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ABSTRACT

Extranodal diffuse large B cell lymphoma (EN DLBCL) often leads to poor outcomes, while the underlying
mechanism remains unclear. As immune imbalance plays an important role in lymphoma pathogenesis, we
hypothesized that immune genes might be involved in the development of EN DLBCL. Ninety-three
differentially expressed immune genes (DEIGs) were identified from 1168 differentially expressed genes (DEGSs)
between tumor tissues of lymph node DLBCL (LN DLBCL) and EN DLBCL patients in TCGA database. Nine
prognostic immune genes were further identified from DEIGs by univariate Cox regression analysis. A
multivariate predictive model was established based on these prognostic immune genes. Patients were divided
into high- and low-risk groups according to the median model-based risk score. Kaplan-Meier survival curves
showed that patients in the high-risk group had a shorter survival time than those in the low-risk group (P <
0.001). Ubiquitin-specific peptidase 18 (USP18) was further recognized as the key immune gene in EN DLBCL on
the basis of coexpression of differentially expressed transcription factors (DETFs) and prognostic immune
genes. USP18 exhibited low expression in EN DLBCL, which was regulated by LIM homeobox 2 (LHX2) (R = 0.497,
P < 0.001, positive). The potential pathway downstream of USP18 was the MAPK pathway, identified by gene
set variation analysis (GSVA), gene set enrichment analysis (GSEA) and Pearson correlation analysis (R = 0.294,
P < 0.05, positive). The “ssGSEA” algorithm and Pearson correlation analysis identified that activated dendritic
cells (aDCs) were the cell type mostly associated with USP18 (R = 0.694, P < 0.001, positive), indicating that
USP18 participated in DC-modulating immune responses. The correlations among key biomarkers were
supported by multiomics database validation. Indeed, the USP18 protein was confirmed to be expressed at
lower levels in tumor tissues in patients with EN DLBCL than in those with LN DLBCL by immunohistochemistry.
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In short, our study illustrated that the downregulation of USP18 was associated with reduced aDC number
in the tumor tissues of EN DLBCL patients, indicating that targeting USP18 might serve as a promising

therapy.

INTRODUCTION

As the predominant subtype of non-Hodgkin lymphoma
(NHL) worldwide, DLBCL accounts for 30-40% of
lymphoid malignancies [1, 2]. DLBCLs often originate
from lymph nodes, while up to one-third of DLBCLs
occur in extranodal sites [3]. Specific primary sites,
such as the CNS and breast, are often associated with
worse outcomes [4-6], indicating that these two groups
of DLBCL have separate clinical and biological
characteristics. However, the distinction between the
development of EN and LN DLBCL has not yet been
fully clarified.

As important participants in immune responses,
immune cells behave differently in the development of
EN DLBCL and LN DLBCL. For example, the numbers
of certain immune cells, such as regulatory T cells and
macrophages, were significantly lower in primary CNS
DLBCL than in systemic DLBCL [7]. Extranodal
lymphomas also showed fewer tumor-associated
CD45RO* T cells and less conspicuous dendritic cell
infiltration [8]. Abnormal function of immune genes
might induce an imbalance in immune cells. Immune
genes in cancer cells might promote the secretion of
inflammatory factors such as chemokines by activating
downstream pathways, recruiting immunosuppressive
cells to repress immune killing and thus accelerating
cancer progression [9]. DLBCL is a type of lymphoid
malignancy that is caused by developmental blockage
and uncontrolled proliferation of large lymphoid cells
expressing B cell markers. Thus, the dysfunction of
immune genes in B lymphoblasts might also lead to
immune imbalance. However, how immune gene
dysfunction contributes to immune imbalance in EN
DLBCL remains elusive.

An immune gene set is a collection of immune genes
associated with an immune response event. Currently,
the ssGSEA tool is applied to identify immune gene
sets in gene expression profiles from tumor tissues
[10], aiming to explore immune response events or
immune cells involved in tumor development. In this
study, we identified the key immune genes in EN
DLBCL from differentially expressed immune genes
(DEIGs) between EN and LN DLBCL and then
explored the downstream KEGG pathways and immune
gene sets with gene set variation analysis (GSVA),
gene set enrichment analysis (GSEA) and ssGSEA
tools. Finally, the differential expression of the key

immune genes was confirmed in the tumor tissues of
LN and EN DLBCL patients by immunohistochemistry
(IHC).

RESULTS

Nine prognostic immune genes were identified in EN
DLBCL

The analysis process is shown in Figure 1. To determine
the key biomarker related to EN DLBCL, we analyzed
RNA-seq profiles and clinical data from 46 DLBCL
patients consisting of 25 LN DLBCL and 21 EN
DLBCL from TCGA database. The baseline
information of the samples is presented in Table 1. As
shown in Figure 2A, 2B, DEGs consisting of 583 up-
and 585 down-regulated genes between these two
groups were illustrated by heatmap and volcano plot.
Then, GO and KEGG enrichment analyses were
performed to uncover the potential mechanism
distinguishing between the development of LN and EN
DLBCL. As shown in Figure 2C, 2D, immune-related
pathways such as “cytokine-cytokine receptor inter-
action” and “JAK-STAT signaling pathway” were
included in the top ten terms, indicating that immune-
related mechanisms were involved in the developmental
difference between LN and EN DLBCL.

The DEIGs were obtained by intersecting DEGs and
immune-related genes. Ninety-three DEIGs, including
53 up- and 40 down-regulated DEIGs, are displayed in
the heatmap in Figure 3A. Then, the DEIGs and
prognostic characteristics were submitted to univariate
Cox regression analysis to identify prognostic immune
genes. As shown in Figure 3B, nine prognostic immune
genes, including IFNA21, KIR2DL1, MUCL1],
SFTPA2, MX1, USP18, CCL1, IGLV1-36, and GLP1R,
were identified.

These nine genes were then integrated into the
multivariate regression analysis to build a prognostic
predictive model. To avoid overfitting of the
predictive model, Lasso regression was performed.
The AUC of the ROC curve was 0.892, indicating that
all nine genes were essential for the model (Figure
3C). To further assess model fit, we also performed a
Schoenfeld residuals test. As shown in Supplementary
Figure 1A-1C, the slope of scaled residuals on time
was zero, so the proportional hazards assumption in
the Cox model conformed to the null hypothesis,
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indicating high accuracy of the model. According to
the model, the risk score of each sample was
calculated, and samples were divided into high- and
low-risk groups with a median value of 0.786. As
shown in Figure 3D, the Kaplan-Meier survival curve
showed that patients in the high-risk group had a lower
survival rate than those in the low-risk group (P <
0.001), further revealing the good effectiveness of the
predictive model.

Then, we generated a risk curve and scatterplot to show
the risk score and survival status of each individual with
DLBCL. As shown in Figure 3E, patients in the high-
risk group showed higher mortality than those in the
low-risk group, which also indicated the high efficacy
of the model. The expression of prognostic immune

genes screened by Lasso regression is displayed by a
heatmap in Figure 3F.

USP18 was the key immune gene in EN DLBCL

To further identify the key immune genes, the
coexpression of DETFs and nine prognostic immune
genes was performed. Five up- and two down-regulated
DETFs were identified by intersecting cancer-
associated TFs and DEGs, as shown in the heatmap and
volcano plot (Figure 4A, 4B). The correlation analysis
identified 7 regulatory pairs between DETFs and
prognostic immune genes, as shown in Table 2. As
shown in Figure 4C—4E, only the expression of CCL1,
IFNA21 and USP18 from nine prognostic immune
genes was significantly different between EN and LN
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Figure 1. The flowchart of analysis process of this study.
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Table 1. Baseline information of 46 patients with
DLBCL from the TCGA database.

Variables

Total patients (N=46)

Age, years
Mean £ SD

Gender
Female
Male

Race
Asian

Black or African American

White
Stage
I-11
Hi-1v
Unknown
Original location
Extranodes
Lymphnodes
Outcome
CR
PR
PD
SD
Unknown

55.98 + 26.02

25 (54.3%)
21 (45.6%)

18 (39.1%)
1(2.1%)
27 (58.6%)

25 (54.2%)
17 (36.8%)
4 (8.6%)

21 (45.6%)
25 (54.3%)

34 (69.7%)
2 (4.0%)
4 (8.1%)
2 (4.0%)
7 (14.2%)

Abbreviations: SD, Standard deviation; CR, Complete

Remission; PR, Partial

Remission; PD, Progressive

Disease; SD, Stable Disease; DLBCL, Diffuse large B-cell

lymphoma.

DLBCL by the Wilcoxon test (P < 0.05). To identify the
key immune genes related to EN DLBCL, DETF-
related and extranodal involvement (ENI)-related
immune genes were intersected. As shown in Figure 4F,
two immune genes were found in both groups.
Combined with the results of the correlation between
DETFs and prognostic immune genes shown in Table 2,
the regulatory pair of LIM homeobox 2 (LHX2) and
ubiquitin-specific peptidase 18 (USP18) was most
significant (R = 0.497, P < 0.001, positive).
Consequently, USP18, which is downregulated in EN
DLBCL compared with LN DLBCL, was recognized as
the key immune gene.

To demonstrate the regulatory mechanism between
LHX2 and USP18, chromatin immunoprecipitation
followed by high-throughput DNA sequencing (ChIP-
Seq) data from the Cistrome database was evaluated. As
shown in Supplementary Figure 2, in vitro ChIP-Seq
data confirmed the transcriptional regulation patterns
between LHX2 and USP18 in multiple cell lines.

USP18 was positively associated with the MAPK
pathway in EN DLBCL

To discover the pathway downstream of USP18, GSVA
was conducted, and 27 KEGG signaling pathways
between EN and LN DLBCL were identified. The
correlations between USP18 and these 27 KEGG
pathways were constructed by Pearson correlation
analysis, as shown in Figure 5A. To determine the
critical signaling pathway, GSEA was also conducted.
Three key KEGG pathways, i.e., the arrhythmogenic
right ventricular cardiomyopathy (ARVC) pathway,
dilated cardiomyopathy pathway, and MAPK pathway,
overlapped between GSEA and GSVA (Figure 5B, 5C).
Considering the relevance to the disease, we focused on
the MAPK pathway in the following analysis. The
GSEA of the MAPK pathway is shown in Figure 5D.
The correlation between USP18 and the MAPK
pathway was fitted by linear regression. As shown in
Figure 5E, USP18 was positively correlated with the
MAPK pathway (R = 0.294, P < 0.05, positive),
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Figure 3. The prognostic assessment model based on prognostic immune genes. (A) The heatmap of 93 DEIGs; (B) Forest plot to
show nine prognostic immune genes; Red: high-risk genes; Blue: low-risk genes; (C) The ROC to assess the prognostic model (AUC = 0.892);
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Table 2. The correlation relationship between DETFs and
prognostic immune genes.

TF Immune gene  Correlation P-value Regulation
LHX2 KIR2DL1 0.447811649  0.002038224 positive
LHX2 MUCL1 0.439856042  0.002499669 positive
LHX2 SFTPA2 0.428968478  0.003279537 positive
LHX2 MX1 0.318302253  0.033095802 positive
LHX2 USP18 0.496825418  0.000517446 positive
LHX2 CCL1 0.452575151  0.001799553 positive
LHX2 GLP1R 0.531881138  0.000169843 positive

Abbreviations: DETFs, Differentially expressed transcription factors;
KIR2DL1, Killer cell immunoglobulin like receptor, two Ig domains and
long cytoplasmic tail 1; MUCL1, Mucin like 1; SFTPA2, Surfactant protein
A2; MX1, MX dynamin like GTPase 1; USP18, Ubiquitin specific peptidase
18; CCL1, C-C motif chemokine ligand 1; GLP1R, Glucagon like peptide 1

receptor.

suggesting that USP18 might modulate the MAPK
pathway in the development of EN DLBCL.

Downregulation of USP18 in EN DLBCL was
correlated with the immune gene set of aDCs

To determine the immune responses involved in USP18,
SSGSEA was applied. Fifteen immune gene sets were
identified in DLBCL patients from 29 immune gene sets
that were overexpressed in the tumor microenvironment
[11]. Pearson correlation analysis between USP18 and
immune gene sets in DLBCL was constructed, as shown
by the heatmap in Figure 6A. The top three immune
gene sets correlated with USP18 were aDCs (R = 0.694,
P < 0.001, positive), type I IFN response (R = 0.673, P
< 0.001, positive) and regulatory T cells (Tregs) (R =
0.551, P < 0.001, positive), as shown in Figure 6B—6D.
Of these, the relationship between USP18 and aDCs
was most significant, indicating that USP18 might
affect aDCs in EN DLBCL.

The online database further validated the association
between key biomarkers in our analysis

To minimize the bias of the results above, a
multidimensional validation was performed. The
expression of LHX2 and USP18 and key genes of
potential pathways in primary DLBCL, normal nodal
tissue, and various cell lines, and their association with
prognosis, are summarized in Supplementary Table 1.

First, LHX2 (median rank 695, P < 0.001), IL2RA
(median rank 669, P < 0.001), IL21R (median rank 868,
P < 0.001) and CHST7 (median rank 782, P < 0.001)
were highly expressed in primary DLBCL compared to
normal tissue, while IL5RA (median rank 3,659, P =

0.128) showed no difference in any of the four
comparisons (Supplementary Figure 3). The GEPIA
results showed that the mRNA expression levels of
USP18, IL2RA and IL21R were higher in tumor
samples than in normal samples (Supplementary Figure
6). At the cellular level, USP18, TLR7, IL21R, GCNT1
and CHST7 were expressed in various tumor cell lines,
while the expression of LHX2, IL2RA and IL5RA was
low in CCLE (Supplementary Figure 4). The results
from The Protein Atlas showed the protein expression
of USP18, IL2RA, TLR7, IL21R and GCNT1 in normal
lymph node tissue (Supplementary Figure 10).

In addition, an analysis of the genomic and clinical
profiles with cBioPortal suggested that LHX2, USP18
and key genes in downstream pathways were prone to
mutations, which were associated with poor prognosis
(Supplementary Figure 5A-5D). The results also
showed that USP18 was coexpressed with LHX2 (R =
0.61, P < 0.001), IL5RA (R = 0.45, P < 0.001), IL21R
(R =0.56, P <0.001), GCNT1 (R = 0.37, P = 0.024)
and CHST7 (R = 0.43, P < 0.001) (Supplementary
Figure 5E-5I). Moreover, analysis in the other
databases also presented a negative association of key
genes and prognosis (Supplementary Figures 7-9).
Supplementary Figure 11 shows the PPl network of
LHX2, USP18, IL2RA, IL5RA, IL21R, TLR7, GCNT1
and CHST7 generated in String.

USP18 expression and the number of aDCs were low
in EN DLBCL tumor tissues

To further verify the role of USP18, the expression of
USP18 in tumor biopsies of patients with LN and EN
DLBCL was detected by IHC staining. The clinical
information of DLBCL patients is shown in Table 3. As
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shown in Figure 7A, the USP18 protein was expressed
at lower levels in EN DLBCL tissues than in LN
DLBCL tissues. Compared to that in patients with LN
DLBCL, the H-score of USP18 in the tumor tissues of
EN DLBCL patients was significantly lower (2.125 vs
5.625, P < 0.01) (Figure 7B). The IHC results further
confirmed that the downregulation of USP18 expression
was associated with EN DLBCL.

Furthermore, to

identify whether
USP18, we performed immunofluorescence double
staining of USP18 with CD83 in DLBCL tissues. As

on tumor biopsies of DLBCL patients. As shown in
Figure 7C, the expression of CD83 was distributed
throughout the tissues and was lower in EN DLBDL
tissues than in LN DLBCL tissues.

aDCs express

shown in Figure 7D, USP18 was coexpressed with

To show the distribution of aDCs in DLBCL tissues, we

also detected the expression of the aDC marker CD83 USP18.
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Figure 5. The KEGG pathways downstream of USP18 in EN DLBCL. (A) The coexpression heatmap of USP18 and KEGG pathways

selected by GSVA. (B) The Venn plot to show overlapped KEGG pathways in both GSVA and GSEA;

(C) The GSEA of overlapped KEGG

pathways; (D) The GSEA of MAPK pathway; (E) The correlation between USP18 and MAPK signaling pathway. Abbreviations: GSVA, Gene set

variation analysis; GSEA, Gene set enrichment analysis; MAPK, Mitogen-activated protein kinase.
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DISCUSSION immune gene USP18 led to reduced aDC number,
contributing to the development of EN DLBCL

EN DLBCL often leads to poorer prognosis than LN (Supplementary Figure 12).
DLBCL. Immunophenotypic, genetic and survival
characteristics are related to the specific primary sites of In this study, we identified that LHX2 regulated the
the disease [12]. However, the mechanism underlying expression of USP18 in EN DLBCL by coexpression of
the development of EN DLBCL remains elusive. In the DETFs and prognostic immune genes. With this
current study, we concluded that downregulation of the approach, both key immune genes and their TFs were
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Figure 6. The immune gene sets related to USP18 in EN DLBCL. (A) The coexpression heatmap of USP18 with immune gene sets in
DLBCL. (B) The linear regression to show the correlation between USP18 and aDCs; (C) The linear regression to show the correlation between
USP18 and type | IFN response; (D) The linear regression to show the correlation between USP18 and Tregs; Abbreviations: aDCs, Activated
dendritic cells; Tregs, Regulatory T cells.
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Table 3. Baseline information of 16 patients with DLBCL.

Variables LN DLBCL (N=8) EN DLBCL (N=8)
Age, years
Mean = SD 60+32 57.8+13.8
Gender
Female 1 7
Male 7 1
Stage
I-11 2 4
H-1v 6 4
IPI score
Low risk 3 2
Intermediate/high risk 5 6
identified from the DEGs between EN and LN DLBCL, and pancreatic ductal adenocarcinoma [13, 14],
which might be a helpful step toward finding critical suggesting the role of LHX2 in carcinogenesis and
biomarkers. LHX2 is reported to participate in cancer progression. LHX2 is widely known for its
oncogenesis and promote tumor growth in breast cancer transcriptional role in multiple biological processes
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Figure 7. The expression of USP18 protein in EN and LN DLBCL patients. (A) The expression of USP18 protein in EN and LN DLBCL by
IHC staining. (B) The H-score of USP18 in tumor tissues of EN and LN DLBCL. (C) The expression of CD83 protein in EN and LN DLBCL by IHC
staining. (D) The immunofluorescence double labeled staining of USP18 and CD83 in DLBCL tissues.
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[15-17]. However, no study has reported a direct
regulatory relationship between LHX2 and USP18. In
our study, ChIP-Seq data from the Cistrome database
were analyzed, and the transcription regulation patterns
between LHX2 and USP18 were confirmed.
Furthermore, multidimensional validation in multiple
online databases also confirmed the positive correlation
relationship between LHX2 and USP18. Therefore, our
results indicated that downregulation of LHX2 led to
decreased expression of USP18 in EN DLBCL,
although the details of their regulatory relationship need
further experimental verification.

Our study identified USP18 as the key immune gene
among nine prognostic immune genes in EN DLBCL.
Moreover, the USP18 protein was confirmed to be
expressed at low levels in tumor tissues of EN DLBCL
patients by IHC staining. The USP18 protein belongs to a
large family of ubiquitin-specific proteases (UBPs). It
cleaves ubiquitin-like molecules from their substrates and
is the only known protease specifically deconjugating
IFN-stimulated gene 15 (ISG15) [18, 19]. Reports have
shown that USP18 is involved in chronic myeloid
leukaemia and melanoma by regulating IFN-modulating
signaling, indicating its role in cancer-associated immune
responses [20, 21]. In addition, dysregulation of USP18
expression leads to IFN-stimulated gene expression in
Burkitt lymphoma [22]. In our study, USP18 was also
correlated with the type | IFN response, which was
consistent with previous studies. Therefore, USP18 might
regulate type | IFN-associated immune responses in the
development of EN DLBCL.

In addition, we identified that the MAPK pathway was
the pathway downstream of USP18 in EN DLBCL. The
MAPK pathway participates in various cellular
processes, such as cell proliferation, differentiation and
apoptosis. It is aberrantly activated in numerous cancers
and associated with tumor progression, metastasis and
therapy resistance [23, 24]. Knockout of another
member of the USP family, USP12, leads to impaired
MAPK activity in cells, suggesting that the USP family
might regulate the MAPK signaling pathway.
Multidimensional validation in our study also showed
that a key marker in the MAPK pathway, TLR7, is
closely associated with both USP18 expression and
prognosis, further indicating the possibility of USP18
regulating the MAPK pathway in EN DLBCL.

Furthermore, we found that USP18 was mostly associated
with the immune gene set of aDCs. As antigen-presenting
cells, DCs are activated by cytokines to unleash the
immune responses of T cells, B cells and NK cells,
playing important roles in lymphoma [25]. DCs are
reduced in NHL, accompanied by defective DC migration
and antigen presentation activity [26, 27]. In pathological

tissues of cutaneous T cell lymphoma, a reduced number
of DCs was correlated with poor survival [25]. In our
study, USP18 was positively correlated with aDC number,
indicating less aDC infiltration in the development of EN
DLBCL. IHC staining also further confirmed a decreased
number of aDCs in EN DLBCL tissues. Moreover, we
identified that the immune gene sets of the type | IFN
response and Tregs were correlated with USP18 in EN
DLBCL. Interestingly, the most important function of
DCs is to produce type | IFN [28]. DCs were also reported
to promote the expansion and suppressive function of
Tregs [29]. Therefore, our study indicated the
involvement of USP18 in DC-modulating immune
responses in EN DLBCL.

Interestingly, tumor cell-derived proteins could affect
the differentiation and function of DCs via the p38
MAPK pathway [30]; thus, we speculated that USP18
might affect DC-modulating immune responses through
the MAPK pathway in the development of EN DLBCL.
The PPI network generated in String also indicated their
interaction. However, this speculation needs further
biological experiments for validation.

Of course, in silico studies have some limitations. The
expression profiles and clinical information used here
were from public databases that contain small numbers
of samples, and the results were not experimentally
confirmed. However, we performed multidimensional
validation in several online databases, which lends
strong support to the correlations between key
biomarkers identified in our analysis. Additionally, we
confirmed low expression of USP18 protein and fewer
aDCs in the tumor tissues of EN DLBCL patients by
IHC staining. Overall, we deduced that USP18 was the
key immune gene regulated by LHX2 and affected
aDCs and the MAPK pathway, contributing to the
development of EN DLBCL. Further experiments will
be carried out to confirm our findings.

CONCLUSIONS

Our results are the first to indicate the potential role of
USP18 in EN DLBCL, acting via the MAPK pathway
and aDCs. Our findings may provide more clinical
information and promising molecular targets for
pharmacotherapeutic interventions for EN DLBCL.

MATERIALS AND METHODS

Data preparation and analysis of DEGs

Gene expression profiles and clinical characteristics of
primary DLBCL samples were downloaded from

TCGA (https://portal.gdc.cancer.gov/). HTseq-count
and fragments per kilobase of exon per million reads
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mapped (FPKM) profiles of DLBCL samples, including
25 LN DLBCL and 21 EN DLBCL samples, were
assembled. Immune-related genes were collected from
the ImmPort database (https://www.immport.org/) [31].
Cancer-related TFs and ChlP-Seq data were retrieved
from the Cistrome Cancer database (http://cistrome.
org/) [32]. To identify DEGs between LN and EN
DLBCL, the edgeR method was applied [33]; P < 0.05
and log (fold change) > 1 or < -1 were set as the cut-
offs. Volcano plots and heatmaps were generated to
show DEGs. Finally, GO and KEGG enrichment
analyses of DEGs were performed to reveal the
potential mechanism of EN DLBCL.

Identification of prognostic immune genes and
construction of the predictive model

Volcano plots and heatmaps were created to illustrate
the expression of DEIGs, which were extracted from the
previous DEG and immune-related gene lists. Then,
univariate Cox regression analysis was applied to
identify the prognostic immune genes based on DEIGs
and clinical information, with cut-offs of P < 0.05 and
log (fold change) > 1 or < -1.

To assess the significance of each prognostic immune
gene with a B value, which was the regression
coefficient of integrated genes in the model,
multivariate Cox regression analysis was carried out.
The significant factors in the univariate Cox regression
analysis were sent to the multivariate Cox regression
analysis. The following formula was used to calculate
the risk score:

Risk Score = Bl1 x DEIG1 + 2 x DEIG2 +
B3 x DEIG3...... + Bn x DEIGn

[73 1)

In the formula, “n” is the number of prognostic immune
genes in the model. “p” is the regression coefficient of
each integrated gene. “DEIGy” is the expression level of
each integrated gene. Based on the model, patients were
reordered and divided into high- and low-risk groups
with the median risk score. To avoid model overfitting,
Lasso regression and Schoenfeld residuals tests were
performed. The AUC was applied to evaluate the
accuracy of the model. Kaplan-Meier survival analysis
was performed to compare patient survival between the
two risk groups. Next, risk curve, survival state-related
scatterplot and heatmap of prognostic immune genes
were plotted based on the risk score.

Identification of key immune genes
Volcano plots and heatmaps were created to show the

expression of DETFs, which were obtained by
intersecting DEGs and cancer-related TFs. Then, to

reveal the regulations and associations between
DETFs and prognostic immune genes, Pearson
correlation analysis was conducted, and only
regulatory pairs with a correlation coefficient > 0.300
and P < 0.001 were selected for the next analysis.
The intersection of prognostic immune genes in the
above regulatory pairs and differentially expressed
between EN and LN DLBCL by the Wilcoxon test
was performed, as shown in the Venn plot. The
immune gene in the regulatory pair with the highest
coefficient and differentially expressed between EN
and LN DLBCL was recognized as the key immune
gene.

Validation of the regulatory mechanism between the
key TF and immune gene

The regulatory mechanism between the key TF and
immune gene was verified by ChIP-Seq. Two
algorithms (JASPAR [34] and ENCODE transcription
factor targets) were utilized to illustrate the
transcriptional regulation patterns between LHX2 and
USP18 to further confirm our hypothesis. LHX2 ChIP-
Seq data from an in vitro cell line in the Cistrome
database were downloaded to validate the
transcriptional regulation patterns of USP18.

Identification of potential downstream KEGG
pathways and immune gene sets

To determine the pathways downstream of key immune
genes, GSVA was performed to identify differential
KEGG pathways between EN and LN DLBCL. GSVA
was implemented using the “gsva” package of R and
under default settings except for “RNAseq=TRUE”.
The GSVA algorithm accepted input from a gene
expression matrix (log2-normalized RNA-seq count
data) and a specific set of genes. The final output was a
data matrix corresponding to each sample with each
gene set. Pathways with P <0.05 were selected and
displayed. Pearson correlation analysis was used to
uncover the relationship between the key immune genes
and ENlI-related signaling pathways, as shown by a
coexpression heatmap. GSEA was also used to identify
ENI-related signaling pathways [35]. Pathways with
P<0.05 was selected. The overlapping KEGG
pathways from both GSEA and GSVA, illustrated by a
Venn plot, were recognized as potential downstream
pathways. The correlation between key immune genes
and potential downstream pathways was fitted by linear
regression.

SSGSEA was applied to identify immune responses in
DLBCL from 29 immune gene sets that were
overexpressed in the tumor microenvironment [11, 36].
Pearson correlation analysis was performed to illustrate
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the relationship between key immune gene and immune
gene sets, as shown by the coexpression heatmap.
Immune gene sets with P < 0.05 were selected and
displayed. The top three correlations between key
immune gene and immune gene sets were fitted by
linear regression.

Online database validation and construction of
regulation network including key TF, immune gene,
KEGG pathways, and immune gene sets

For further annotation of identified TF, biomarker,
immune gene sets, and signaling pathways, several
online databases were used to detect gene and protein
expression level. UALCAN [37], UCSC xena [38],
Linkedomics [39], Gene Expression Profiling
Interactive Analysis (GEPIA) [40], cBioportal [41] and
Oncomine [42] were applied to validate the association
between gene expression and clinical significance in
tissue level in DLBCL. Furthermore, we used Cancer
Cell Line Encyclopedia (CCLE) [43] to verify the gene
expression in cellular level in DLBCL. Then the human
protein altas [44] were applied to show the protein
expression level in normal tissue. Finally, String [45]
displayed the interaction network among LHX2, USP18
and the downstream pathway.

To show our results more clearly, a network based on
the interaction among key TF, immune gene, KEGG
pathways and immune gene sets was built by Cytoscape
3.7.1 [46]. Finally, EN DLBCL- related hypothesis built
on the bioinformatics was displayed by signaling
diagram.

Immunohistochemistry and immunofluorescence
double staining

IHC and immunofluorescence staining were conducted
according to standard methods on EN and LN DLBCL
biopsies. Briefly, 5-um formalin-fixed and paraffin-
embedded (FFPE) sections were deparaffinized and
hydrated. The sections were incubated overnight at 4° C
in a humidified slide chamber with primary antibodies
against USP18 (1:200, ab115618, Abcam) and CD83
(1:50, ab205343, Abcam). Finally, to assess the
percentage of positive tumor cells, all the IHC slides
were viewed and given a histochemistry score
(H-score).

H - score="" pi(i+1)

i represents the intensity score, and pi is the percentage
of cells with that intensity. All immunofluorescence
slides were observed with a confocal laser scanning
microscope.

Statistical analysis

For descriptive statistics, the continuous variables in
normal distribution were expressed as mean + standard
deviation (SD) while the median (range) was used in
abnormal distribution. Classified variables were
expressed by counts and percentages. Only two-tailed P
< 0.05 was considered statistically significant. All
statistical analysis was performed using R version 3.5.1
(Institute for Statistics and Mathematics, Vienna,
Austria; https://www.r-project.orq).

Ethical review committee statement

This study was approved by the Ethics Committee of
Shanghai Ninth People’s Hospital, Shanghai Jiao Tong
University School of Medicine.
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Supplementary Figure 1. The result of Schoenfeld residuals test. (A) The Schoenfeld residuals test of each key immune gene. (B) The
residuals plot of each key immune gene. (C) The residuals plot of multivariable Cox regression analysis.
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Supplementary Figure 2. The validation of regulatory mechanism between LHX2 and USP18 based on ChIP-Seq data from
Cistrome database.
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Supplementary Figure 3. Validation of LHX2, IL2RA, IL5RA, IL21R and CHST7 (A—E) on the transcriptional level in multiple cancer types and
multiple studies from the Oncomine database.
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Supplementary Figure 4. The expression levels of LHX2, USP18, IL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7 (A—H) in various hematologic

malignancy cell lines in Cancer Cell Line Encyclopedia (CCLE).
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Supplementary Figure 5. Integrative analysis of genomics and clinical profiles with the cBioPortal database. (A) Alteration
frequency of LHX2, USP18, ILL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7; (B—-D) Kaplan-Meier survival curves of LHX2, IL2RA and all genes;
(E-I) The co-expression between USP18 and LHX2, IL5RA, IL21R, GCNT1 and CHST7.
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Supplementary Figure 6. Integrative analysis of transcriptional and clinical profiles using the GEPIA database. (A—C) The
expression levels of USP18,IL2RA and IL21R between normal samples and DLBCL samples; (D—F) Kaplan-Meier survival curves of TLR7, GCNT1
and CHST7; (G—M) The co-expression between USP18 and LHX2, IL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7.
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7. Evaluation prognostic value and relationship with USP18 of all the markers identified in the
(A—C) Kaplan-Meier survival curves of LHX2, TLR7 and GCNT1; (D—F) The correlation relationship between USP18
and proteins in RPPA; (G-L) The co-expression between USP18 and LHX2, IL2RA, IL5RA, TLR7, IL21R and CHST7.
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Supplementary Figure 8. Kaplan—Meier survival curves of IL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7 (A—F) using the UALCAN database.
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Supplementary Figure 9. Integrative analysis of genomics and clinical profiles with the UCSC xena database. (A) The expression
level of LHX2, USP18, IL2RA, IL5RA, TLR7, IL21R, GCNT1 and CHST7 in DLBCL; (B—E) Kaplan-Meier survival curves of LHX2, IL2RA, TLR7 and
GCNT1.
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Supplementary Figure 10. Validation of USP18, IL2RA, TLR7, IL21R and GCNT1 (A-E) in the normal lymph node tissue on a translation level
in the Human Protein Atlas database.
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Supplementary Figure 11. The protein-protein interaction (PPI) network of all the markers in string.
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Supplementary Figure 12. The network of this scientific hypothesis including key TF, immune gene, downstream KEGG
pathways and immune gene sets. (A) The protein-protein interaction network among key TF, immune gene, KEGG pathways and
immune gene sets by Cytoscape; (B) The schematic diagram of this scientific hypothesis.
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Supplementary Table
Please browse Full Text version to see the data of Supplementary Table 1.

Supplementary Table 1. External validation of key biomarkers via multiple online databases.
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