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INTRODUCTION 
 

Proliferative vitreoretinopathy (PVR), a complication 

associated with retinal detachment surgery and trauma 

[1, 2], occurs when simulation and migration of  

retinal pigment epithelial (RPE) cells is induced by 

cytokines and oxidative stress, which eventually  

leads to visual impairment and blindness [3, 4]. 

Epithelial-mesenchymal transformation (EMT) plays an 

indispensable role in oxidative stress, stem cell 

differentiation, growth, and wound healing, but also 

promotes the occurrence and development of cell 

fibrosis and cancer pathologies [5, 6]. Previous studies 

confirmed that EMT of RPE cells mediated by 

transforming growth factor beta 1 (TGF-β1) is the main 

reason for pathological changes associated with PVR  

[7, 8]. RPE cells convert from an epithelial to 

mesenchymal phenotype and participate in EMT [9, 10]. 

The transformation of cell differentiation is mediated  

by key transcription factors such as Snail, a zinc-finger 

box binding protein and basic helix transcription  

factor [11].  

 

In addition, long noncoding RNA (lncRNA) such as 

lnc-ATB, linc-RoR, and HOTAIR have been shown to 

induce EMT in tumor epithelial cells [12, 13]. 

Moreover, studies have shown that lncRNA plays an 

important role in triggering EMT in epithelial cells 

during tumor metastasis [14, 15]. MALAT1 can 

promote the proliferation, migration, and epiretinal 

membrane formation of RPE cells in PVR [16, 17]. In 

addition, it was confirmed that downregulation of 

MALAT1 could inhibit the induction of EMT by TGF-
β1 in ARPE-19 cells, and significantly reduced the 

upregulation of EMT-related transcription factors Snail, 

SLUG, and ZEB1 in RPE cells [18, 19].  
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ABSTRACT 
 

Regulation of long-chain non-coding RNA01592 (LINC01592) in the process of transforming retinal pigment 
epithelial (RPE) cells into mesenchymal cells following induction by transforming growth factor beat 1 (TGF-β1) 
was investigated by interfering with LINC01592 expression in human RPE (hRPE) cells. LINC01592 expression in 
hRPE cells was significantly increased following treatment with 10 ng/mL TGF-β1 for 48 h. Expression of E-
cadherin and Snail were decreased in hRPE cells following induction with TGF-β1 compared with the control 
group (P < 0.05). Following induction by TGF-β1, expression of E-cadherin, alpha-smooth muscle actin (α-SMA), 
and Snail were significantly lower in the LINC01592-knockdown group compared with the negative control 
group (P < 0.05). LINC01592 overexpression significantly enhanced the viability, proliferation, and migration of 
hRPE cells induced by TGF-β1 (P < 0.05). Following induction by TGF-β1, E-cadherin expression was significantly 
decreased and α-SMA and Snail expression were significantly increased in the LINC01592-overexpression group 
compared with the negative control group (P < 0.05). RPE cells induced by TGF-β1 exhibited epithelial-
mesenchymal transition (EMT). Inhibiting LINC01592 expression could significantly reduce TGF-β1-induced EMT 
of hRPE cells. The regulatory effect of LINC01592 on EMT in hRPE cells induced by TGF-β1 provides a novel 
treatment for proliferative vitreoretinopathy. 
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Results of our previous lncRNA microarray analysis 

showed that LINC01592 expression was significantly 

increased in hRPE cells following induction by TGF-β1 

compared with the control group, indicating an 

important role for LINC01592 in regulation of hRPE 

cell proliferation. In the present study, we investigated 

the role of LINC01592 in the process of TGF-β1-

induced EMT in hRPE cells. 

 

RESULTS 
 

TGF-β1 induced EMT in hRPE cells 

 

After 48-h intervention with 10 ng/mL TGF-β1, hRPE 

cells were transformed into loosely arranged spindle-

shaped cells, indicating their transition from an 

epithelial to mesenchymal phenotype (Figure 1). 

 

Expression of E-cadherin, alpha-smooth muscle actin 

(α-SMA), and Snail (an EMT-related transcription 

factor) was decreased in hRPE cells of the experimental 

group compared with the control group following 

induction with TGF-β1 for 48 h (P < 0.05, Figure 2). 

TGF-β1 induced LINC01592 expression in hRPE 

cells 

 

Our results show that LINC01952 expression in hRPE 

cells was significantly increased after 48-h intervention 

with TGF-β1 compared with the control group (P < 

0.05, Figure 3). 

 

LINC01592 knockdown inhibited TGF-β 1-induced 

EMT in hRPE cells 

 

Our results indicate significantly decreased E-cadherin 

expression and significantly increased α-SMA expression 

in hRPE cells of the TGF-β1 group (P < 0.05). In 

addition, LINC01592 expression was increased in the 

TGF-β1 group (P < 0.05). Expression of E-cadherin in 

the LINC01592-knockdown plus TGF-β1 induction 

(LINC01592-KD + TGF-β1) group was significantly 

lower (P < 0.05) than in the negative control plus  

TGF-β1-induction (LINC01592-KD-NC + TGF-β1) 

group, which also exhibited significantly increased α-

SMA expression (P < 0.05). These results indicate 

 that downregulation of LINC01592 inhibited the

 

 
 

Figure 1. Morphological changes of RPE cells following induction by TGF-β1. After 48-h induction with 10 ng/mL TGF-β1, the shape 
of RPE cells became spindle-like and their arrangement was observed to become loose under a microscope (A, B) The shape of RPE cells in 
the blank control group under a microscope (C, D). 
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decrease of E-cadherin and increase of α-SMA in hRPE 

cells induced by TGF-β1, which suggests that TGF-β1-

induced EMT of hRPE cells can be inhibited (Figure 4). 

 

LINC01592 knockdown inhibited TGF-β1-induced 

upregulation of the EMT-related transcription factor 

Snail 

 

Expression of Snail, an EMT-related transcription 

factor, was significantly increased in both 

LINC01592-KD + TGF-β1 and LINC01592-KD-NC + 

TGF-β1 groups (P < 0.05), but was significantly 

lower in the LINC01592-KD + TGF-β1 group 

compared with the LINC01592-KD-NC + TGF-β1 

group (P < 0.05). These results indicate that inhibition 

of LINC01592 expression could inhibit Snail 

expression in hRPE cells following induction by TGF-

β1 (P < 0.05, Figure 5). 

 

LINC01592 knockdown reduced proliferation and 

migration of hRPE cells 

 

The results of cell migration-scratch testing indicated no 

significant difference between LINC01592-KD and  

 

 
 

Figure 2. Expression of EMT marker proteins following 
induction of RPE cells with TGF-β1, as detected by 
western blot. E-cadherin expression was downregulated, 

whereas expression of α-SMA and Snail were upregulated in the 
group induced by TGF-β1 (A, B). The difference of expression 
levels between the two groups was statistically significant  
(P < 0.05). 

 
 

Figure 3. Expression of LINC01592 was increased 
following induction of RPE cells by TGF-β1, as detected 
by RT-PCR. Expression of LINC01592 mRNA was increased 
following induction with TGF-β1. The difference in expression 
levels between the two groups was statistically significant  
(P < 0.05). 

 

 
 

Figure 4. LINC01592 knockdown reduced TGF-β1-induced 
EMT of RPE cells. Expression of EMT molecular makers E-
cadherin and α-SMA was detected by western blot. (A) 
Differences in expression levels between groups were statistically 
significant (B, P < 0.05). 
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LINC01592-KD-NC groups (P > 0.05). However, the 

residual scratch area of both LINC01592-KD + TGF-β1 

and LINC01592-KD-NC + TGF-β1 groups was 

significantly lower compared with LINC01592-KD and 

LINC01592-KD-NC groups (P < 0.05), respectively. 

Moreover, the residual scratch area of the LINC01592-

KD-NC + TGF-β1 group was significantly lower 

compared with the LINC01592-KD-NC group (P < 0.05). 

The residual scratch area of the LINC01592-KD-NC + 

TGF-β1 group was significantly lower compared with the 

LINC01592-KD + TGF-β1 group (P < 0.05). These 

results suggest that following induction by TGF-β1, 

proliferation and migration of hRPE cells was decreased 

in response to reduced LINC01592 expression (Figure 6). 

Cell Counting Kit 8 (CCK-8) results revealed no 

significant difference in viability between cells in 

LINC01592-KD and LINC01592-KD-NC groups (P > 

0.05). Moreover, no significant differences were observed 

among LINC01592-KD + TGF-β1, LINC01592-KD-NC 

+ TGF-β1, and LINC01592-KD-NC + TGF-β1 groups (P 

> 0.05). Compared with the LINC01592-KD-NC group, 

both LINC01592-KD and LINC01592 groups exhibited  

 

 
 

Figure 5. LINC01592 knockdown decreased TGF-β1-
induced upregulation of the EMT-related transcription 
factor Snail. Expression of the EMT-related transcription factor 

Snail was detected by western blot. The difference of expression 
levels between groups was statistically significant (A, B; P < 0.05). 

significantly higher cell viability (P < 0.05). Viability of 

the LINC01592-KD + TGF-β1 group was significantly 

lower than that of the LINC01592-KD-NC + TGF-β1 

group (P < 0.05). These results suggest that following 

induction by TGF-β1, viability of hRPE cells was 

decreased in response to reduced LINC01592 expression 

(Figure 6). 

 

LINC01592 overexpression enhanced TGF-β1-

induced EMT of hRPE cells 

 

Our results show that compared with LINC01592 

overexpression (LINC01592-OE), negative control 

(LINC01592-OE-NC), LINC01592 overexpression plus 

TGF-β1 induction (LINC01592-OE + TGF-β1), and 

LINC groups, E-cadherin expression was significantly 

decreased and α-SMA expression was increased in the 

negative control plus TGF-β1 induction (LINC01592-

OE-NC + TGF-β1) group (P < 0.05). However, E-

cadherin expression was significantly decreased and α-

SMA expression was significantly increased in the 

LINC01592-OE + TGF-β1 group compared with the 

LINC01592-OE-NC + TGF-β1 group (P < 0.05). These 

results suggest that LINC01592 overexpression could 

promote downregulation of E-cadherin and upregulation 

of α-SMA in hRPE cells following induction by TGF-

β1, thus enhancing TGF-β1-induced EMT of hRPE cells 

(Figure 7). 

 

LINC01592 overexpression enhanced TGF-β1-

induced upregulation of the EMT-related 

transcription factor Snail 

 

Compared with LINC01592-OE and LINC01592-OE-NC 

groups, expression of the EMT transcription factor Snail 

in LINC01592-OE + TGF-β1 and LINC01592-OE-NC + 

TGF-β1 groups was significantly increased (P < 

0.05), respectively; however, Snail expression in the 

LINC01592-OE + TGF-β1 group was significantly higher 

compared with the LINC01592-OE-NC + TGF-β1 group 

(P < 0.05). Thus, LINC01592 overexpression could 

promote expression of the EMT transcription factor Snail 

in hRPE cells following induction by TGF-β1 (Figure 8). 

 

LINC01592 overexpression enhanced the proliferation 

and migration of hRPE cells 

 

The results of cell migration-scratch testing indicated no 

significant difference in residual scratch area between 

LINC01592-OE and LINC01592-OE-NC groups (P > 

0.05). However, the residual scratch areas of 

LINC01592-OE + TGF-β1 and LINC01592-OE-NC + 

TGF-β1 groups were significantly lower compared with 
LINC01592-OE and LINC01592-OE-NC groups, 

respectively (P < 0.05). Moreover, the residual scratch 

area of the LINC01592-OE + TGF-β1 group was 
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significantly lower compared with the LINC01592-OE-

NC + TGF-β1 group (P < 0.05). These results suggest 

that LINC01592 overexpression enhanced the 

proliferation and migration of hRPE cells following 

induction by TGF-β1.  

 

CCK-8 assay results indicated no significant 

difference in cell viability between LINC01592-OE 

and LINC01592-OE-NC groups (P > 0.05). However, 

compared with LINC01592-OE-NC and LINC01592-

OE-NC groups, cell viability of the LINC01592-OE + 

TGF-β1 group was significantly increased (P < 0.05). 

Importantly, viability of the LINC01592-OE+TGF-β1 

group was significantly higher compared with 

LINC01592-OE and LINC01592-OE-NC groups (P < 

0.05). These results suggest that overexpression of 

LINC01592 increased the viability of hRPE cells 

following induction by TGF-β1 (Figure 9). 

 

 
 

Figure 6. Knockdown of LINC01592 decreased the proliferation and migration of RPE cells. Migration of RPE cells in each group 

was observed under a microscope at 0, 24, and 48 h (A). The residual scratch area of RPE cells in each group after transfection and induction 
by TGF-β1 for 48 h (B). Viability of RPE cells was detected by CCK-8 after transfection and induction by TGF-β1 for 48 h (C). The difference of 
expression levels between groups was statistically significant (P < 0.05). 
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DISCUSSION 
 

PVR is a type of ocular fibrous disease characterized 

by the formation of a contractile epiretinal membrane, 

the main cellular component of which is RPE cells. 

EMT occurs when RPE cells detach from the 

damaged retina and migrate into the vitreous cavity or 

subretinal space, whereby they are stimulated by 

various cytokines [20–23]. After RPE cells  

acquire a mesenchymal phenotype, their migration, 

invasiveness, and anti-apoptotic ability are enhanced, 

and they begin to produce extracellular matrix [24–

27]. RPE cells that undergo the EMT process change 

from epithelial cells to fibroblast-like cells and 

participate in the formation of an epiretinal membrane 

[28–30]. Following retinal damage, TGF-β1 released 

from vitreous or serum is the main factor stimulating 

EMT in RPE cells [31]. Although EMT has been 

confirmed as the main pathogenic factor of PVR in 

RPE cells, the mechanism by which EMT occurs RPE 

cells remains unclear. 

 

 
 

Figure 7. LINC01592 overexpression enhanced the EMT 
of hRPE cells induced by TGF-β1. Expression of EMT 

molecular makers E-cadherin and α-SMA were detected by 
western blot. (A) The difference in expression levels between 
groups was statistically significant (B, P < 0.05). 

In the present study, expression of E-cadherin was 

decreased but that of α-SMA and Snail was increased 

following TGF-β1 induction. These results confirmed 

that EMT could occur in RPE cells 48 h after TGF-β1 

intervention. 

 

LINC01592 is a 2367-bp lncRNA located in two 

bands of the 13 region of chromosome 8. In  

this study, RNA was extracted from hRPE cells 

treated with TGF-β1 for 48 h. RT-PCR assay  

results confirmed that LINC01592 expression was 

significantly increased in RPE cells treated with TGF-

β1, suggesting the potential involvement of 

LINC01592 in regulation of EMT in hRPE cells 

during the development of PVR. 

 

Our results suggest that inhibiting LINC01592 

expression not only inhibited TGF-β-induced EMT of 

hRPE cells but also reduced their proliferation and 

migration. In addition, increased expression of the 

EMT-related transcription factor Snail induced by 

TGF-β1 was inhibited by knockdown of LINC01592 

expression. Previous studies implicated Snail in  

some signaling pathways associated with EMT,  

which suggests that LINC01952 may regulate EMT in 

 

 
 

Figure 8. LINC01592 overexpression increased TGF-β1 
induced upregulation of the EMT-related transcription 
factor Snail. Expression of the EMT-related transcription factor 
Snail was detected by western blot. The difference in expression 
levels between groups was statistically significant (A, B; P < 0.05). 
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RPE cells by participating in a signaling pathway 

involving Snail. However, the specific signaling 

pathways affected by LINC01592 and Snail in  

TGF-β1-induced EMT of hRPE cells require further 

study. 

 

Following induction by TGF-β1, LINC01592 

overexpression could promote the EMT of hRPE cells 

and enhance their proliferation and migration ability. 

In addition, LINC01592 overexpression enhanced 

expression of the EMT transcription factor Snail 

following induction by TGF-β1. These results indicate 

that LINC01592 not only participated in the process 

of EMT in hRPE cells induced by TGF-β1 but also 

regulated their proliferation and migration and 

promoted the EMT process. 

 

 
 

Figure 9. LINC01592 overexpression increased the proliferation and migration of RPE cells. Migration of RPE cells in each group 

was observed at 0, 24, and 48 h (A). The residual area of scratch space for RPE cells in each group after transfection and induction by TGF-β1 
for 48 h (B). Viability of RPE cells was detected by CCK-8 after transfection and induction by TGF-β1 for 48 h (C). The difference in expression 
levels between groups was statistically significant (P < 0.05). 
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Following EMT of RPE cells, they produce and 

participate in the formation of an epiretinal membrane 

– the main pathogenic factor of PVR. In this study, 

TGF-β1 was used to induce EMT in hRPE cells. The 

effect of lncRNA on EMT, proliferation, and 

migration of hRPE cells was confirmed by interfering 

with LINC01592 expression. Reducing LINC01592 

expression could inhibit the EMT process of hRPE 

cells following induction by TGF-β1, thus realizing 

the possibility of inhibiting the occurrence and 

development of PVR. In addition, we found that 

LINC01592 may regulate EMT in hRPE cells by 

participating in a signaling pathway involving the 

transcription factor Snail. TGF-β1 promoted EMT of 

hRPE cells; LINC01592 could regulate the process of 

TGF-β1-induced EMT of hRPE cells, and reduced 

expression of LINC01592 inhibited the EMT process. 

The regulatory effect of LINC01592 on TGF-β1-

induced epithelial interstitialization of hRPE cells 

may involve signaling pathways involving Snail.  

 

Our findings confirm that LINC01592 is related to the 

occurrence and development of PVR. At present, no 

report has described the mechanism by which LINC01592 

participates in the pathogenesis of EMT in hRPE cells. To 

provide a new target for gene therapy of PVR, the present 

study elucidated the role of LINC01592 in the process of 

TGF-β1-induced EMT in hRPE cells. 

 

MATERIALS AND METHODS 
 

All procedures of this experiment were approved by 

the First Affiliated Hospital of Harbin Medical 

University (Harbin, China) ethics committee and 

conformed with Association for Research in Vision 

and Ophthalmology guidelines for ophthalmic and 

vision studies. 

 

EMT of hRPE cells following induction by TGF-β1 

 

Donated eyeballs were from the eye bank of First 

Affiliated Hospital of Harbin Medical University. hRPE 

cells were carefully collected and then treated with 

0.25% trypsin for 1 h. hRPE cells were inoculated in 

six-well plates and cultured in an incubator at 37° C and 

5% CO2 for 12 h, until the cells completely adhered. 

hRPE cells were used for experiments after they 

reached confluence. 

 

TGF-β1 dry powder (Sigma-Aldrich, St. Louis, MO, 

USA) was centrifuged and dissolved in Dulbecco’s 

Modified Eagle’s Medium with F-12 Nutrients 

(DMEM/F12) to prepare a 60-ng/mL solution. After 

culturing cells in serum-free medium (Corning, 

Corning, NY, USA) for 12 h, 10 ng/mL TGF-β1 

solution was added to the cells.  

Transfection of hRPE cells with LINC01592  

 

LINC01592-knockdown (LINC01592-KD), LINC01592-

overexpression (LINC01592-OE), and their respective 

negative control plasmids (KD-NC and OE-NC, 

respectively) were provided by Jikai Gene Chemical 

Technology (Shanghai, China). The LINC01592 

knockdown plasmid had a target sequence of 

GCCTATTGTTATTGGGCAT in the hU6-MCS-CMV-

GFP-SV40-Neomycin vector. The LINC01592 

overexpression plasmid was CMV-MCS-IRES-EGFP-

SV40-Neomycin. 

 

hRPE cells were divided into LINC01592-KD, 

LINC01592-KD + TGF-β1, KD-NC, and KD-NC + 

TGF-β1 groups. Overexpression experiment groups 

included LINC01592-OE, LINC01592-OE + TGF-β1, 

OE-NC, and OE-NC+TGF-β1 groups. LINC01592-KD, 

KD-NC, LINC01592-OE, and OE-NC groups were 

generated by incubating 3 × 105 RPE cells in 

DMEM/F12 medium containing 10% fetal bovine 

serum (FBS) at 37° C, 5% CO2 for 24 h. For 

transfection, the appropriate plasmid and Lipofectamine 

2000 (Invitrogen, Carlsbad, CA, USA) were added 

Opti-MEM serum-free culture medium. DNA (µg) and 

Lipofectamine 2000 (µL) were mixed at a ratio of 1:2.5 

at room temperature for 20 min. After discarding the 

original culture medium, the DNA-Lipofectamine 2000 

mixture was added such that each well of the six-well 

plate contained 4 µg of plasmid and 10 µL of 

Lipofectamine 2000. Transfection efficiency of hRPE 

cells was observed by fluorescence microscopy.  

 

Western blot 

 

Cell debris and lysates were centrifuged at 12000 

r/min for 15 min. After collecting the supernatant, the 

protein concentration was determined according to the 

instructions of a bicinchoninic acid assay kit. A 12% 

gel was prepared and 30 μg of protein was loaded into 

each lane. Proteins were subsequently transferred to 

polyvinylidene fluoride membranes, which were 

blocked in 5% skimmed milk powder in phosphate-

buffered saline containing Tween 20 (PBS-T), placed 

on a horizontal shaker, and sealed for 1 h. Next, 

membranes were incubated with mouse anti-human E-

cadherin (1:1000; Santa Cruz Biotechnology, Dallas, 

TX, USA), rabbit anti-human α-SMA (1:500, Santa 

Cruz Biotechnology), rabbit anti-human Snail (1:1000, 

Santa Cruz Biotechnology), and/or rabbit anti-human 

GAPDH (1:1000, Santa Cruz Biotechnology) 

antibodies at room temperature for 2 h, followed by  

4° C for 12 h. Subsequently, membranes were washed 
three times (10 min each) with PBS-T on a 

decolorizing shaking bed, followed by incubation with 

appropriate secondary antibodies in a horizontal 
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shaking bed at room temperature for 1 h. Membranes 

were analyzed according to instructions of an 

enhanced chemiluminescence kit (Bio-Rad, Hercules, 

CA, USA) [32].  

 

Real-time quantitative polymerase chain reaction 

(RT-qPCR) 

 

RNA extracts were treated with RNase-Free H2O. 

After discarding the culture medium from six-well 

plates, cells were washed twice with PBS at 4° C. 

Next, 150 µL of RNA was added to each well along 

with extract Buffer R-I from the kit, and the mixture 

was pipetted up and down 8–10 times. The mixture 

containing cell debris and lysate was transferred to a 

1.5-mL centrifuge tube. RNA was extracted according 

to the instructions of an RNA extraction kit 

(Invitrogen).  

 

After thermal denaturation of RNA at 65° C for 5 min, 

RNA was immediately cooled on ice. The reaction 

liquid (4 µL of 4× DN Master Mix, 1 µg of RNA 

template, 11 µL of Nuclease-free Water) was stirred 

gently and evenly, then incubated at 37° C for 5 min. 

Reverse transcription was carried out and reactions 

were prepared on ice as follows: 4 µg/L of 4× DN 

Master Mix, 1 µg of RNA template, 11 µg/L 

Nuclease-free Water, and 4 µg/L of 5× RT Master 

Mix II. Reactions were carried out at the following 

temperatures: 37° C for 15 min, 50° C for 5 min,  

98° C 5 min, and then maintained at 4° C. The DNA 

solution was stored at -20° C after the reaction. 

Subsequently, reactions containing 6.4 µL of 

sterilized distilled water, 6 pmol/0.6 µL of forward 

primer, 6 pmol/0.6 µL of reverse primer, 0.4 µL of 

50× ROX reference dye, and 2 µL of DNA solution 

were prepared on ice. PCR was carried out under the 

following conditions: pre-denaturation at 95° C 60 s, 

denaturation at 95° C 15 s, extension at 60° C 30 s, 

and final extension at 60° C for 60 s (a total of 40 

cycles). 

 

Primer sequences were as follows: LINC01592 forward 

5ʹ-AGG GCT CAG TAG ATT TGC CC-3ʹ, LINC01592 

reverse 5ʹ-CAC CTA ACG GAA ATG TCG GC-3ʹ, 

GAPDH forward 5ʹ-CGA GAT CCC TCC AAA ATC 

AA-3ʹ, and GAPDH reverse 5ʹ-TTC ACA CCC ATG 

ACG AAC AT-3ʹ [33]. 

 

Cell migration-scratch test 

 

hRPE cells (3 × 105 per well of six-well plate) were 

inoculated in DMEM/F12 medium containing 10% FBS 
at 37° C and 5% CO2 for 24 h. A zigzag scratch was made 

perpendicular to the plate orifice. Next, cells were washed 

twice with PBS. Wells were divided into LINC01592-KD 

+ TGF-β1, KD-NC + TGF-β1, LINC01592-OE + TGF-

β1, and OE-NC + TGF-β1 groups. The concentration of 

TGF-β1 was adjusted to 10 ng/mL and a constant volume 

of 2 mL was added in serum-free medium for 

LINC01592-KD, KD-NC, LINC01592-OE, and OE-NC 

groups. Samples were analyzed after 0, 24, and 48 h of 

incubation at 37° C with 5% CO2. 

 

CCK-8 analysis 

 

hRPE cells were divided into LINC01592-KD, 

LINC01592-KD + TGF-β1, KD- NC, KD-NC + TGF-

β1, LINC01592-OE, LINC01592-OE + TGF-β1, OE-

NC, and OE-NC + TGF-β1 groups. All procedures were 

performed according to the CCK-8 kit manufacturer’s 

instructions (Abcam, Cambridge, UK). hRPE cells were 

incubated with DMEM/F12 medium containing 10% 

FBS in 96-well plates at 37° C and 5% CO2 for 24 h. A 

mixture of 0.2 µg plasmid and 0.5 µg Lipofectamine 

2000 was added to each well. The control group was 

treated with100 µL of Opti-MEM serum-free culture 

medium. Serum-free medium and 10 ng/mL TGF-β1 

solution were added to wells of LINC01592-KD + TGF-

β1, KD-NC + TGF-β1, LINC01592-OE + TGF-β1, and 

OE-NC + TGF-β1 groups, which were incubated at  

37° C and 5% CO2 for 48 h. Next, 10 mL of CCK-8 

solution and 90 mL of complete culture medium were 

added to plate for incubation at 37° C and 5% CO2 for 2 

h. The absorbance at 450 nm was measured by enzyme 

labeling. 

 

Cell viability was calculated using the following 

formula: Cell viability (%) = [A (medication) - B 

(blank)]/[C (0 medication) - B (blank)] × 100, whereby 

A is the absorption of experimental group wells  

with cells, CCK-8 solution, and culture medium, 

following transfection with plasmid and intervention 

with or without TGF-β1; B is the absorption of  

wells with CCK-8 solution and culture medium, but 

without cells; and C is the absorption of control group 

wells with cells, CCK-8 solution, and culture medium, 

but without plasmid transfection or TGF-β1 

intervention of [34]. All experiments were repeated 

three times. 

 

Statistical analysis 

 

SPSS22.0 software was used for statistical analysis. The 

data were analyzed by one-way ANOVA and double-

tailed t-test. 
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