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ABSTRACT 
 

Extranodal diffuse large B cell lymphoma (EN DLBCL) often leads to poor outcomes, while the underlying 
mechanism remains unclear. As immune imbalance plays an important role in lymphoma pathogenesis, we 
hypothesized that immune genes might be involved in the development of EN DLBCL. Ninety-three 
differentially expressed immune genes (DEIGs) were identified from 1168 differentially expressed genes (DEGs) 
between tumor tissues of lymph node DLBCL (LN DLBCL) and EN DLBCL patients in TCGA database. Nine 
prognostic immune genes were further identified from DEIGs by univariate Cox regression analysis. A 
multivariate predictive model was established based on these prognostic immune genes. Patients were divided 
into high- and low-risk groups according to the median model-based risk score. Kaplan-Meier survival curves 
showed that patients in the high-risk group had a shorter survival time than those in the low-risk group (P < 
0.001). Ubiquitin-specific peptidase 18 (USP18) was further recognized as the key immune gene in EN DLBCL on 
the basis of coexpression of differentially expressed transcription factors (DETFs) and prognostic immune 
genes. USP18 exhibited low expression in EN DLBCL, which was regulated by LIM homeobox 2 (LHX2) (R = 0.497, 
P < 0.001, positive). The potential pathway downstream of USP18 was the MAPK pathway, identified by gene 
set variation analysis (GSVA), gene set enrichment analysis (GSEA) and Pearson correlation analysis (R = 0.294, 
P < 0.05, positive). The “ssGSEA” algorithm and Pearson correlation analysis identified that activated dendritic 
cells (aDCs) were the cell type mostly associated with USP18 (R = 0.694, P < 0.001, positive), indicating that 
USP18 participated in DC-modulating immune responses. The correlations among key biomarkers were 
supported by multiomics database validation. Indeed, the USP18 protein was confirmed to be expressed at 
lower levels in tumor tissues in patients with EN DLBCL than in those with LN DLBCL by immunohistochemistry. 
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INTRODUCTION 
 

As the predominant subtype of non-Hodgkin lymphoma 

(NHL) worldwide, DLBCL accounts for 30-40% of 

lymphoid malignancies [1, 2]. DLBCLs often originate 

from lymph nodes, while up to one-third of DLBCLs 

occur in extranodal sites [3]. Specific primary sites, 

such as the CNS and breast, are often associated with 

worse outcomes [4–6], indicating that these two groups 

of DLBCL have separate clinical and biological 

characteristics. However, the distinction between the 

development of EN and LN DLBCL has not yet been 

fully clarified. 

 

As important participants in immune responses, 

immune cells behave differently in the development of 

EN DLBCL and LN DLBCL. For example, the numbers 

of certain immune cells, such as regulatory T cells and 

macrophages, were significantly lower in primary CNS 

DLBCL than in systemic DLBCL [7]. Extranodal 

lymphomas also showed fewer tumor-associated 

CD45RO+ T cells and less conspicuous dendritic cell 

infiltration [8]. Abnormal function of immune genes 

might induce an imbalance in immune cells. Immune 

genes in cancer cells might promote the secretion of 

inflammatory factors such as chemokines by activating 

downstream pathways, recruiting immunosuppressive 

cells to repress immune killing and thus accelerating 

cancer progression [9]. DLBCL is a type of lymphoid 

malignancy that is caused by developmental blockage 

and uncontrolled proliferation of large lymphoid cells 

expressing B cell markers. Thus, the dysfunction of 

immune genes in B lymphoblasts might also lead to 

immune imbalance. However, how immune gene 

dysfunction contributes to immune imbalance in EN 

DLBCL remains elusive. 

 

An immune gene set is a collection of immune genes 

associated with an immune response event. Currently, 

the ssGSEA tool is applied to identify immune gene 

sets in gene expression profiles from tumor tissues 

[10], aiming to explore immune response events or 

immune cells involved in tumor development. In this 

study, we identified the key immune genes in EN 

DLBCL from differentially expressed immune genes 

(DEIGs) between EN and LN DLBCL and then 

explored the downstream KEGG pathways and immune 

gene sets with gene set variation analysis (GSVA), 

gene set enrichment analysis (GSEA) and ssGSEA 

tools. Finally, the differential expression of the key 

immune genes was confirmed in the tumor tissues of 

LN and EN DLBCL patients by immunohistochemistry 

(IHC). 

 

RESULTS 
 

Nine prognostic immune genes were identified in EN 

DLBCL 

 

The analysis process is shown in Figure 1. To determine 

the key biomarker related to EN DLBCL, we analyzed 

RNA-seq profiles and clinical data from 46 DLBCL 

patients consisting of 25 LN DLBCL and 21 EN 

DLBCL from TCGA database. The baseline 

information of the samples is presented in Table 1. As 

shown in Figure 2A, 2B, DEGs consisting of 583 up- 

and 585 down-regulated genes between these two 

groups were illustrated by heatmap and volcano plot. 

Then, GO and KEGG enrichment analyses were 

performed to uncover the potential mechanism 

distinguishing between the development of LN and EN 

DLBCL. As shown in Figure 2C, 2D, immune-related 

pathways such as “cytokine-cytokine receptor inter-

action” and “JAK-STAT signaling pathway” were 

included in the top ten terms, indicating that immune-

related mechanisms were involved in the developmental 

difference between LN and EN DLBCL. 

 

The DEIGs were obtained by intersecting DEGs and 

immune-related genes. Ninety-three DEIGs, including 

53 up- and 40 down-regulated DEIGs, are displayed in 

the heatmap in Figure 3A. Then, the DEIGs and 

prognostic characteristics were submitted to univariate 

Cox regression analysis to identify prognostic immune 

genes. As shown in Figure 3B, nine prognostic immune 

genes, including IFNA21, KIR2DL1, MUCL1, 

SFTPA2, MX1, USP18, CCL1, IGLV1-36, and GLP1R, 

were identified. 

 

These nine genes were then integrated into the 

multivariate regression analysis to build a prognostic 

predictive model. To avoid overfitting of the 

predictive model, Lasso regression was performed. 

The AUC of the ROC curve was 0.892, indicating that 

all nine genes were essential for the model (Figure 

3C). To further assess model fit, we also performed a 

Schoenfeld residuals test. As shown in Supplementary 

Figure 1A–1C, the slope of scaled residuals on time 

was zero, so the proportional hazards assumption in 

the Cox model conformed to the null hypothesis, 

In short, our study illustrated that the downregulation of USP18 was associated with reduced aDC number 
in the tumor tissues of EN DLBCL patients, indicating that targeting USP18 might serve as a promising 
therapy. 
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indicating high accuracy of the model. According to 

the model, the risk score of each sample was 

calculated, and samples were divided into high- and 

low-risk groups with a median value of 0.786. As 

shown in Figure 3D, the Kaplan-Meier survival curve 

showed that patients in the high-risk group had a lower 

survival rate than those in the low-risk group (P < 

0.001), further revealing the good effectiveness of the 

predictive model. 

 

Then, we generated a risk curve and scatterplot to show 

the risk score and survival status of each individual with 

DLBCL. As shown in Figure 3E, patients in the high-

risk group showed higher mortality than those in the 

low-risk group, which also indicated the high efficacy 

of the model. The expression of prognostic immune 

genes screened by Lasso regression is displayed by a 

heatmap in Figure 3F. 

 

USP18 was the key immune gene in EN DLBCL 

 

To further identify the key immune genes, the 

coexpression of DETFs and nine prognostic immune 

genes was performed. Five up- and two down-regulated 

DETFs were identified by intersecting cancer-

associated TFs and DEGs, as shown in the heatmap and 

volcano plot (Figure 4A, 4B). The correlation analysis 

identified 7 regulatory pairs between DETFs and 

prognostic immune genes, as shown in Table 2. As 

shown in Figure 4C–4E, only the expression of CCL1, 

IFNA21 and USP18 from nine prognostic immune 

genes was significantly different between EN and LN 

 

 
 

Figure 1. The flowchart of analysis process of this study. 
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Table 1. Baseline information of 46 patients with 
DLBCL from the TCGA database. 

Variables Total patients (N=46) 

Age, years  

  Mean ± SD  55.98 ± 26.02 

Gender  

  Female 25 (54.3%) 

  Male 21 (45.6%) 

Race  

  Asian 18 (39.1%) 

  Black or African American 1 (2.1%) 

  White 27 (58.6%) 

Stage  

  I-II 25 (54.2%) 

  III-IV 17 (36.8%) 

  Unknown 4 (8.6%) 

Original location  

  Extranodes 21 (45.6%) 

  Lymphnodes 25 (54.3%) 

Outcome  

  CR 34 (69.7%) 

  PR 2 (4.0%) 

  PD 4 (8.1%) 

  SD 2 (4.0%) 

  Unknown 7 (14.2%) 

Abbreviations: SD, Standard deviation; CR, Complete 
Remission; PR, Partial Remission; PD, Progressive 
Disease; SD, Stable Disease; DLBCL, Diffuse large B-cell 
lymphoma. 

 

DLBCL by the Wilcoxon test (P < 0.05). To identify the 

key immune genes related to EN DLBCL, DETF-

related and extranodal involvement (ENI)-related 

immune genes were intersected. As shown in Figure 4F, 

two immune genes were found in both groups. 

Combined with the results of the correlation between 

DETFs and prognostic immune genes shown in Table 2, 

the regulatory pair of LIM homeobox 2 (LHX2) and 

ubiquitin-specific peptidase 18 (USP18) was most 

significant (R = 0.497, P < 0.001, positive). 

Consequently, USP18, which is downregulated in EN 

DLBCL compared with LN DLBCL, was recognized as 

the key immune gene. 

 

To demonstrate the regulatory mechanism between 

LHX2 and USP18, chromatin immunoprecipitation 

followed by high-throughput DNA sequencing (ChIP-

Seq) data from the Cistrome database was evaluated. As 

shown in Supplementary Figure 2, in vitro ChIP-Seq 

data confirmed the transcriptional regulation patterns 

between LHX2 and USP18 in multiple cell lines. 

USP18 was positively associated with the MAPK 

pathway in EN DLBCL 

 

To discover the pathway downstream of USP18, GSVA 

was conducted, and 27 KEGG signaling pathways 

between EN and LN DLBCL were identified. The 

correlations between USP18 and these 27 KEGG 

pathways were constructed by Pearson correlation 

analysis, as shown in Figure 5A. To determine the 

critical signaling pathway, GSEA was also conducted. 

Three key KEGG pathways, i.e., the arrhythmogenic 

right ventricular cardiomyopathy (ARVC) pathway, 

dilated cardiomyopathy pathway, and MAPK pathway, 

overlapped between GSEA and GSVA (Figure 5B, 5C). 

Considering the relevance to the disease, we focused on 

the MAPK pathway in the following analysis. The 

GSEA of the MAPK pathway is shown in Figure 5D. 

The correlation between USP18 and the MAPK 

pathway was fitted by linear regression. As shown in 

Figure 5E, USP18 was positively correlated with the 

MAPK pathway (R = 0.294, P < 0.05, positive), 
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Figure 2. The DEGs between LN DLBCL and EN DLBCL. (A) The heatmap and (B) volcano plot of 1168 DEGs between 21 LN DLBCL and 

25 EN DLBCL; (C) The GO and (D) KEGG analyses of 1168 DEGs. Abbreviations: DEGs, Differentially expressed genes; DLBCL, Diffuse large  
B-cell lymphoma; GO, Go Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 3. The prognostic assessment model based on prognostic immune genes. (A) The heatmap of 93 DEIGs; (B) Forest plot to 
show nine prognostic immune genes; Red: high-risk genes; Blue: low-risk genes; (C) The ROC to assess the prognostic model (AUC = 0.892); 
(D) The Kaplan-Meier curve to identify the efficacy of risk score; (E) The high- and low-risk score group in scatterplot and risk plot; (F) The 
heatmap to illustrate each prognostic immune gene screened by Lasso regression. Abbreviations: DEIGs, Differentially expressed immune 
genes; ROC, Receiver operator characteristic curve; AUC, Area under the curve. 
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Figure 4. The DETFs between EN and LN DLBCL. (A) The heatmap and (B) volcano plot of 7 DETFs; (C) The box plot to show expression 

of CCL1 between EN and LN DLBCL; (D) The box plot to show expression of IFNA21 between EN and LN DLBCL; (E) The box plot to show 
expression of USP18 between EN and LN DLBCL; (F) The Venn plot to show overlap of ENI- and DETFs- related immune genes. Abbreviations: 
DETFs, Differentially expressed transcription factors; CCL1, C-C motif chemokine ligand 1; IFNA21, Interferon alpha-21; USP18, Ubiquitin 
specific peptidase 18; ENI, Extranodal involvement. 
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Table 2. The correlation relationship between DETFs and 
prognostic immune genes. 

TF Immune gene Correlation P-value Regulation 

LHX2 KIR2DL1 0.447811649 0.002038224 positive 

LHX2 MUCL1 0.439856042 0.002499669 positive 

LHX2 SFTPA2 0.428968478 0.003279537 positive 

LHX2 MX1 0.318302253 0.033095802 positive 

LHX2 USP18 0.496825418 0.000517446 positive 

LHX2 CCL1 0.452575151 0.001799553 positive 

LHX2 GLP1R 0.531881138 0.000169843 positive 

Abbreviations: DETFs, Differentially expressed transcription factors; 
KIR2DL1, Killer cell immunoglobulin like receptor, two Ig domains and 
long cytoplasmic tail 1; MUCL1, Mucin like 1; SFTPA2, Surfactant protein 
A2; MX1, MX dynamin like GTPase 1; USP18, Ubiquitin specific peptidase 
18; CCL1, C-C motif chemokine ligand 1; GLP1R, Glucagon like peptide 1 
receptor. 

 

suggesting that USP18 might modulate the MAPK 

pathway in the development of EN DLBCL. 

 

Downregulation of USP18 in EN DLBCL was 

correlated with the immune gene set of aDCs 

 

To determine the immune responses involved in USP18, 

ssGSEA was applied. Fifteen immune gene sets were 

identified in DLBCL patients from 29 immune gene sets 

that were overexpressed in the tumor microenvironment 

[11]. Pearson correlation analysis between USP18 and 

immune gene sets in DLBCL was constructed, as shown 

by the heatmap in Figure 6A. The top three immune 

gene sets correlated with USP18 were aDCs (R = 0.694, 

P < 0.001, positive), type I IFN response (R = 0.673, P 

< 0.001, positive) and regulatory T cells (Tregs) (R = 

0.551, P < 0.001, positive), as shown in Figure 6B–6D. 

Of these, the relationship between USP18 and aDCs 

was most significant, indicating that USP18 might 

affect aDCs in EN DLBCL. 

 

The online database further validated the association 

between key biomarkers in our analysis 

 

To minimize the bias of the results above, a 

multidimensional validation was performed. The 

expression of LHX2 and USP18 and key genes of 

potential pathways in primary DLBCL, normal nodal 

tissue, and various cell lines, and their association with 

prognosis, are summarized in Supplementary Table 1. 

 

First, LHX2 (median rank 695, P < 0.001), IL2RA 

(median rank 669, P < 0.001), IL21R (median rank 868, 

P < 0.001) and CHST7 (median rank 782, P < 0.001) 

were highly expressed in primary DLBCL compared to 

normal tissue, while IL5RA (median rank 3,659, P = 

0.128) showed no difference in any of the four 

comparisons (Supplementary Figure 3). The GEPIA 

results showed that the mRNA expression levels of 

USP18, IL2RA and IL21R were higher in tumor 

samples than in normal samples (Supplementary Figure 

6). At the cellular level, USP18, TLR7, IL21R, GCNT1 

and CHST7 were expressed in various tumor cell lines, 

while the expression of LHX2, IL2RA and IL5RA was 

low in CCLE (Supplementary Figure 4). The results 

from The Protein Atlas showed the protein expression 

of USP18, IL2RA, TLR7, IL21R and GCNT1 in normal 

lymph node tissue (Supplementary Figure 10). 

 

In addition, an analysis of the genomic and clinical 

profiles with cBioPortal suggested that LHX2, USP18 

and key genes in downstream pathways were prone to 

mutations, which were associated with poor prognosis 

(Supplementary Figure 5A–5D). The results also 

showed that USP18 was coexpressed with LHX2 (R = 

0.61, P < 0.001), IL5RA (R = 0.45, P < 0.001), IL21R 

(R = 0.56, P < 0.001), GCNT1 (R = 0.37, P = 0.024) 

and CHST7 (R = 0.43, P < 0.001) (Supplementary 

Figure 5E–5I). Moreover, analysis in the other 

databases also presented a negative association of key 

genes and prognosis (Supplementary Figures 7–9). 

Supplementary Figure 11 shows the PPI network of 

LHX2, USP18, IL2RA, IL5RA, IL21R, TLR7, GCNT1 

and CHST7 generated in String. 

 

USP18 expression and the number of aDCs were low 

in EN DLBCL tumor tissues 

 

To further verify the role of USP18, the expression of 

USP18 in tumor biopsies of patients with LN and EN 

DLBCL was detected by IHC staining. The clinical 

information of DLBCL patients is shown in Table 3. As 
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shown in Figure 7A, the USP18 protein was expressed 

at lower levels in EN DLBCL tissues than in LN 

DLBCL tissues. Compared to that in patients with LN 

DLBCL, the H-score of USP18 in the tumor tissues of 

EN DLBCL patients was significantly lower (2.125 vs 

5.625, P < 0.01) (Figure 7B). The IHC results further 

confirmed that the downregulation of USP18 expression 

was associated with EN DLBCL. 

 

To show the distribution of aDCs in DLBCL tissues, we 

also detected the expression of the aDC marker CD83 

on tumor biopsies of DLBCL patients. As shown in 

Figure 7C, the expression of CD83 was distributed 

throughout the tissues and was lower in EN DLBDL 

tissues than in LN DLBCL tissues. 

 

Furthermore, to identify whether aDCs express 

USP18, we performed immunofluorescence double 

staining of USP18 with CD83 in DLBCL tissues. As 

shown in Figure 7D, USP18 was coexpressed with 

CD83, which indicated that DCs also expressed 

USP18. 

 

 
 

Figure 5. The KEGG pathways downstream of USP18 in EN DLBCL. (A) The coexpression heatmap of USP18 and KEGG pathways 

selected by GSVA. (B) The Venn plot to show overlapped KEGG pathways in both GSVA and GSEA; (C) The GSEA of overlapped KEGG 
pathways; (D) The GSEA of MAPK pathway; (E) The correlation between USP18 and MAPK signaling pathway. Abbreviations: GSVA, Gene set 
variation analysis; GSEA, Gene set enrichment analysis; MAPK, Mitogen-activated protein kinase. 
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DISCUSSION 
 

EN DLBCL often leads to poorer prognosis than LN 

DLBCL. Immunophenotypic, genetic and survival 

characteristics are related to the specific primary sites of 

the disease [12]. However, the mechanism underlying 

the development of EN DLBCL remains elusive. In the 

current study, we concluded that downregulation of the 

immune gene USP18 led to reduced aDC number, 

contributing to the development of EN DLBCL 

(Supplementary Figure 12). 

 

In this study, we identified that LHX2 regulated the 

expression of USP18 in EN DLBCL by coexpression of 

DETFs and prognostic immune genes. With this 

approach, both key immune genes and their TFs were 

 

 
 

Figure 6. The immune gene sets related to USP18 in EN DLBCL. (A) The coexpression heatmap of USP18 with immune gene sets in 

DLBCL. (B) The linear regression to show the correlation between USP18 and aDCs; (C) The linear regression to show the correlation between 
USP18 and type I IFN response; (D) The linear regression to show the correlation between USP18 and Tregs; Abbreviations: aDCs, Activated 
dendritic cells; Tregs, Regulatory T cells. 



 

www.aging-us.com 14141 AGING 

Table 3. Baseline information of 16 patients with DLBCL. 

Variables LN DLBCL (N=8) EN DLBCL (N=8) 

Age, years   

  Mean ± SD  60±32 57.8±13.8 

Gender   

  Female 1 7 

  Male 7 1 

Stage   

  I-II 2 4 

  III-IV 6 4 

IPI score   

  Low risk 3 2 

  Intermediate/high risk 5 6 

 

identified from the DEGs between EN and LN DLBCL, 

which might be a helpful step toward finding critical 

biomarkers. LHX2 is reported to participate in 

oncogenesis and promote tumor growth in breast cancer 

and pancreatic ductal adenocarcinoma [13, 14], 

suggesting the role of LHX2 in carcinogenesis and 

cancer progression. LHX2 is widely known for its 

transcriptional role in multiple biological processes 

 

 
 

Figure 7. The expression of USP18 protein in EN and LN DLBCL patients. (A) The expression of USP18 protein in EN and LN DLBCL by 
IHC staining. (B) The H-score of USP18 in tumor tissues of EN and LN DLBCL. (C) The expression of CD83 protein in EN and LN DLBCL by IHC 
staining. (D) The immunofluorescence double labeled staining of USP18 and CD83 in DLBCL tissues. 
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[15–17]. However, no study has reported a direct 

regulatory relationship between LHX2 and USP18. In 

our study, ChIP-Seq data from the Cistrome database 

were analyzed, and the transcription regulation patterns 

between LHX2 and USP18 were confirmed. 

Furthermore, multidimensional validation in multiple 

online databases also confirmed the positive correlation 

relationship between LHX2 and USP18. Therefore, our 

results indicated that downregulation of LHX2 led to 

decreased expression of USP18 in EN DLBCL, 

although the details of their regulatory relationship need 

further experimental verification. 

 

Our study identified USP18 as the key immune gene 

among nine prognostic immune genes in EN DLBCL. 

Moreover, the USP18 protein was confirmed to be 

expressed at low levels in tumor tissues of EN DLBCL 

patients by IHC staining. The USP18 protein belongs to a 

large family of ubiquitin-specific proteases (UBPs). It 

cleaves ubiquitin-like molecules from their substrates and 

is the only known protease specifically deconjugating 

IFN-stimulated gene 15 (ISG15) [18, 19]. Reports have 

shown that USP18 is involved in chronic myeloid 

leukaemia and melanoma by regulating IFN-modulating 

signaling, indicating its role in cancer-associated immune 

responses [20, 21]. In addition, dysregulation of USP18 

expression leads to IFN-stimulated gene expression in 

Burkitt lymphoma [22]. In our study, USP18 was also 

correlated with the type I IFN response, which was 

consistent with previous studies. Therefore, USP18 might 

regulate type I IFN-associated immune responses in the 

development of EN DLBCL. 

 

In addition, we identified that the MAPK pathway was 

the pathway downstream of USP18 in EN DLBCL. The 

MAPK pathway participates in various cellular 

processes, such as cell proliferation, differentiation and 

apoptosis. It is aberrantly activated in numerous cancers 

and associated with tumor progression, metastasis and 

therapy resistance [23, 24]. Knockout of another 

member of the USP family, USP12, leads to impaired 

MAPK activity in cells, suggesting that the USP family 

might regulate the MAPK signaling pathway. 

Multidimensional validation in our study also showed 

that a key marker in the MAPK pathway, TLR7, is 

closely associated with both USP18 expression and 

prognosis, further indicating the possibility of USP18 

regulating the MAPK pathway in EN DLBCL. 

 

Furthermore, we found that USP18 was mostly associated 

with the immune gene set of aDCs. As antigen-presenting 

cells, DCs are activated by cytokines to unleash the 

immune responses of T cells, B cells and NK cells, 
playing important roles in lymphoma [25]. DCs are 

reduced in NHL, accompanied by defective DC migration 

and antigen presentation activity [26, 27]. In pathological 

tissues of cutaneous T cell lymphoma, a reduced number 

of DCs was correlated with poor survival [25]. In our 

study, USP18 was positively correlated with aDC number, 

indicating less aDC infiltration in the development of EN 

DLBCL. IHC staining also further confirmed a decreased 

number of aDCs in EN DLBCL tissues. Moreover, we 

identified that the immune gene sets of the type I IFN 

response and Tregs were correlated with USP18 in EN 

DLBCL. Interestingly, the most important function of 

DCs is to produce type I IFN [28]. DCs were also reported 

to promote the expansion and suppressive function of 

Tregs [29]. Therefore, our study indicated the 

involvement of USP18 in DC-modulating immune 

responses in EN DLBCL. 

 

Interestingly, tumor cell-derived proteins could affect 

the differentiation and function of DCs via the p38 

MAPK pathway [30]; thus, we speculated that USP18 

might affect DC-modulating immune responses through 

the MAPK pathway in the development of EN DLBCL. 

The PPI network generated in String also indicated their 

interaction. However, this speculation needs further 

biological experiments for validation. 

 

Of course, in silico studies have some limitations. The 

expression profiles and clinical information used here 

were from public databases that contain small numbers 

of samples, and the results were not experimentally 

confirmed. However, we performed multidimensional 

validation in several online databases, which lends 

strong support to the correlations between key 

biomarkers identified in our analysis. Additionally, we 

confirmed low expression of USP18 protein and fewer 

aDCs in the tumor tissues of EN DLBCL patients by 

IHC staining. Overall, we deduced that USP18 was the 

key immune gene regulated by LHX2 and affected 

aDCs and the MAPK pathway, contributing to the 

development of EN DLBCL. Further experiments will 

be carried out to confirm our findings. 
 

CONCLUSIONS 
 

Our results are the first to indicate the potential role of 

USP18 in EN DLBCL, acting via the MAPK pathway 

and aDCs. Our findings may provide more clinical 

information and promising molecular targets for 

pharmacotherapeutic interventions for EN DLBCL. 
 

MATERIALS AND METHODS 
 

Data preparation and analysis of DEGs 
 

Gene expression profiles and clinical characteristics of 
primary DLBCL samples were downloaded from 

TCGA (https://portal.gdc.cancer.gov/). HTseq-count 

and fragments per kilobase of exon per million reads 

https://portal.gdc.cancer.gov/
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mapped (FPKM) profiles of DLBCL samples, including 

25 LN DLBCL and 21 EN DLBCL samples, were 

assembled. Immune-related genes were collected from 

the ImmPort database (https://www.immport.org/) [31]. 

Cancer-related TFs and ChIP-Seq data were retrieved 

from the Cistrome Cancer database (http://cistrome. 

org/) [32]. To identify DEGs between LN and EN 

DLBCL, the edgeR method was applied [33]; P < 0.05 

and log (fold change) > 1 or < -1 were set as the cut-

offs. Volcano plots and heatmaps were generated to 

show DEGs. Finally, GO and KEGG enrichment 

analyses of DEGs were performed to reveal the 

potential mechanism of EN DLBCL. 

 

Identification of prognostic immune genes and 

construction of the predictive model 

 

Volcano plots and heatmaps were created to illustrate 

the expression of DEIGs, which were extracted from the 

previous DEG and immune-related gene lists. Then, 

univariate Cox regression analysis was applied to 

identify the prognostic immune genes based on DEIGs 

and clinical information, with cut-offs of P < 0.05 and 

log (fold change) > 1 or < -1. 

 

To assess the significance of each prognostic immune 

gene with a β value, which was the regression 

coefficient of integrated genes in the model, 

multivariate Cox regression analysis was carried out. 

The significant factors in the univariate Cox regression 

analysis were sent to the multivariate Cox regression 

analysis. The following formula was used to calculate 

the risk score: 
 

Risk Score   β1  DEIG1 β2  DEIG2  

β3  DEIG3 βn DEIGn

=  +  +

 + 
 

 

In the formula, “n” is the number of prognostic immune 

genes in the model. “β” is the regression coefficient of 

each integrated gene. “DEIGn” is the expression level of 

each integrated gene. Based on the model, patients were 

reordered and divided into high- and low-risk groups 

with the median risk score. To avoid model overfitting, 

Lasso regression and Schoenfeld residuals tests were 

performed. The AUC was applied to evaluate the 

accuracy of the model. Kaplan-Meier survival analysis 

was performed to compare patient survival between the 

two risk groups. Next, risk curve, survival state-related 

scatterplot and heatmap of prognostic immune genes 

were plotted based on the risk score. 
 

Identification of key immune genes 
 

Volcano plots and heatmaps were created to show the 

expression of DETFs, which were obtained by 

intersecting DEGs and cancer-related TFs. Then, to 

reveal the regulations and associations between 

DETFs and prognostic immune genes, Pearson 

correlation analysis was conducted, and only 

regulatory pairs with a correlation coefficient > 0.300 

and P < 0.001 were selected for the next analysis.  

The intersection of prognostic immune genes in the 

above regulatory pairs and differentially expressed 

between EN and LN DLBCL by the Wilcoxon test 

was performed, as shown in the Venn plot. The 

immune gene in the regulatory pair with the highest 

coefficient and differentially expressed between EN 

and LN DLBCL was recognized as the key immune 

gene. 

 
Validation of the regulatory mechanism between the 

key TF and immune gene 

 
The regulatory mechanism between the key TF and 

immune gene was verified by ChIP-Seq. Two 

algorithms (JASPAR [34] and ENCODE transcription 

factor targets) were utilized to illustrate the 

transcriptional regulation patterns between LHX2 and 

USP18 to further confirm our hypothesis. LHX2 ChIP-

Seq data from an in vitro cell line in the Cistrome 

database were downloaded to validate the 

transcriptional regulation patterns of USP18. 

 
Identification of potential downstream KEGG 

pathways and immune gene sets 

 
To determine the pathways downstream of key immune 

genes, GSVA was performed to identify differential 

KEGG pathways between EN and LN DLBCL. GSVA 

was implemented using the “gsva” package of R and 

under default settings except for “RNAseq = TRUE”. 

The GSVA algorithm accepted input from a gene 

expression matrix (log2-normalized RNA-seq count 

data) and a specific set of genes. The final output was a 

data matrix corresponding to each sample with each 

gene set. Pathways with P < 0.05 were selected and 

displayed. Pearson correlation analysis was used to 

uncover the relationship between the key immune genes 

and ENI-related signaling pathways, as shown by a 

coexpression heatmap. GSEA was also used to identify 

ENI-related signaling pathways [35]. Pathways with 

P < 0.05 was selected. The overlapping KEGG 

pathways from both GSEA and GSVA, illustrated by a 

Venn plot, were recognized as potential downstream 

pathways. The correlation between key immune genes 

and potential downstream pathways was fitted by linear 

regression. 

 
ssGSEA was applied to identify immune responses in 
DLBCL from 29 immune gene sets that were 

overexpressed in the tumor microenvironment [11, 36]. 

Pearson correlation analysis was performed to illustrate 

https://www.immport.org/
http://cistrome.org/
http://cistrome.org/
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the relationship between key immune gene and immune 

gene sets, as shown by the coexpression heatmap. 

Immune gene sets with P < 0.05 were selected and 

displayed. The top three correlations between key 

immune gene and immune gene sets were fitted by 

linear regression. 

 
Online database validation and construction of 

regulation network including key TF, immune gene, 

KEGG pathways, and immune gene sets 

 
For further annotation of identified TF, biomarker, 

immune gene sets, and signaling pathways, several 

online databases were used to detect gene and protein 

expression level. UALCAN [37], UCSC xena [38], 

Linkedomics [39], Gene Expression Profiling 

Interactive Analysis (GEPIA) [40], cBioportal [41] and 

Oncomine [42] were applied to validate the association 

between gene expression and clinical significance in 

tissue level in DLBCL. Furthermore, we used Cancer 

Cell Line Encyclopedia (CCLE) [43] to verify the gene 

expression in cellular level in DLBCL. Then the human 

protein altas [44] were applied to show the protein 

expression level in normal tissue. Finally, String [45] 

displayed the interaction network among LHX2, USP18 

and the downstream pathway. 

 
To show our results more clearly, a network based on 

the interaction among key TF, immune gene, KEGG 

pathways and immune gene sets was built by Cytoscape 

3.7.1 [46]. Finally, EN DLBCL- related hypothesis built 

on the bioinformatics was displayed by signaling 

diagram. 

 
Immunohistochemistry and immunofluorescence 

double staining 

 
IHC and immunofluorescence staining were conducted 

according to standard methods on EN and LN DLBCL 

biopsies. Briefly, 5-μm formalin-fixed and paraffin-

embedded (FFPE) sections were deparaffinized and 

hydrated. The sections were incubated overnight at 4° C 

in a humidified slide chamber with primary antibodies 

against USP18 (1:200, ab115618, Abcam) and CD83 

(1:50, ab205343, Abcam). Finally, to assess the 

percentage of positive tumor cells, all the IHC slides 

were viewed and given a histochemistry score  

(H-score). 

 

( 1)H score pi i− = +  

 
i represents the intensity score, and pi is the percentage 

of cells with that intensity. All immunofluorescence 

slides were observed with a confocal laser scanning 

microscope. 

Statistical analysis 
 

For descriptive statistics, the continuous variables in 

normal distribution were expressed as mean ± standard 

deviation (SD) while the median (range) was used in 

abnormal distribution. Classified variables were 

expressed by counts and percentages. Only two-tailed P 

< 0.05 was considered statistically significant. All 

statistical analysis was performed using R version 3.5.1 

(Institute for Statistics and Mathematics, Vienna, 

Austria; https://www.r-project.org). 
 

Ethical review committee statement 
 

This study was approved by the Ethics Committee of 

Shanghai Ninth People’s Hospital, Shanghai Jiao Tong 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The result of Schoenfeld residuals test. (A) The Schoenfeld residuals test of each key immune gene. (B) The 

residuals plot of each key immune gene. (C) The residuals plot of multivariable Cox regression analysis. 



 

www.aging-us.com 14149 AGING 

 
 

Supplementary Figure 2. The validation of regulatory mechanism between LHX2 and USP18 based on ChIP-Seq data from 
Cistrome database. 
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Supplementary Figure 3. Validation of LHX2, IL2RA, IL5RA, IL21R and CHST7 (A–E) on the transcriptional level in multiple cancer types and 

multiple studies from the Oncomine database. 
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Supplementary Figure 4. The expression levels of LHX2, USP18, IL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7 (A–H) in various hematologic 
malignancy cell lines in Cancer Cell Line Encyclopedia (CCLE). 
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Supplementary Figure 5. Integrative analysis of genomics and clinical profiles with the cBioPortal database. (A) Alteration 
frequency of LHX2, USP18, ILL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7; (B–D) Kaplan-Meier survival curves of LHX2, IL2RA and all genes; 
(E–I) The co-expression between USP18 and LHX2, IL5RA, IL21R, GCNT1 and CHST7. 
 

 
 

Supplementary Figure 6. Integrative analysis of transcriptional and clinical profiles using the GEPIA database. (A–C) The 
expression levels of USP18,IL2RA and IL21R between normal samples and DLBCL samples; (D–F) Kaplan-Meier survival curves of TLR7, GCNT1 
and CHST7; (G–M) The co-expression between USP18 and LHX2, IL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7. 
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Supplementary Figure 7. Evaluation prognostic value and relationship with USP18 of all the markers identified in the 
LinkedOmics database. (A–C) Kaplan-Meier survival curves of LHX2, TLR7 and GCNT1; (D–F) The correlation relationship between USP18 

and proteins in RPPA; (G–L) The co-expression between USP18 and LHX2, IL2RA, IL5RA, TLR7, IL21R and CHST7. 
 

 
 

Supplementary Figure 8. Kaplan–Meier survival curves of IL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7 (A–F) using the UALCAN database. 



 

www.aging-us.com 14154 AGING 

 
 

Supplementary Figure 9. Integrative analysis of genomics and clinical profiles with the UCSC xena database. (A) The expression 

level of LHX2, USP18, IL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7 in DLBCL; (B–E) Kaplan-Meier survival curves of LHX2, IL2RA, TLR7 and 
GCNT1. 
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Supplementary Figure 10. Validation of USP18, IL2RA, TLR7, IL21R and GCNT1 (A–E) in the normal lymph node tissue on a translation level 
in the Human Protein Atlas database. 
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Supplementary Figure 11. The protein-protein interaction (PPI) network of all the markers in string. 
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Supplementary Figure 12. The network of this scientific hypothesis including key TF, immune gene, downstream KEGG 
pathways and immune gene sets. (A) The protein-protein interaction network among key TF, immune gene, KEGG pathways and 

immune gene sets by Cytoscape; (B) The schematic diagram of this scientific hypothesis. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. External validation of key biomarkers via multiple online databases. 


