓ Reduced anti-inflammatory protection 

Cattaneo et al. 

[30] 

Abbreviations: AD: Alzheimer disease; GABA: gamma-aminobutyric acid; SCFA: short-chain fatty acid; Aβ: β amyloid; BMAA: β-
methylamino-L-alanine. 

non-AD individuals should be conducted to determine 

the best microbial candidates to guide clinical 

treatment.  

 

Whereas the brain controls intestinal movement and 

secretion by regulating autonomic nerve function, the 

gut microbiota can also affect neurogenic control of 

intestinal functions by influencing neurogenesis and 

neuronal activity. The evidence collected on the 

microbiota-gut-brain axis suggests that gut microbes 

can also regulate AD onset and progression by 

affecting the integrity of the BBB, nerve growth, 

neurotransmitter production, and microglial activity. 

During gut dysbiosis, noxious signals are transmitted 

from the gut to the brain, resulting in chronic low-

grade inflammation, oxidative stress, and cellular 

dysfunction and degeneration. Cytokines, neuro-

transmitters, and metabolites produced by gut 

microbiota or induced by bacterial factors in host cells 

can cross the BBB and impair neuronal function. 

However, not all microbial metabolites negatively 

affect the nervous system. For instance, SCFAs 

protect the intestinal barrier by preserving the 

integrity of the intestinal endothelium, which reduces 

the risk of peripheral inflammation [80, 81]. 

Moreover, research has shown that SCFAs can 

effectively inhibit Aβ aggregation in vitro, which 

supports a possible protective effect of the intestinal 

flora on AD. Still, to materialize the potential of gut 

microbiota’s compositional and metabolic profiling as 

an aid to AD diagnosis, large-scale multi-center 

studies are needed to address the potentially large 

variability arising from patients' dissimilar 

geographical location, diet, living habits, and 

comorbidities (.e.g. gastrointestinal disorders). For 

example, compared to healthy controls, a lower 

abundance of Bacteroides was found in fecal samples 

of AD patients in a Chinese cohort, but an increase in 

Bacteroides abundance was reported in AD patients 

from the USA [74, 82]. The current diagnosis of AD 

requires CSF biomarker analysis and brain imaging in 

addition to cognitive scale assessment [83, 84]. The 

most advantageous feature of gut microbiota analysis 

in AD patients is the possibility of providing a non-

invasive diagnostic approach that should increase 

patient compliance. At present, the urgent problem is 

distinguishing which aspects of the complex 

pathogenicity of AD are directly regulated by 

intestinal microbes through mutual interactions with 

the host, and which constitute in turn host's inherent 

factors. Moreover, our knowledge about gut 

microbiota effects on AD pathogenesis is still limited 

to various findings regarding cellular events, whereas 

much less is known about the molecular and genetic 

underpinnings. Hence, further research is needed to 

develop uniform criteria for clinical testing. 

 

Given the close relationship evidenced between gut 

microbes and AD, and the fact that there is still no 

effective treatment for AD [85], the regulation of gut 
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microbiota has attracted wide attention as potential 

therapeutic strategy [86]. Current AD treatments 

include probiotics, fecal transplantation, antibiotics, 

and dietary adjustments [87–89]. Probiotics can 

reduce Aβ deposition by regulating gut microbiota 

homeostasis, reducing the excessive release of anti-

inflammatory factors, and improving cognitive 

function. However, further experiments are 

indispensable to clarify the specific clinical strains 

and dosage cycles to be applied. It has been reported 

that fecal bacteria transplantation can reduce amyloid 

deposition and improve memory in the AD mouse 

model, but a potential deficiency of this technique is 

that it may increase the risk of infection with 

pathogenic microorganisms. Some clinical and animal 

experiments showed that antibiotics could alleviate 

AD symptoms and disease processes by influencing 

neurotransmitter dynamics, oxidative stress 

mechanisms, and by diminishing neuroinflammatory 

processes [90, 91]. However, most of the existing 

studies used broad-spectrum antibiotics, which are 

associated with the development of drug resistance. 

The negative effects of antibiotics can be alleviated 

through concomitant treatment with selected 

probiotics. Nevertheless, antibiotics with selective 

antibacterial effects would still be preferable, which 

stresses the need to identify in AD patients specific 

changes in gut microbiota composition and metabolic 

activity. In turn, the probiotics' true status as AD 

therapeutic agents depends on more conclusive 

research on gut microbiota's role as a disease 

regulator. Therefore, before clinical implementation 

of the above treatment strategy, pre-clinical trials are 

needed to verify its feasibility and efficacy. 

 

In summary, a growing body of evidence reveals the 

link between gut microbiota and AD. However, since 

the underlying pathological mechanisms require further 

scrutiny, therapeutic application of gut microbiota-

targeted approaches remains so far at an experimental 

stage. Predictably, however, intestinal microecological 

intervention studies will provide a renewed 

understanding of the gut microbiota’s role on AD and 

allow the development of more effective strategies to 

prevent and treat this condition. 
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