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INTRODUCTION 
 

Alzheimer’s disease (AD) is the most common form of 

senile dementia. According to the latest statistical data 

from The International AD Association, the medical 

expenses of AD have exceeded $240 billion worldwide 

[1, 2]. Unfortunately, no effective therapies can 

currently postpone or modify AD progression. An 

improved understanding of the underlying processes 

and risk factors associated with AD will lead to better 

diagnosis and treatment. 

 

AD is a genetically heterogeneous neurodegenerative 

disorder caused by the cumulative impacts of sequences 

of genes and their interrelations [3]. Over the past 
decade, complex genome research has successfully 

identified various genetic risk factors for AD. However, 

the translational impacts of these findings are still 

limited. In addition to the genome research on AD, a 

trend is emerging of studying the effects of 

dysregulation of transcriptome on AD [4]. 

Transcriptome is the total complement of RNA 

transcripts in a cell, consisting of coding and non-

coding RNAs. Transcriptome analysis could provide 

insights into tissue and time-dependent gene expression 

features, which allows investigating mechanisms 

associated with AD in previously unattainable details. 

 

A range of coding RNAs (mRNAs) have been 

recognized as biomarkers for the diagnosis, prognosis, 

and therapy of AD [5–10]. On the other hand, the post-

translational regulation of gene expression by non-

coding RNAs (ncRNAs) has been recently recognized 

for their crucial roles in pathophysiological processes in 

AD [11–14]. Long non-coding RNAs (lncRNAs) can 

function as competing endogenous RNAs (ceRNAs) 
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that sponge micro RNAs (miRNAs), thereby rescuing 

miRNA-targeted mRNAs [15]. An increasing number 

of studies have found that ceRNA networks are 

involved in the molecular regulatory mechanisms of AD 

[16, 17]. 

 

In spite of the identification of several transcriptome 

biomarkers and the intense attempts to develop drugs 

for preventing and treating AD, no effective therapies 

are available yet [18]. The treatment resistance of AD, 

resulting from the molecular complexity, demands 

comprehensive identification of new transcriptome 

biomarkers for early monitoring and therapy 

improvement. 

 

β-amyloid (Aβ) and phosphorylated tau (p-tau) are 

thought to be hallmarks of AD pathology. The 

formation and accumulation of both Aβ and p-tau have 

been reported to increase with aging [19]. Aβ 

deposition-induced plaque formation is strongly 

associated with the disease state of AD patients. The 

severity of plaques is reflected by the plaque score, with 

higher scores indicating greater pathology. 

Additionally, the accumulation of p-tau can ultimately 

result in the formation of neurofibrillary tangles (NFTs), 

leading to synaptic dysfunction and neuronal loss. The 

BRAAK stage has been generally applied to evaluate 

the distribution and severity of NFTs [20]. 

 

Transgenic mice with five familial AD mutations 

(5XFAD - co-overexpressing amyloid precursor 

protein (APP) with three mutations (K670N/M671L, 

I716V, and V717I) and presenilins (PS1) with two 

mutations (M146L and L286V)) were appropriate for 

studies on pathological changes in AD. 5XFAD mice 

initially develop cerebral Aβ42 accumulation at 1.5 

months of age, while amyloid deposits firstly appear at 

2 months and increase with aging [21]. Moreover, tau 

protein has been reported to be more phosphorylated in 

2 mo 5XFAD mice than in their wild-type littermates 

(LMs). With increasing age, p-tau accumulates even 

more [22–24]. 

 

In this study, the weighted gene co-expression network 

analysis (WGCNA) was conducted to identify the vital 

gene module related to the progression of Aβ and p-tau 

[25]. The target module was then employed to identify 

key transcriptome biomarkers, including genes and 

ncRNAs. Firstly, hub genes were filtered by evaluating 

module membership (MM) value and gene significance 

(GS) value. Hub ncRNAs were identified through 

regulatory ability evaluation in a ceRNA network 

constructed based on functional sub-modules extracted 
from the target module. Subsequently, refined hub 

genes and ncRNAs were further identified based on 

ROC analysis, and then their quantitative expression 

was verified in 5XFAD mice. Finally, GSEA and 

KEGG pathway enrichment analysis were respectively 

performed to explore the potential functions of these 

refined hub genes and ncRNAs. 

 

RESULTS 
 

WGCNA and functional enrichment analysis of gene 

modules 

 

To determine if all samples in GSE29378 were 

appropriate for network analysis, we investigated the 

sample dendrogram. The results indicated that all 63 

samples mainly yielded two clusters, where 

GSM726085, GSM726092, GSM726098, GSM726100, 

GSM726101, GSM726102, GSM726106, GSM726108, 

GSM726113, GSM726114, GSM726115, GSM726120, 

GSM726121, GSM726122, GSM726125, GSM726126, 

GSM726127, GSM726128, GSM726129, GSM726130, 

GSM726133, GSM726138, GSM726140, and 

GSM726141 became one group while the remaining 

samples formed the other. And there was no potential 

outlier in all 63 samples in GSE29378 (Supplementary 

Figure 4A). 

 

We then performed a network topology analysis to 

explore the appropriate soft-thresholding power for 

WGCNA. The results suggested that when the power 

value was set as 7 (scale-free R2 = 0.85), the network 

possessed scale-free topology with integral modular 

features (Supplementary Figure 3A). By setting the cut 

height as 0.3, 12 modules were eventually identified 

(non-clustering genes were shown in gray) 

(Supplementary Figure 3B). Details of the 12 modules 

were provided in Supplementary Table 1. 

 

To confirm the independence of each module, we 

conducted an interaction relation analysis. 1000 genes 

were randomly extracted from the 12 modules to 

design a network heatmap. As shown in the network 

heatmap (Supplementary Figure 4B), each block’s 

color represents the overlap degree of two 

corresponding genes on the horizontal axis and 

vertical axis. Dark color represents low overlap, and 

progressively lighter yellow color indicates higher 

overlap. The results indicated that genes from 

different modules had low overlap degrees, while 

blocks along the diagonal showed lighter colors, 

which indicated that each module was independent of 

the others. Hierarchical clustering dendrogram of the 

12 module eigengenes (MEs) revealed two main 

clusters: one contained 3 modules (tan, blue, and 

yellow modules), while the other contained 9 modules 

(black, magenta, brown, green, purple, green-yellow, 

turquoise, pink, and red modules; Supplementary 

Figure 4C). 
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KEGG pathway enrichment analysis was conducted to 

investigate each module’s potential functions 

(Supplementary Figure 5). The results indicated that the 

“protein digestion and absorption” pathway was 

enriched in the black module. Genes in the blue module 

and brown module were enriched in the 

“neurodegeneration” and “valine, leucine and isoleucine 

degradation” pathways, respectively. “Glycine, serine 

and threonine metabolism” and “focal adhesion” were 

severally enriched in the green module and green-

yellow module, while genes in the magenta module and 

pink module were respectively associated with the 

“tuberculosis” and “ribosome” pathways. The 

“Huntington’s disease”, “protein processing in 

endoplasmic reticulum”, and “neuroactive ligand-

receptor interaction” pathways were respectively 

enriched in the purple, red, and tan modules. The 

turquoise module and yellow module were singly 

enriched in the “herpes simplex virus 1 infection” and 

“axon guidance” pathways. In summary, we identified 

12 gene modules by performing WGCNA on dataset 

GSE29378 and parts of them were enriched in 

functional pathways associated with AD. 

 

Identification of the target gene module 

 

To identify the target module from the 12 resulting gene 

modules, we performed a module-trait analysis, and the 

analytical results were visualized in a heatmap, where 

the green module was detected positively correlated 

with both plaque score (Aβ deposition) (r = 0.43, p = 

4×10−4) and BRAAK stage (p-tau accumulation) (r = 

0.39, p = 0.002) (Figure 1A). In addition, the correlation 

between the MM value and GS value of each gene in 

the green module was analyzed. The results indicated 

that genes in the green module showed strong 

relationships with both plaque score (r = 0.57, p 

=1.7e−134) and BRAAK stage (r = 0.47, p = 3.7e−86) 

(Figure 1B, 1C). Thus, the green module was chosen as 

the target module for further study. 

 

We further displayed expression heatmaps of genes in 

the target module based on two independent AD-

related datasets (GSE118553 and GSE48350). Each 

heatmap’s vertical axis represents “gene symbol”, and 

the horizontal axis means “sample identity”. The 

results showed that genes in the target module were 

capable of discriminating AD and control individuals 

(Figure 1D, 1E). 

 

Visualization of expression pattern and chromosome 

location of genes from the target module 

 
We selected 100 genes with the highest MM value to 

explore the chromosome distribution and overall 

expression pattern of the target module (Figure 2). 

Among the 100 genes, the top 10 genes possessing the 

highest MM value, including GNA13, CYP2U1, 

PLSCR4, CAT, GJA1, PRDX1, CCDC109B, RNASE4, 

CYBRD1, and RAB23, were located on chromosomes 

17, 4, 3, 11, 6, 1, 14, and 2. 

 

Identification of hub genes 

 

To screen out hub genes in the target module, the 

criteria for selection were set as follows: MM value > 

0.9, GS value to plaque score > 0.3, and GS value to 

BRAAK stage > 0.3. Finally, 6 hub genes were picked 

out, including GNA13, CYP2U1, PLSCR4, CAT, 

GJA1, and PRDX1. The specific information of the 6 

genes was provided in Table 1. 

 

Refinement of hub genes 

 

To refine hub genes, we firstly explored the expression 

levels of those 6 hub genes in GSE118553 and 

GSE48350 (Figure 3A, 3B). Results showed that all hub 

genes were differently expressed in AD and control 

groups except for CAT. Further refinement was 

conducted through the receiver operating characteristic 

(ROC) curve analysis based on GSE118553 and 

GSE48350 (Figure 3C). The top 3 genes with the 

highest area under curve (AUC) value in each ROC 

analysis were picked out, and the intersecting genes 

were selected. As a result, GNA13 and GJA1 were 

identified as refined hub genes of the target module 

(Figure 3D). 

 

Functional sub-module analysis of the target module 

 

We employed ClusterONE, a plug-in of Cytoscape, to 

identify functional sub-modules in the target module. 

Firstly, genes in the target module were employed to 

construct a protein-protein interaction (PPI) network 

using the Search Tool for the Retrieval of Interacting 

Genes (STRING). In the PPI network, 6693 pairs and 

1147 genes were represented by edges and nodes, and 

the node size reflected the MM value of each gene. Six 

functional sub-modules containing 375 related genes 

were finally excavated, which were displayed in 

different colors in the PPI network (Figure 4A). 

 

Then gene ontology (GO) and Kyoto encyclopedia of 

genes and genomes (KEGG) pathway enrichment 

analyses were conducted to annotate genes in functional 

sub-modules. Significant results with the most gene-

ratio value were shown in Supplementary Figure 6. 

When the quantity of KEGG pathways or that of terms 

of each GO namespace, including biological processes 
(BP), molecular functions (MF), and cellular 

components (CC), was greater than 5, only the top 5 

enriched results were displayed. GO enrichment 
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analysis showed that genes in functional sub-module 1 

(M1) were significantly enriched in “nuclear division”, 

“spindle”, and “protein serine/threonine phosphatase 

activity” terms. Genes in functional sub-module 2 (M2) 

were mainly enriched in “fatty acid metabolic process”, 

“mitochondrial matrix”, and “coenzyme binding”. The 

“neutrophil degranulation”, “secretory granule lumen”, 

and “coenzyme binding” terms were enriched in 

functional sub-module 3 (M3). Genes in functional sub-

module 4 (M4) were enriched in “histone modification”, 

“transcription regulator complex”, and “transcription 

coactivator activity”. Genes in functional sub-module 5 

(M5) were mainly enriched in “RNA splicing”, 

“spliceosomal complex”, and “structural constituent of 

the nuclear pore”. For each GO namespace, genes in 

functional sub-module 6 (M6) were enriched in “NF-κB 

signaling”, “external side of plasma membrane”, and 

“cysteine-type peptidase activity”. KEGG pathway 

enrichment analysis showed that genes in the “cell 

cycle” pathway were enriched in M1. Genes in M2 and 

M3 were enriched in the “PPAR signaling pathway” 

and “carbon metabolism”, respectively. The “lysine 

degradation” and “spliceosomes” pathways were 

severally enriched in M4 and M5, while genes in M6 

 

 
 

Figure 1. Identification of the target module. (A) Heatmap of the correlations between MEs and clinical traits of AD. Each cell contains 

the correlation coefficient and p-value (within brackets). (B, C) Scatter plots of GS value of plaque score (B) and BRAAK stage (C) vs. the MM 
value of each gene in the target module. (D) Heatmap of genes in the target module of entorhinal cortex samples in GSE118553. (E) Heatmap 
of genes in the target module of hippocampus samples in GSE48350. AsymAD, asymptomatic AD. 
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were associated with the “NOD-like receptor signaling 

pathway”. Notably, these processes and pathways have 

been previously reported to be associated with various 

aspects of AD, including neuronal loss, accumulation of 

Aβ and p-tau, microglia dysfunction, and 

neurodegeneration [26–31]. 

Construction of a ceRNA network and identification 

of hub ncRNAs 

 

To select hub ncRNAs, we constructed a lncRNA-

miRNA-functional sub-module ceRNA network. The 

interaction analysis of lncRNA-functional sub-module 

 

 
 

Figure 2. Circular visualization of connectivity, expression patterns, and chromosomal positions of the 100 genes with the 
highest MM value in the target module. The expression profiles of control (outer ring) and AD (inner ring) individuals of GSE29378 were 
presented in the circular heatmap. “Red” indicates upregulation, “blue” represents downregulation, and “white” denotes genes that are not 
present in a given dataset. The outer circle represents chromosomes; lines coming from each gene point to their specific chromosomal 
locations. The ten genes with the highest MM value were shown in green font and they were connected with green lines in the center of the 
circles. 



 

www.aging-us.com 14945 AGING 

Table 1. Characteristics of the hub genes. 

Gene ID MM value GS value (plaque score) GS value (BRAAK stage) 

GNA13 0.915 0.307 0.315 

CYP2U1 0.908 0.370 0.350 

PLSCR4 0.908 0.481 0.417 

CAT 0.907 0.369 0.343 

GJA1 0.900 0.483 0.475 

PRDX1 0.900 0.482 0.418 

Abbreviation: MM, module membership; GS, gene significance. 

 

and miRNA-functional sub-module predicted 84 

lncRNAs and 254 miRNAs strictly participating in 96 

and 316 pairs of interplays within all 6 functional sub-

modules. After a comprehensive analysis of interactions 

among functional sub-modules and screened ncRNAs, 5 

functional sub-modules, 7 lncRNAs, and 148 miRNAs 

were selected for the ceRNA network construction 

(Figure 4B). In the ceRNA network, we found that one 

lncRNA, MEG3, and 22 miRNAs, which were listed in 

Table 2, could regulate more functional sub-modules 

than other ncRNAs, and they were determined as hub 

ncRNAs in our study. 

 

Refinement of hub ncRNAs 

 

To refine hub ncRNAs, we performed ROC analyses in 

three datasets, where GSE118553 and GSE29378 were 

employed for lncRNA refinement, and GSE120584 was 

used for miRNA refinement. The results showed that 

the AUC value of MEG3 was greater than 0.85 based 

on GSE118553, which indicated its potential role in AD 

diagnosis (Figure 5C). As for miRNA, the top 3 

miRNAs with the highest AUC value, including miR-

106a-3p, miR-1-3p, and miR-24-3p, were filtered from 

22 hub miRNAs for further identification (Table 2 and 

Figure 5D). We then displayed the expression of 

MEG3, miR-106a-3p, miR-1-3p, and miR-24-3p in AD 

and control groups based on the three datasets. The 

results suggested that the expression of MEG3 was 

significantly decreased in AD patients (Figure 5A). And 

miR-106a-3p and miR-24-3p were differently expressed 

between AD and control groups, while miR-1-3p had no 

expression difference in the two groups (Figure 5B). 

Finally, MEG3, miR-106a-3p, and miR-24-3p were 

selected as refined hub ncRNAs in our study. 

 

Pathological changes in 5XFAD mice 

 

To confirm the pathological characterization of 5XFAD 

and LM mice employed in this study, we detected the 
expression of Aβ42-related β-C-terminal fragment (β-

CTF) and p-tau (Ser396) in hippocampus homogenates 

using western blotting assay. The results indicated that 

4 mo 5XFAD mice had higher levels of β-CTF and p-

tau (Ser396) than age-matched LM mice (p < 0.05) 

(Supplementary Figure 2A–2C). Besides, 5XFAD mice 

exhibited additively increased production of β-CTF and 

p-tau (Ser396) with aging (p < 0.05) (Supplementary 

Figure 2D–2F). 

 

Western blotting analysis of GNA13, ROCK2, and 

GJA1 

 

The western blotting analysis was applied to confirm 

the expression difference of GNA13, ROCK2, and 

GJA1 between AD and control groups. Consequently, 

compared with LM mice, GNA13, ROCK2, and GJA1 

were all upregulated in the hippocampus of 5XFAD 

mice (p < 0.05) (Figure 6A, 6B). 

 

To further verify the association between GNA13, 

ROCK2, GJA1, and aging in 5XFAD mice. We 

examined the expression of GNA13, ROCK2, and 

GJA1 in 1 mo, 4 mo, and 8 mo 5XFAD mice. As 

expected, the results indicated that compared with 1 mo 

5XFAD mice, the expression of GNA13, ROCK2, and 

GJA1 was higher in the 4 mo and 8 mo groups, while 8 

mo 5XFAD mice had the highest expression of all three 

genes (p < 0.05), which suggested that GNA13, 

ROCK2, and GJA1 were significantly upregulated in 

5XFAD mice with the increase of age (Figure 6C, 6D). 

 

Quantitative real-time PCR (qRT-PCR) analysis of 

MEG3, miR-106a-3p, and miR-24-3p 

 

QRT-PCR assay was applied to confirm the 

expression difference of MEG3, miR-106a-3p, and 

miR-24-3p between AD and control groups. The 

results indicated that compared with LM mice, 

MEG3, miR-106a-3p, and miR-24-3p were all 

downregulated in the hippocampus of 5XFAD mice (p 

< 0.05) (Figure 7A–7C). 

 
We further explored the association between MEG3, 

miR-106a-3p, miR-24-3p, and aging of 5XFAD mice. 

The results indicated that MEG3 was decreased in 4 mo 
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and 8 mo groups (p < 0.05), compared to 1 mo group, 

but there was no expression difference between 4 mo 

group and 8 mo group (p > 0.05) (Figure 7D). MiR-

106a-3p and miR-24-3p were both downregulated in 8 

mo group, compared to 1 mo group (p < 0.05), however, 

there was no difference between 4 mo group and the 

other two groups (p > 0.05) (Figure 7E, 7F). In 

summary, the above results indicated that the expression 

of MEG3, miR-106a-3p, and miR-24-3p was partly 

associated with the aging of 5XFAD mice. 

Gene set enrichment analysis (GSEA) of refined hub 

genes 

 

To further investigate the potential functions of GNA13 

and GJA1 in AD, GSEA was performed based on 

GSE29378. There were 12 and 3 significant gene sets 

enriched in high-expression groups of GNA13 and 

GJA1, respectively (false discovery rate (FDR) q value 

< 0.25) (Supplementary Table 3). The top 3 gene sets 

with the highest normalized enrichment score (NES) 

 

 
 

Figure 3. Identification of the refined hub genes. (A, B) Expression of the hub genes in GSE118553 (A) and GSE48350 (B). (C) ROC 

analysis of the 6 hub genes in GSE118553 and GSE48350. (D) The intersection of the top 3 genes with the highest AUC value in ROC analysis 
based on GSE118553 and GSE48350. Data were presented as the mean ± SD in each group. ns, p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, 
**** p < 0.0001. 
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were thought to reflect the potential functions of 

GNA13 and GJA1. The results indicated that the 

“proteasome”, “spliceosome”, and “ribosome” gene 

sets were enriched in the high-expression group of 

GNA13, and the “basal transcription factors”, 

“spliceosome”, and “ribosome” gene sets were 

enriched in the high-expression group of GJA1 (Figure 

6E, 6F). Details of results were provided in 

Supplementary Table 3. 

 

KEGG pathway enrichment analysis of target genes 

of refined hub ncRNAs 

 

We performed KEGG pathway enrichment analysis on 

downstream targets of the three refined hub ncRNAs 

to explore their functions. 4338 target genes of MEG3 

were recognized based on the RAID (version 2.0) and 

LncRNA2Target databases (version 2.0). The target 

genes of miR-106a-3p and miR-24-3p were predicted 

based on the mirCode and mirTarBase databases, and 

there were 8473 and 11555 predicted targets of miR-

106a-3p and miR-24-3p, respectively (data not 

shown). Enrichment analysis indicated that the most 

target genes of MEG3 were enriched in the “MAPK 

signaling pathway”, “proteoglycans in cancer”, and 

“cAMP signaling pathway”, in which the gene-ratio of 

the “MAPK signaling pathway” reached up to 0.059 

(Figure 7G). The most targets of both miR-106a-3p 

and miR-24-3p were enriched in the “PI3K-Akt 

signaling pathway”, “human papillomavirus 

infection”, and “focal adhesion”. The miR-106a-3p 

related gene-ratio of the “PI3K-Akt signaling 

pathway” was 0.059, while the miR-24-3p related 

gene-ratio was 0.054 (Figure 7H, 7I). 

 

DISCUSSION 
 

At the level of transcriptome, genetic risk factors have 

been demonstrated to play an increasingly essential role 

in the etiopathology of AD [32]. The dysregulated 

expression of coding RNA and non-coding RNA has 

been shown to be associated with the onset and 

progression of AD [4]. The main pathological changes 

in AD, including the accumulation of Aβ and p-tau, 

have been reported to be related to transcriptome 

abnormalities [32, 33]. To date, the transition in 

knowledge from AD-related transcriptional 

dysregulation to molecular mechanisms has made some 

progress [34]. However, the transcriptional complexity 

still brings the requirement for the illumination of 

 

 
 

Figure 4. Identification of the functional sub-modules and construction of a ceRNA network. (A) The PPI network containing 6 
functional sub-modules in the target module. Red nodes indicate genes in functional sub-module 1; “orange” indicates genes in functional 
sub- module 2; “yellow” indicates genes in functional sub-module 3; “green” indicates genes in functional sub-module 4; “bule” indicates 
genes in functional sub-module 5; “indigo” indicates genes in functional sub-module 6; “purple” indicates genes shared by over 2 functional 
sub-modules; and “gray” indicates genes not belonging to any functional sub-module. The size of certain node reflects the corresponding 
gene’s MM value. (B) A ceRNA network describing lncRNA–miRNA–functional sub-module interaction. “Indigo” indicates functional sub-
module; “orange” indicates lncRNA; and “gray” indicates miRNA. The size of certain node reflects its degree value in the network. 
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Table 2. Characteristics of the hub miRNAs. 

Hub miRNA ID Regulatory ability Corresponding miRNA in GSE120584 AUC value 

miR-200b 4 miR-200b-5p/miR-200b-3p 0.537/0.567 

miR-200c 4 miR-200c-5p/miR-200c-3p 0.537/0.537 

miR-429 4 miR-429 0.578 

miR-548a 4 miR-548a-5p/miR-548a-3p 0.585/0.589 

miR-106a 3 miR-106a-5p/miR-106a-3p 0.585/0.641 

miR-129a-5p 3 miR-129a-5p 0.566 

miR-129b-5p 3 miR-129b-5p 0.566 

miR-132 3 miR-132-5p/miR-132-3p 0.589/0.573 

miR-18a 3 miR-18a-5p/miR-18a-3p 0.578/0.524 

miR-18b 3 miR-18b-5p/miR-18b-3p 0.557/0.512 

miR-1a 3 miR-1-5p/miR-1-3p 0.534/0.603 

miR-1b 3 miR-1-5p/miR-1-3p 0.534/0.603 

miR-203 3 miR-203-5p/miR-203-3p 0.532/0.552 

miR-206 3 miR-206 0.497 

miR-212-3p 3 miR-212-3p 0.483 

miR-218a 3 miR-218a 0.579 

miR-24-3p 3 miR-24-3p 0.624 

miR-27a-3p 3 miR-27a-3p 0.584 

miR-27b 3 miR-27b-5p/miR-27b-3p 0.587/0.552 

miR-27c 3 miR-27c 0.571 

miR-4735-3p 3 miR-4735-3p 0.533 

miR-613 3 miR-613 0.576 

Abbreviation: miRNA, microRNA; AUC, area under curve. 

 

molecular mechanisms in AD to improve the prediction 

of the disease in an early stage. 

 

We employed several datasets from the Gene 

Expression Omnibus (GEO) database in this study. 

GSE29378, containing expression profiles and clinical 

information, is suited for the WGCNA method, while 

GSE118553, GSE48350, and GSE120584 were 

employed as independent validation datasets. 

GSE118553 and GSE48350 contain postmortem 

hippocampus and entorhinal cortex samples, 

respectively. The hippocampus and entorhinal cortex of 

AD patients suffer the accumulation of Aβ and p-tau at 

the early stage of the disease, which was thought to be 

closely associated with AD patients’ cognitive 

dysfunction [20, 35, 36]. GSE120584, containing 1309 

serum samples, was employed for the validation of hub 

miRNAs. 

 

The WGCNA method has been applied for analyzing 

associations among gene sets and clinical features in 

various diseases [25]. By using WGCNA, we 
recognized the green module as the target module for 

further analysis. The gene distribution analysis 

suggested that the 100 representative genes of the target 

module spread over almost all chromosomes, except 

chromosomes 7, 16, 19, 22, and Y. Chromosome 1 

harbored the most genes, which indicated its potential 

role in influencing the pathological features of AD. 

After a series of bioinformatic screening analyses of the 

target module, two refined hub coding genes, GNA13 

and GJA1, and three refined hub ncRNAs, MEG3, miR-

106a-3p, and miR-24-3p, were identified for further 

analysis. 

 

As for coding genes, GNA13 was found to be 

expressed differently in AD and control individuals in 

two independent datasets. The western blotting results 

that GNA13 was increased in 5XFAD mice further 

supplied the experimental evidence. To our knowledge, 

this is the first time that GNA13 has been found to be 

upregulated in AD. Then we conducted further 

experimental analyses to inspect whether GNA13 was 

associated with the progression of AD. In view that Aβ 

and p-tau were reported to accumulate in 5XFAD mice 

with aging, we employed 1 mo, 4 mo, and 8 mo 

5XFAD mice for the western blotting analysis. The 
results that the expression of GNA13 was increased 

with aging in 5XFAD mice were consistent with the 

WGCNA results that genes in the target module were 
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associated with the plaque score and BRAAK stage. 

We then performed GSEA to explore the potential 

functions of GNA13. The results showed that various 

gene expression and protein metabolism-related gene 

sets, including “ribosome”, “spliceosome”, and 

“proteasome”, were enriched in the high-expression 

group of GNA13, suggesting that these pathways may 

be involved in AD progression. ROCK2 has been 

previously found to be involved in the increase of Aβ 

in AD, however, its association with tau 

phosphorylation in AD has not been reported [37]. 

Considering the novelty of association between 

GNA13 and the pathological progression of AD and 

that ROCK2 has been found as a downstream effector 

of GNA13 in other diseases, we further examined the 

expression of ROCK2 [38, 39]. Similar to GNA13, the 

western blotting analysis suggested that the expression 

of ROCK2 was increased in 5XFAD mice. Besides, the 

elevated expression was associated with the aging of 

5XFAD mice. The previous findings and our results 

provided the possibility that the dysregulation of 

GNA13 and ROCK2 may contribute to the pathological 

progression of AD in a synergistic way. 

 

GJA1 is the other key coding gene recognized from the 

target module in our study. The experimental analysis 

gave evidence for the dysregulation of GJA1 in AD. 

Our western blotting results also showed that GJA1 

was significantly upregulated in 5XFAD mice with the 

increase of age, which was consistent with previous 

reports that the expression of GJA1 was associated 

with Aβ, p-tau, and cognitive status of AD patients 

[40]. The GSEA results showed that the “spliceosome” 

gene set was enriched in the high-expression group of 

GJA1, which was in accordance with recent research 

showing that tau-mediated disruption of the 

spliceosome could lead to the promotion of 

neurodegeneration [30]. 

 

 
 

Figure 5. Identification of the refined hub ncRNAs. (A) Expression of MEG3 in GSE118553 and GSE29378. (B) Expression of hub miRNAs 
in GSE120584. (C) ROC analysis of MEG3 in GSE118553 and GSE29378. (D) ROC analysis of the hub miRNAs in GSE120584. Data were 
presented as the mean ± SD in each group. ns, p > 0.05, ** p < 0.01 and **** p < 0.0001. 
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As for non-coding genes, MEG3, miR-106a-3p, and 

miR-24-3p achieved high AUC value in validation 

datasets (GSE118553, GSE29378 and GSE120584). 

However, the AUC values of the two miRNAs were 

relatively lower than MEG3, possibly because samples 

in GSE120584 came from serum rather than brain 

tissue. The qRT-PCR results that MEG3, miR-106a-3p, 

and miR-24-3p were significantly decreased in 5XFAD 

mice suggested the potentials of the three key ncRNAs 

as novel biomarkers of AD. Indeed, the three ncRNAs 

have been previously reported to be associated with 

AD. In detail, the upregulation of MEG3 could alleviate 

neuronal damage in hippocampal tissues of AD 

individuals [41]. The reduced expression of miR-106a 

in whole blood was significantly associated with an 

increased risk of AD [42, 43]. And miR-24 was found 

to reduce Aβ secretion from human cells by repressing 

Nicastrin expression [44]. In light of the functional sub-

modules that were associated with Aβ and p-tau 

progression, we further explored the expression of the 

three ncRNAs in 1 mo, 4 mo, and 8 mo 5XFAD mice. 

The results showed that the expression of MEG3, miR-

106a-3p, and miR-24-3p was partly associated with the 

aging of 5XFAD mice, possibly because their 

regulatory ability varied in different stages. Enrichment 

analysis suggested that the target genes of MEG3 were 

mostly enriched in the “MAPK signaling pathway”, 

while the targets of both miR-106a-3p and miR-24-3p 

were mostly enriched in the “PI3K-Akt signaling 

pathway”. The activation of MAPK signaling pathway 

has been reported to be involved in diverse AD-related 

events, such as tau phosphorylation and 

 

 
 

Figure 6. Expression and functional analyses of GNA13, ROCK2 and GJA1. (A, B) Representative immunoblots (A) and densitometry 
(B) analysis of GNA13, ROCK2, and GJA1 expression in the hippocampus of 5XFAD mice and LM mice. (C, D) Representative immunoblots (C) 
and densitometry (D) analysis of GNA13, ROCK2, and GJA1 expression in the hippocampus of 5XFAD mice of various ages. (E) Top 3 gene sets 
(according to NES) enriched in the high-expression group of GNA13. (F) Top 3 gene sets (according to NES) enriched in the high-expression 
group of GJA1. Data were presented as the mean ± SD of five mice in each group. * p < 0.05, ** p < 0.01 and **** p < 0.0001. 
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neuroinflammation [45]. On the other hand, the 

inhibition of PI3K-Akt signaling cascade in glial cells 

encompasses a central role in different cellular 

processes driving AD progression [46]. 

In summary, by combining WGCNA and other 

bioinformatics tools, we characterized several key 

transcriptome biomarkers of AD. These results may 

contribute to an improved understanding of the 

 

 
 

Figure 7. Expression and functional analyses of MEG3, miR-106a-3p and miR-24-3p. (A–C) The expression of MEG3, miR-106a-3p, 

and miR-24-3p in the hippocampus of 5XFAD mice and LM mice determined by qRT-PCR assay. (D–F) The expression of MEG3, miR-106a-3p, 
and miR-24-3p in the hippocampus of 5XFAD mice of various ages determined by qRT-PCR assay. (G–I) KEGG pathway analysis of target genes 
of MEG3, miR-106a-3p, and miR-24-3p. Data were presented as the mean ± SD of five mice in each group. * p < 0.05, ** p < 0.01 and **** p < 
0.0001. 
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pathogenesis of AD and may lead to better diagnosis 

and treatment for the disease. 

 

MATERIALS AND METHODS 
 

Data collection and preprocessing 

 

Microarray datasets, including GSE29378, GSE118553, 

GSE48350, and GSE120584, were collected from the 

GEO database. Details of each microarray dataset were 

provided in Table 3. GSE29378 was employed for the 

identification of target module, validation of MEG3, 

and GSEA. GSE118553 was used for validation of hub 

genes and MEG3. GSE48350 and GSE120584 were 

employed for validation of hub genes and hub miRNAs, 

respectively. 

 

All expression profiles were normalized by the 

normalizeBetweenArrays function in the limma 

package in R for batch effects management [47]. In the 

process of mapping genes to symbols, if numerous 

probes were mapped to a similar symbol, their mean 

value was regarded as the gene manifestation value. 

Probes with more than one gene and empty probes were 

removed. The workflow used in this study was shown in 

Figure 8. 

 

WGCNA 

 

Firstly, the goodSamplesGenes function in the WGCNA 

package were employed to detect samples with missing 

values. Legitimate samples were then delivered to the 

cluster analysis by the hclust function in the stats 

package to identify and eliminate the outliers. The 

WGCNA package was used to construct the co-

expression network [25]. The pickSoftThreshold 

function was utilized to find the soft-threshold power β 

in accordance with standard scale-free networks. The 

constructed adjacency matrix was then transformed into 

the topological overlap matrix (TOM) with the soft-

threshold power β set as 7 (scale-free R2 = 0.85). In 

addition, the dynamic tree cut method was employed, 

with the cut height set as 0.3 and minimal module size 

set as 200, to identify gene modules. 

 

Identification of the target module and hub genes 

 

MEs, defined as the primary critical constituents of 

certain gene modules, were used to evaluate the 

possible relationship of gene modules with clinical 

traits, including plaque score and BRAAK stage. The 

gene module with the highest correlation index was 

identified as the target module. The expression 

heatmaps of the target module in the two independent 

datasets, GSE118553 and GSE48350, were displayed 

using the ggplot2 package in R. 

The hub genes were selected based on the evaluation of 

MM value and GS value. MM value represents the 

distance from the expression profile of a gene to that of 

the ME, which computes how adjacent a gene is to a 

gene module. GS value represents the log10 

transformation of the p-value (GS = lg p) in the linear 

regression between gene expression and AD 

pathological traits. In this study, hub genes were defined 

as genes in the target module with MM value greater 

than 0.9 and GS values to both plaque score and 

BRAAK stage greater than 0.3 [48]. 

 

Visualization of the gene expression pattern and 

chromosome location 

 

The OmicCircos package in R was utilized to visualize 

the expression pattern and chromosomal location of the 

100 genes with the highest MM value in the target 

module. 

 

PPI network construction and functional sub-

module recognition 

 

STRING (version 11.0) online software (https://string-

db.org/) was used to search the interrelationships of 

genes from the target module for the construction of the 

interaction network [49]. Cytoscape was applied for PPI 

network visualization [50], in which node represented 

protein and edge represented interaction between 

proteins. 

 

Furthermore, the network was analyzed with 

ClusterONE, which could contribute to the classification 

of proteins (genes) in the network, to identify the 

overlapped proteins based on a cohesion algorithm. In 

the ClusterONE algorithm, the higher the cohesion score 

between two proteins is, the more likely they could 

produce interaction and form a protein complex [51]. 

 

Construction of the ceRNA network 

 

The interactions between certain lncRNA and its target 

genes were downloaded from RAID (version 2.0, 

http://rna-society.org/raid/) and LncRNA2Target database 

(version 2.0, http://123.59.132.21/lncrna2target/) [52, 53], 

the interactions between certain miRNA and its target 

genes were downloaded from mirCode (http://www. 

mircode.org) [54], and mirTarBase database (https:// 

bio.tools/mirtarbase) [55]. And the interactions of 

lncRNAs and miRNAs were downloaded from mirCode 

database. We defined a lncRNA or miRNA as a regulator 

of certain functional sub-module if the genes in the 

functional sub-module significantly overrepresented the 
target genes of the lncRNA or miRNA (p < 0.01, 

hypergeometric test). Finally, the ceRNA network was 

constructed and visualized in Cytoscape. 

https://string-db.org/
https://string-db.org/
http://rna-society.org/raid/
http://123.59.132.21/lncrna2target/
http://www.mircode.org/
http://www.mircode.org/
https://bio.tools/mirtarbase
https://bio.tools/mirtarbase
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Table 3. Characteristics of the included datasets. 

Dataset ID Number of samples GPL ID 

GSE29378 32AD 31C (H) GPL6947 

GSE118553 37AD 24C (E) GPL10558 

GSE48350 19AD 22C (H) GPL570 

GSE120584 1021AD 288C (S) GPL21263 

Abbreviation: GSE, gene expression omnibus series; GPL, 
gene expression omnibus platform; AD, Alzheimer’s 
disease; C, control; H, hippocampus; E, entorhinal 
cortex; S, serum. 

 

Validation of the hub genes and ncRNAs 

 

Independent gene expression profiles containing AD 

hippocampus (GSE48350) and entorhinal cortex 

(GSE118553) samples were employed for diagnostic 

validation of hub genes and hub ncRNAs. ROC 

analyses were carried out to evaluate a certain hub 

gene’s sensitivity and specificity using the pROC 

package [56]. GSE29378 and GSE118553 were 

employed for the ROC analysis of hub lncRNAs. 

GSE120584 was employed for ROC analysis of hub 

miRNAs. The result of a certain ROC analysis was 

reflected by the corresponding AUC value. 

 

Animals 

 

All progeny mice employed in this study were obtained 

by breeding parental male 5XFAD mice with parental 

female C57BL/6xSJL mice. The parental male 5XFAD 

mice, as described by Oakley et al., originated from 

Jackson Laboratory (Bar Harbor, ME, USA, Stock 

Number: 006554), were obtained from the agent 

JOINN Laboratories (Suzhou, China) [21]. The 

parental female C57BL/6xSJL mice were obtained 

from Sippr-BK laboratory animal Co. Ltd (Shanghai, 

China). 

 

Genotyping of progeny mice was performed by PCR 

analysis of tail sample DNA, according to the supplier’s 

protocol. The primer details were presented in 

Supplementary Table 2. The results of genotyping were 

provided in Supplementary Figure 1, where the progeny 

mice with the expression of APP (377 bp) and PS1 (608 

bp) were identified as 5XFAD mice, while ones with 

the expression of only reference DNA (324 bp) were 

employed as LM mice in this study. 

 

All mice were housed in individually ventilated cages 

with specific pathogen-free conditions and had access to 

water and food pellets ad libitum. All animal 

experiments were in compliance with the relevant 

animal ethics regulations of the Animal Use Committee 

of Shanghai General Hospital, Shanghai Jiao Tong 

University School of Medicine. 

 

Western blotting assay 

 

Mice were sacrificed under sevoflurane anesthesia, and 

the hippocampus tissues were collected and 

homogenized in RIPA lysis buffer (Cat# WB3100, 

NCM, China) with protease and phosphatase inhibitors 

(Cat# P002, NCM, China) for 30 min. The supernatants 

were harvested after centrifugation at 15000 rpm for 15 

min at 4° C. The concentrations of the supernatants 

were measured using the bicinchoninic acid protein 

assay kit (Cat# NCI3225CH, Thermo, USA). After 

quantification, equal amounts of protein were loaded in 

each well and separated with 10% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE). The separated proteins were electrophoretically 

transferred onto a polyvinylidene difluoride membrane 

(PVDF). The membranes were then blocked with 5% 

skim nonfat milk (Cat# A600669, Sangon, China) or 

3% bovine serum albumin (Cat# A500023, Sangon, 

China) for 2h at room temperature (RT). After blocking, 

the membranes were incubated with primary antibody, 

including rabbit anti-GNA13 (44 KD, 1:1000, Cat# 

ab128900, Abcam, UK), rabbit anti-ROCK2 (160 KD, 

1:1000, Cat# 9029S, CST, USA), rabbit anti-GJA1 (43 

KD, 1:1000, Cat# ab235585, Abcam, UK), rabbit anti-

Aβ42 (raised against a peptide corresponding to amino 

acids 707-713 of P05067, 17 KD, 1:1000, Cat# 700254, 

Invitrogen, USA), rabbit anti-p-tau (Ser396) (79 KD, 

1:1000, Cat# ab109390, Abcam, UK), rabbit anti-

GAPDH (36 KD, 1:2000, Cat# AF7021, Affinity, 

China), and rabbit anti-Tubulin-α (50 KD, 1:2000, Cat# 

AF7010, Affinity, China), at 4° C overnight. The 

membranes were then incubated with anti-rabbit 

secondary antibodies (1:4000, Cat# 111-035-003, 

Jackson, USA) at RT for 1 h. The protein bands were 

detected with enhanced chemiluminescence (ECL) 

western blot kit (Cat# P10100, NCM, China) and 

visualized using a ChemiDoc XRS System with Image 

Lab software (Bio-Rad, USA). 
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QRT-PCR assay 

 

Total RNA was extracted from hippocampus tissues by 

TRIzol (Cat# 15596026, Invitrogen, USA) following 

the manual. The RNA quality was evaluated via the 

A260/A280 ratio. For quantification of MEG3, cDNA 

was synthesized from total RNA by reverse 

transcriptase using the random primer (Cat# RR037A, 

 

 
 

Figure 8. Workflow used in this study. 
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Takara, Japan). For miR-106a-3p and miR-24-3p, 

RNA was reversely transcribed to cDNA using the 

corresponding miRNA stem-loop RT primer 

(Supplementary Table 4). Each sample was prepared 

in triplicate for a total reaction volume of 20 μl, with 

250 nM forward and reverse primers, 10 μl SYBR 

Green (Cat# Q204, NovaBio, China), and 20 ng 

cDNA. 

 

Details of the primer sequence were provided in 

Supplementary Table 5. All reactions were carried out 

in a QuantStudio 3 Real-Time PCR system. The 

expression of MEG3 was normalized to GAPDH, while 

the expression of miR-106a-3p and miR-24-3p was 

normalized to U6. 

 

GSEA 

 

GSEA software (version 4.0.3) was used to perform 

GSEA [57]. Based on the median expression of certain 

hub genes, 31 AD samples were divided into high-

expression and low-expression groups. FDR q value < 

0.25 was regarded as statistically significant. The 

reference gene set, “c2.cp.kegg.v7.1.symbols.gmt”, was 

downloaded from the Molecular Signature Database 

(MSigDB, http://software.broadinstitute.org/gsea/msigdb/ 

index.jsp). 

 

Functional enrichment analysis 

 

GO and KEGG pathway enrichment analyses were 

conducted with a criterion of adjust-p-value < 0.05, 

using the clusterProfiler package in R [58]. 

 

Data analysis 

 

All data were expressed as the mean with standard 

deviation (mean ± SD). The statistical analysis was 

performed using Prism (Version 8.0) Software. The 

results of western blotting and qRT-PCR analyses were 

analyzed based on the student 2-tailed unpaired t-test 

and one way analysis of variance (ANOVA), followed 

by Tukey post hoc test. Statistical significance was 

considered to occur at p < 0.05. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Genotyping results. Genotyping results of 4 mo LM mice, 1 mo 5XFAD mice, 4 mo 5XFAD mice, and 8 mo 

5XFAD mice. “M” represents a DNA molecular weight marker; “WT” represents a reference of wild-type mice; and “AD” represents a 
reference of 5XFAD mice. Each number on the top is the ear tag number of different mice. DNA bands enclosed by blue and red boxes 
represent certain mice employed in this study. Bands enclosed by blue boxes represent 4 mo LM mice, including number 39, 75, 106, 114, 
and 283. Bands enclosed by red boxes represent 5XFAD mice with different ages, where number 432, 436, 441, 448, and 479 are 1 mo 5XFAD 
mice, number 34, 50, 71, 115, and 280 are 4 mo 5XFAD mice, and number 228, 248, 312, 346, and 366 are 8 mo 5XFAD mice. 



 

www.aging-us.com 14961 AGING 

 
 

Supplementary Figure 2. Expression analysis of Aβ42-related β-CTF and p-tau (Ser396). (A–C) Representative immunoblots and 
densitometry analysis of β-CTF and p-tau (Ser396) in the hippocampus of 5XFAD mice and LM mice. (D–F) Representative immunoblots and 
densitometry analysis of β-CTF and p-tau (Ser396) in the hippocampus of 5XFAD mice of various ages. Data were presented as the mean ± SD 
of five mice in each group. * p < 0.05, ** p < 0.01 and **** p < 0.0001. 
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Supplementary Figure 3. Determination of the soft-thresholding power in WGCNA. (A) Top: analysis of the scale-free fit index; 
bottom: mean connectivity for various soft-thresholding powers. (B) Dendrogram of all genes clustered based on a dissimilarity measure (1-
TOM). TOM, topological overlap matrix. 
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Supplementary Figure 4. Clustering of samples and identification of gene modules. (A) Sample clustering based on GSE29378. 

Color intensity varies positively with plaque score and BRAAK stage. (B) Heatmap of the correlations among the 12 modules. Dark color 
represents low overlap and progressively lighter yellow color indicates higher overlap. The gene dendrogram and module assignment were 
shown along the left side and the top. (C) Top: clustering of MEs acquired by WGCNA; bottom: heatmap plot of the correlations among 
eigengene adjacencies of modules. 
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Supplementary Figure 5. Functional enrichment analysis of the gene modules. KEGG pathway enrichment results of the 12 gene 
modules. 
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Supplementary Figure 6. GO and KEGG pathway enrichment analyses of the functional sub-modules. (A) GO enrichment results 
of the functional sub-modules. (B) KEGG pathway enrichment results of the functional sub-modules. 
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Supplementary Tables 
 

Supplementary Table 1. Size of the gene modules. 

Gene module Size (Gene number) 

Module Black 828 

Module Blue 3583 

Module Brown 1973 

Module Green 1282 

Module Green-yellow 247 

Module Magenta 454 

Module Pink 509 

Module Purple 374 

Module Red 890 

Module Tan 194 

Module Turquoise 6543 

Module Yellow 1681 

 

Supplementary Table 2. Primer sequence of genotyping. 

Prime type Forward Reverse 

APP AGGACTGACCACTCGACCAG CGGGGGTCTAGTTCTGCAT 

PS1 AATAGAGAACGGCAGGAGCA GCCATGAGGGCACTAATCAT 

Reference CTAGGCCACAGAATTGAAAGATCT GTAGGTGGAAATTCTAGCATCATCC 

 

Supplementary Table 3. Characteristics of GSEA results. 

Gene Pathway ES NES NOM p-val FDR q-val 

GNA13 Ribosome 0.567 1.875 0.008 0.009 

 Proteasome 0.580 1.736 0.000 0.064 

 Spliceosome 0.549 1.674 0.024 0.087 

 Parkinson’s disease 0.587 1.613 0.027 0.148 

 Nucleotide excision repair 0.604 1.588 0.004 0.164 

 RNA degradation 0.494 1.549 0.025 0.201 

 Basal transcription factors 0.531 1.535 0.021 0.200 

 Glycine serine and threonine metabolism 0.574 1.520 0.036 0.204 

 Protein export 0.689 1.502 0.047 0.218 

 Glyoxylate and dicarboxylate metabolism 0.626 1.481 0.018 0.239 

 Mismatch repair 0.626 1.472 0.047 0.237 

 Cell cycle 0.398 1.469 0.024 0.224 

GJA1 Spliceosome 0.569 1.739 0.012 0.080 

 Ribosome 0.514 1.717 0.054 0.059 

 Basal transcription factors 0.542 1.579 0.017 0.231 

Abbreviation: ES, enrichment score; NES, normalized enrichment score; NOM p-val, normalized  
p value; FDR q-val, false discovery rate q value. 
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Supplementary Table 4. Primer sequence of reverse transcription. 

RNA Reverse transcription 

miR-106a-3p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTAAGA 

miR-24-3p GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTGTTC 

U6 GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAAAAATATGG 

 

Supplementary Table 5. Primer sequence of qRT-PCR. 

RNA Forward Reverse 

MEG3 CCTGTCGCGTCTTCCTGTGC TGGGGTCCTCAGTCTTCTTTTCT 

GAPDH AACTTTGGCATTGTGGAAGG GGATGCAGGGATGATGTTCT 

miR-106a-3p CGACTGCAGTGCCAGCACT AGTGCAGGGTCCGAGGTATT 

miR-24-3p GCGTGGCTCAGTTCAGCAG AGTGCAGGGTCCGAGGTATT 

U6 GCTCGCTTCGGCAGCACATATAC AGTGCAGGGTCCGAGGTATT 

 


