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INTRODUCTION 
 

As assisted reproduction technologies (ART) has 

advanced, the improvement of the clinical pregnancy 

rate has remained both a high priority and significant 

difficulty for fertility doctors [1]. Meanwhile, the 

response to controlled ovarian stimulation (COS) during 

ART is highly diverse and ovarian response plays crucial 

roles during this process [2]. In particular, poor ovarian 

response (POR), generally refers to a poor response to 

gonadotropin stimulation and is characterized by a low 

number of growing follicles which may result in poor 

oocyte retrieval, cycle cancellation, or even a failed 

reproductive outcome [3–5]. 

 

It is quite promising that researchers have discovered 

the advanced identification of poor responders to be of 
potential help in providing patients with more directed 

counseling which can lessen the disappointment of 

undesirable outcomes [6]. Generally, predicting POR 
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ABSTRACT 
 

The prediction of poor ovarian response (POR) for stratified interference is a critical clinical issue that has 
received an increasing amount of recent concern. Anthropogenic diagnostic modes remain too simple for the 
handling of actual clinical complexity. Therefore, this study conducted extensive selection using models that 
were derived from a variety of machine learning algorithms, including random forest (RF), decision trees, 
eXtreme Gradient Boosting (XGBoost), support vector machine (SVM), and artificial neural networks (ANN) for 
the development of two models called the COS pre-launch model (CPLM) and the hCG pre-trigger model 
(HPTM) to assess POR based on different requirements. The results demonstrated that CPLM constructed using 
ANN achieved the highest AUC result of all the algorithms in COS pre-launch (AUC=0.859, C-index=0.87, good 
calibration), and HPTL constructed using random forest was found to be the most effective in hCG pre-trigger 
(AUC=0.903, C-index=0.90, good calibration). It is notable that CPLM and HPTM exhibited better performance 
than common clinical characteristics (0.895 [CPLM], and 0.903 [HPTM] in comparison to 0.824 [anti-Müllerian 
hormone (AMH)], and 0.799 [antral follicle count (AFC)]). Furthermore, variable importance figure elucidated 
the values of AMH, AFC, and E2 level and follicle number on hCG day, which provides important theoretical 
guidance and experimental data for further application. Generally, the CPLM and HPTM can offer effective POR 
prediction for patients who are receiving assisted reproduction technology (ART), and has great potential for 
guiding the clinical treatment of infertility. 
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before COS may be a contributor to formulating 

individualized programs [7], and prediction before  

hCG trigger day can facilitate the adjustment of  

trigger protocols (for example, when POR is predicted, 

GnRH-a + hCG double trigger [8, 9] can be used for the 

amelioration of IVF outcomes). These findings inspired 

us to predict POR based on clinical data in COS pre-

launch and hCG pre-trigger in order to offer sufficient 

decision support. 

 

Several clinically predictive indicators associated with 

POR have already been detected, such as age, basal 

follicle stimulating hormone (FSH), antral follicle count 

(AFC), and anti-Müllerian hormone (AMH) [10–13]. 

Significant attention has been paid to the comprehensive 

analysis of various indicators [14–16], but with current 

POR assessment approaches, traditional logistic 

regression is highly subjective and time-consuming [17], 

and is also unable to exploit interconnections between 

predictors and combinations of factors which may not be 

significant individually. Machine learning algorithms 

can be used for analyzing interactions between the 

exploratory variables of large data sets without 

knowledge of the form of the specific parameter function 

underlying the relationship [18]. Furthermore, many 

classical algorithms have been widely applied in ART, 

such as logistic regression (LR) [19] and machine 

learning, including decision tree [20], support vector 

machine (SVM) [21], and artificial neural network 

(ANN) [22, 23]. However, very few works have reported 

machine-learning models for the prediction of ovarian 

response, therefore, further exploration of the prediction 

potential of machine-learning algorithms in related fields 

was warranted. 

 

In this study, the clinical data of patients undergoing 

IVF/ICSI was analyzed in order to establish optimum 

models for POR prediction (COS pre-launch model 

[CPLM] and hCG pre-trigger model [HPTM]) using 

different algorithms (typical statistical methods and 

machine learning models). By using these models, it was 

inferred that clinicians can apply appropriate therapeutic 

strategies mentioned above to infertile couples in order to 

increase the probability of favorable IVF outcomes. 

 

MATERIALS AND METHODS 
 

Data processing 

 

The clinical data of 1,110 infertile women who had 

undergone IVF/ICSI treatment for the first time between 

July 2018 and May 2019 in Renmin Hospital of Wuhan 

University was retrospectively analyzed. Women with 

several different infertility factors were incorporated  

in order to establish a universal approach for POR 

prediction at our center. 

Patients’ characteristics and main outcomes 

 

In the prospective cohort analysis, the main outcome 

measure was POR, which was defined as the retrieval  

of four or fewer oocytes or cycle cancellation [24]. 

Variables with a potential relationship to ovarian 

response were incorporated into our research, and models 

were constructed based on the various therapeutic stages 

of the treatment cycle: 

 

(1) Variables of COS pre-launch model: age, BMI, 

infertility cause, infertility duration, infertility type, 

AMH, basic hormone levels (E2, FSH, and LH), AFC, 

pelvic surgery, and gravidity history. 

 

(2) Variables of hCG pre-trigger model: all factors of 

the COS pre-launch model, plus therapeutic regimen, 

dosage of Gn (recombinant human follicle-stimulating 

hormone for injection, Gonal-f, German Merck Serono), 

days of Gn, E2 level on hCG day, and follicle number 

on hCG day (follicles with a diameter of ≥ 14 mm in 

bilateral ovaries). 

 

Feature selection 

 

EpiData 3.1 software was used for establishing a 

database, and this was double-entered and validated by 

two qualified personnel. Once it was checked, the data 

was transferred to R software (version 3.6.4) and 

parameters proven to have a direct effect on ovarian 

response were screened using logistic regression; 

variables with a P < 0.05 were chosen for further 

analysis. After the effects of features on outcomes were 

fully assessed, least absolute shrinkage and selection 

operator (LASSO) regression was used for further 

minimization of the risk of over-fitting, and variables 

with high collinearity were eliminated. The LASSO 

regression was dependent on a cyclical coordinate 

descent algorithm and was conducted using a glmnet 

package in R software. The workflow of the study is 

presented in Figure 1. 

 

Construction of model 

 

All data was randomly divided into a training dataset 

(70%) for feature selection and model training, and an 

independent validation dataset (30%) for repeated 

optimization and verification of the prediction model. 

And the models were set to use default parameters in R 

software. 

 

Multivariable logistic model 

Normality was evaluated using a Kolmogorov-Smirnov 
test and Spearman’s Rho (nonparametric), or Pearson’s 

(parametric) bivariate correlation analysis was completed 

as deemed appropriate. For independent variables selected 
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for the generalized multivariable logistic model, stepwise 

Akaike information criterion (AIC) was applied for 

eliminating multicollinearity and for selection of the 

model with the lowest AIC as the final model. A 

multivariate logistic model was also used to construct the 

ovarian response predictive model (ORPM). To facilitate 

this, the risk score was calculated using the following 

formula: 

 

1
Risk score 

=
= 

n

i ii
E  

 
where the risk score defined as ORPM-based risk 

signature was calculated by the ORPM - n represents 

the total number included in the ORPM, β i represents 

the regression coefficient of feature i, and E i refers to 

the coefficient of feature i in the constructed model. 

Machine learning 

Decision tree 

Decision tree algorithms use the Gini index to measure 

each decision point and create an optimal separation  

of the independent variables [25]. A dataset which 

minimizes the Gini index was selected after division  

as the optimal distribution in the subset of data.  

This splits the data which exhibited the best 

optimization criteria (subject to tree depth (11)) on our 

predictor. 

 

Random forest (RF) 

RF combines multiple decision trees and randomizes 

and summarizes the use of variables and data [26]. This 

study conducted RF containing 1,000 trees, where the 

maximum depth of each tree was determined based on 

the final numbers of the included features. 

 

 
 

Figure 1. Schematic workflow for poor ovarian response prediction. (A) 11 features relating to ovarian response were obtained 
following logistic regression and LASSO. (B) These 11 candidate features were analyzed using multivariable logistic regression and machine 
learning, and then validated using ROC, calibration plot, C-index and correlation analysis to conduct CPLM and HPTM. (C) Variable importance 
of CPLM and HPTM were described to further understand and investigate of the models. 
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eXtreme gradient boosting (XGBoost) 
XGBoost introduces the gradient descent algorithm and 

minimizes the loss when a new model is added, which 

helps it continuously learn a new function matching the 

residual of the previous prediction [27]. Similarly, 

XGBoost served as iterative model before reaching 

1,000 cycles, and the maximum depth of each tree was 

determined based on the final numbers of the included 

features. 

 

Support vector machines (SVM) 
The aim of SVM is the establishment of a classification 

hyperplane that can correctly classify each sample and 

make the largest possible distance between the sample 

closest to the hyperplane for each sample type and the 

hyperplane [28]. 

 

Artificial neural network 

ANN consists of an input layer, an output layer and one 

or more hidden layers between the input and the output 

layers. The most outstanding representative of the 

algorithm is resilient backpropagation learning [29]. In 

a typical process, hidden layers are determined to refer 

to the actual status, and the threshold is set as 0.005, the 

learning rate is set as 0.1, and parameter optimization is 

performed using rprop+ method. 

 

Validation of COS pre-launch model (CPLM) and 

hCG pre-trigger model (HPTM) 

 

Several different approaches were utilized for the 

assessment of all models’ stratification abilities. Area 

under curve (AUC) was calculated from the receiver-

operating characteristic (ROC) curve and was used to 

estimate the discrimination of each model. The accuracy 

of the derived models was evaluated by calibration plot, 

and models which shared a high goodness of fit with the 

dotted line were regarded as providing good calibration 

[30]. Notably, the net-classification index (NRI) was 

used to quantify the improvement of the predictive 

abilities of each model. The models with the highest 

ovarian response prediction accuracy in COS pre-launch 

and hCG pre-trigger models were defined as CPLM and 

HPTM. The contribution and importance of each CPLM/ 

HPTM-based signature were quantified using mean 

concordance-index (C-index). Spearman correlation 

analysis was then performed to accurately determine the 

correlation between the CPLM and HPTM scores of each 

patient and the corresponding retrieved oocytes. 

 

Grouped analysis for potential difference of clinical 

features 

 
Statistical comparisons of patients’ clinical characters 

were performed using Wilcoxon’s test, and P-value 

adjustment using the Benjamini-Hochberg procedure. 

Statistics 

 

R software (version 3.6.4) was used for data processing 

and analysis. 

 

Ethics approval and consent to participate 

 

Written informed consent was obtained from each 

participant and the study was approved by the ethical 

committee of the Renmin Hospital of Wuhan 

University. 

 

RESULTS 
 

Demographic and clinical characteristics of 

participants 

 

Based on the number of oocytes retrieved, the prevalence 

of POR was 14.59% in the present cohort. The 

demographic parameters of participants are displayed in 

Table 1. Poor ovarian responders were older than the 

normal to high responders, and exhibited significantly 

higher E2, FSH, days of Gn, dosages of Gn, E2 level and 

follicle number on hCG day. Significantly differences 

were also presented regarding infertility cause and 

therapeutic regimen. 

 

Feature engineering 

 

In order to prevent the risk of over-fitting and to  

screen the important features which impact outcomes  

for the optimization of the constructed models,  

feature engineering was conducted. LASSO regression 

combined with univariable logistic regression was 

performed to narrow the candidate features, the results 

of which were displayed in Table 2 and Supplementary 

Figure 1A, 1B. A total of 11 features remained of the 

original 19 features, and those selected were confirmed 

to be important regarding outcome. The significant 

variables identified following the selection procedure 

were recorded as follows: AFC, AMH, Age, E2, FSH, 

and infertility factors were incorporated in the COS pre-

launch model. Variables in the hCG pre-trigger model 

included all factors from the COS pre-launch model, in 

addition to E2 level and follicle number on hCG day, 

therapeutic regimen, days of Gn, and dosages of Gn. 

 

Construction and comparison of method performance 

 

After the process of feature selection completed, statistic 

models and machine-learning models were trained and 

validated according to the aforementioned methods. For 

COS pre-launch models, parameters of logistic model 

and decision tree were represented in Table 3 and 

Supplementary Figure 3, respectively; and framework of 

other machine-learning models including RF, XGBoost, 
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Table 1. Baseline participant characteristics. 

Parameters Normal to high responders Poor responders P Effect size 

E2 level on hCG day 3090.00(2295.00-4539.00) 1422.20(799.80-2267.80) <0.001 r = 0.396 

follicle number on hCG day 12.00(8.00-16.25) 5.00(3.00-8.00) <0.001 r = 0.402 

AFC 16.00(11.00-21.00) 9.00(5.00-13.00) <0.001 r = 0.365 

AMH 3.09(1.99-5.05) 1.03(0.56-1.75) <0.001 r = 0.420 

infertility duration 3.00(2.00-6.00) 4.00(2.00-6.00) 0.297 r = -0.031 

infertility cause 

pelvic and fallopian tube factors 347(36.60) 51(31.48) 

<0.001 V = 0.211 

ovulatory obstacle 74(7.81) 1(0.62) 

endometriosis and uterine factors 42(4.43) 19(11.73) 

decreased ovarian reserve 147(15.50) 32(19.75) 

unexplained infertility 64(6.75) 22(19.75) 

male factor 175(18.46) 20(12.35) 

multiple confounding factors 99(10.44) 17(10.49) 

therapeutic 

regimen 

long protocol 430(45.36) 51(31.48) 

<0.001 V = 0.268 

super-long protocol 263(27.74) 21(12.96) 

antagonist regimen 162(17.09) 34(20.99) 

PPOS 87(9.18) 54(33.33) 

others 6(0.63) 2(1.23) 

age  30.0(28.0-33.0) 32.00(29.00-36.00) <0.001 r = -0.146 

E2 35.60(31.45-41.99) 49.31(37.03-55.77) <0.001 r = -0.303 

FSH 6.870(5.707-8.210) 8.315(6.798-10.515) <0.001 r = -0.217 

LH 3.645(2.730-4.832) 3.515(2.525-4.562) 0.125 r = 0.046 

days of Gn 10.00(9.00-11.00) 10.000(8.000-11.000) <0.001 r = 0.116 

dosages of Gn 2250(1725-2900) 2700(2025-3200) <0.001 r = -0.117 

pelvic surgery No 718(75.74) 120(74.07) 
0.649 r = 0 

 Yes 230(24.26) 42(25.93) 

gravidity 

history 

0 484(51.05) 77(47.53) 

0.522 r = 0 
1 236(24.89) 41(25.31) 

2 116(12.24) 21(12.96) 

≥3 112(11.82) 23(14.19) 

height 160.0(158.0-163.0) 160.0(158.0-163.0) 0.904 r = 0.004 

weight 56.00(51.00-62.00) 56.00(51.00-64.00) 0.525 r = -0.019 

BMI 21.64(19.98-23.93) 21.95(20.20-24.23) 0.357 r = -0.028 

infertility type 
primary infertility 452(47.68) 72(44.44) 

0.446 r = 0 
secondary infertility 496(52.32) 90(55.56) 

Normally distributed data, skewed distribution data and nominal data are described by mean ± SD, median ± interquartile 
range and frequency (relative frequency) respectively. Wilxon signed-rank test and chi-square test were applied in skew 
distribution data and nominal data respectively, and properly used r and V as the effect size to quantify the significance. 

 

SVM, and ANN please visit our data online at 

https://data.mendeley.com/datasets/tpj39wptts/1. For hCG 

pre-trigger models, components of logistic model  

and decision tree were exhibited in Table 4 and 

Supplementary Figure 4, respectively; and framework of 

machine-learning models please visit our data online at 

https://data.mendeley.com/datasets/tpj39wptts/1. 

 

It has been demonstrated that the area under the ROC 

curve (AUC) is a puissant indicator for the prediction of 

dichotomous outcomes, and then the AUC was 

examined to assess the accuracy of the constructed 

models. As can be seen in Figure 2A–2L, ANN yielded 

optimum predictive ability and accuracy in all 

algorithms with an AUC of 0.859 in COS pre-launch 

models, and the RF had the highest AUC (0.903) in 

hCG pre-trigger models. The predictive ability and 

accuracy of logistic regression (AUC = 0.848 and 0.883 

corresponded to COS pre-launch and hCG pre-trigger 

models) and decision tree (AUC= 0.701 and 0.800) 

were slightly worse in comparison to ANN or RF. 

XGBoost produced relatively poor results with AUC of 
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Table 2. Odds ratio and p-values calculated from the univariable logistic regression 
for quantifying the impacts of parameters included in the present study on ovarian 
response. 

Parameters Odds ratio (95% CI) p 

E2 level on the hCG day 1.00 (1.00-1.00) 5.97E-27** 

follicle number on hCG day 0.75 (0.71-0.79) 1.34E-29** 

AFC 0.81 (0.78-0.84) 4.91E-27** 

AMH 0.37 (0.30-0.44) 1.92E-25** 

infertility years 1.03 (0.98-1.08) 0.274 

infertility cause 1.09 (1.01-1.17) 0.025* 

therapeutic regimen 1.71 (1.47-1.98) 1.44E-12** 

age 1.10 (1.06-1.14) 4.79E-07** 

E2 1.07 (1.06-1.09) 3.82E-22** 

FSH 1.25 (1.18-1.33) 5.43E-13** 

LH 0.94 (0.85-1.03) 0.222 

days of Gn 0.88 (0.82-0.95) 0.001026* 

dosages of Gn 1.00 (1.00-1.00) 7.20E-05** 

pelvic surgery 1.09 (0.74-1.59) 0.649 

gravidity history 1.01 (0.89-1.14) 0.815 

height 0.99 (0.96-1.03) 0.684 

weight 1.00 (0.99-1.02) 0.614 

BMI 1.02 (0.97-1.07) 0.440 

infertility type 1.14 (0.82-1.60) 0.446 

*, P<0.05; **, P<0.01. 

 

Table 3. Coefficients of trained logistic regression for COS pre-launch models. 

Parameters coefficients Odds ratio (95% CI) p 

AFC -0.115 0.891(0.843-0.94) <0.001** 

AMH -0.729 0.482(0.368-0.616) <0.001** 

*, P<0.05; **, P<0.01. 

 

Table 4. Coefficients of trained logistic regression for hCG pre-trigger models. 

Parameters coefficients Odds ratio (95%CI) p 

E2 level on the hCG day -0.001 1.000(0.9999-1.000) 0.004* 

follicle number on hCG day -0.071 0.932(0.850-1.014) 0.115 

AFC -0.063 0.939(0.880-1.000) 0.054 

AMH -0.618 0.539(0.405-0.697) < 0.001** 

FSH -0.077 0.926(0.848-1.009) 0.081 

dosages of Gn -0.001 1.000(1.000-1.000) 0.082 

*, P<0.05; **, P<0.01. 

 

0.724 and 0.693, and SVM exhibited the minimum 
prediction efficiency, with AUC of 0.556 and 0.519. 

Similar trends were also observed in the training 

cohort. 

Validation of CPLM and HPTM 

 

As they have been proven to be the best models for the 

estimation of ovarian response, derived ANN and RF 
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models were considered as CPLM and HPTM and 

further investigations were conducted. C-index was 

determined for reaffirming CPLM and HPTM 

prediction accuracy. After 1,000 estimations were 

made using the bootstrap method, the mean C-index of 

the validation cohort’s CPLM and HPTM were 0.87 

and 0.90, respectively. This demonstrated that the 

predicted results for CPLM and HPTM were highly 

consistent with the actual value, and represented high 

accuracy among the constructed models [31]. The 

training cohort also demonstrated similar results 

regarding C-index. 

 

 
 

Figure 2. Construction and comparison of method performance. (A–F) ROC curve of ANN, RF, LR, XGBoost, decision tree, and SVM 
for target cohort in COS pre-launch models, respectively. (G–L) ROC curve of ANN, RF, LR, XGBoost, decision tree, and SVM for target cohort 
in hCG pre-trigger models. 
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In addition, a calibration plot measuring calibration 

ability also showed that the predicted value of the 

CPLM and HPTM-based signature was in accordance 

with the observed proportion (Figure 3A, 3B). 

 

For further evaluation of the model’s credibility, 

correlation analysis between the CPLM and HPTM 

scores and the corresponding number of retrieved 

oocytes for each patient were determined. The analysis 

results demonstrated that each patient’s CPLM and 

HPTM scores were correlated negatively with  

retrieved oocytes, thereby suggesting that the retrieved 

oocytes gradually decreased as the score increased 

(Figure 3C, 3D), and the relevant correlation 

coefficient was 0.59 and 0.69 in CPLM and HPTM, 

respectively. 

 

All aforementioned evidence was presented following a 

series of investigations, which strongly indicated  

that the constructed models reached an optimum 

contribution and employed a small enough number of 

clinical characters without losing their predictive value. 

 

Comparison between CPLM/HPTM and common 

clinical characteristics 

 

Numerous studies have proven AMH and AFC to be the 

most effective parameters for the prediction of poor 

ovarian response in ART [4, 32]. An evaluation of the 

effectiveness of obtained CPLM and HPTM was 

performed through a comparison of the above 

characteristics to establish both their superiority and 

applicability in clinical practice. The results were 

encouraging and revealed that the AUC of CPLM and 

HPTM (0.903 and 0.859) (Figure 2A, 2H) were superior 

to those of the most common clinical characteristics - 

AMH and AFC (0.824 and 0.796) (Figure 4A, 4B), 

indicating that the constructed models had more 

valuable prediction signatures than common clinical 

characteristics. 

 

NRI is a method for measuring a model’s accuracy 

based on changes made to the number of correct 

classifications. Results showed that CPLM had better 

accuracy compared to AMH and AFC (NRI =13.4% 

and 18.8%, respectively). In addition, HPTM’s accuracy 

was considerably higher than that of AMH and AFC 

(compared to AMH, NRI = 74.7%; compared to AFC, 

NRI = 82.6%), and CPLM and HPTM’s prediction 

efficiency was preferable. Similar trends were observed 

in the training cohort (Table 5). 

 

Variable importance ranking in CPLM and HPTM 

 

For facilitation of the clinical decision process, variable 

importance figures of CPLM and HPTM were used to 

 

 
 

Figure 3. Validation of CPLM and HPTM. (A) The calibration plot for training and validation data was used to analyze the consistency of 

poor ovarian response between the predicted value and the observed proportion in CPLM. (B) The calibration plot for training and validation 
data was used to analyze the consistency of poor ovarian response between the predicted value and the observed proportion in HPTM. (C) 
Correlation analysis of the CPLM score and relevant retrieved oocytes in the cohort. (D) Correlation analysis of the HPTM score and relevant 
retrieved oocytes in the cohort. 
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investigate the models. As can be seen in Supplementary 

Figure 2 and Figure 4C, AMH was the most important 

predictor for POR, conforming to findings of the latest 

study which emphasized the significance of AMH [33]. 

Indictors including AFC and FSH that are commonly 

used for the assessment of ovarian response also 

displayed significant contribution to the objective 

function. In addition, HPTM highlighted the illustrious 

positions of E2 level and follicle number on hCG day in 

the prediction of hCG pre-trigger model. However, age, 

dosages of Gn, E2, therapeutic regimen, and days of Gn 

were proven to be slightly less significant in the models. 

 

Potential differences between high- and low-risk 

group identified by CPLM or HPTM 

 

In order to detect potential differences in clinical 

characteristics between the high-risk group (with a 

higher risk of predicting to be POR) and the low-risk 

group defined by CPLM and HPTM, grouped analyses 

were performed. As is shown in Figure 5A–5J, 

significant differences were discovered between both 

groups, with the exception of age and days of Gn. The 

validation results were as follows: AMH (r=-0.424, 

P<0.001), oocytes retrieved (r=-0.407, P=0.001), E2 

level on hCG day (r=-0.420, P<0.001), follicle number 

on hCG day (r=-0.405, P<0.001), AFC (r=-0.366, 

P<0.001), E2 (r=0.276, P<0.001), FSH (r=0.253, 

P<0.001), dosages of Gn (r=0.164, P=0.003). However, 

training results indicated that AMH (r=-0.430, P<0.001), 

oocytes retrieved (r=-0.609, P=0.001), E2 level on hCG 

day (r=-0.383, P<0.001), follicle number on hCG day 

(r=-0.405, P<0.001), AFC (r=-0.373, P<0.001), E2 

(r=0.304, P<0.001), FSH (r=0.219, P<0.001), age 

(r=0.146, P<0.001), dosages of Gn (r=-0.096, P=0.008), 

and days of Gn (r=-0.111, P=0.002), all exhibited 

significant differences between both groups. The results 

presented above further prove the efficacy of CPLM and 

HPTM, and emphasize the value of AMH, E2 level on 

hCG day, follicle number on hCG day, AFC, E2, and 

FSH. 

 

DISCUSSION 
 

This study has provided the first report for establishing 

CPLM and HPTM in the prediction of ovarian response 

at various therapeutic stages of IVF cycles using multiple 

machine learning algorithms, when individualized 

interference is available to sterile couples. This study was 

also the first attempt where machine learning was applied 

to routine medical practice to facilitate the improvement 

of clinical management and provide successful outcomes 

for infertile couples in ART. 

 

One significant advantage of this study is the machine 

learning-based CPLM and HPTM, which can be

 

 
 

Figure 4. Comparison between HPTM and common clinical characteristics. (A) ROC curve and the corresponding AUC of AMH for 
training and validation cohort. (B) ROC curve and the corresponding AUC of AFC for training and validation cohort. (C) Variable importance 
ranking in HPTM. 
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Table 5. NRI results of CPLM and HPTM when compared to AMH and AFC. 

Models Cohort 
AMH AFC 

(95% CI) (95% CI) 

CPLM vs. 

Train 
13.4%** 18.8%** 

(9.3%-14.2%) (5.5%-33.1%) 

Validation 
18.4%** 21.1%** 

(5.3%-19.1%) (29.3%-49.6%) 

HPLM vs. 

Train 
74.7%** 82.6%** 

(66.4%-83.0%) (75.4%-89.8%) 

Validation 
27.50% 37.7%** 

(11.4%-43.6%) (21.8%-53.7%) 

*, P<0.05; **, P<0.01. 

 

implemented in related clinical processes for predicting 

ovarian response in sterile women, which will also allow 

the application of individualized stratified interference. 

Machine learning is based on non-linear parallel 

processing and has identified a new direction in the field 

of IVF, improving reason and self-organization, as it 

continues to learn [34, 35]. Several machine learning 

algorithms, including RF, decision tree, XGBoost, SVM, 

and ANN, were used in this research for the selection of 

two models in COS pre-launch and hCG pre-trigger, 

which were considered to be CPLM and HPTM. During 

this competition, where AUC was used as an evaluation 

indicator, an RF model as a CPLM, and an ANN model 

as an HPTM were excelled. More specifically, for 

CPLM selection, the ANN model demonstrated better 

prediction performance with an AUC value of 0.859, 

followed by LR, RF, decision tree, XGBoost, and SVM 

model (0.848, 0.798, 0.700, 0.693, and 0.519, 

respectively). Regarding HPTM selection, the RF model 

demonstrated excellent success with an AUC value of 

0.903, followed closely by LR, decision tree, ANN, 

XGBoost, and SVM model (AUC=0.883, 0.841, 0.817, 

0.724, and 0.556, respectively). 

 

After screening of CPLM and HPTM, both models were 

characterized. For the assessment of prediction accuracy, 

the mean C-index of CPLM and HPTM were 0.87 and 

0.90; both exhibiting excellent calibration properties. 

These findings indicated that the predicted results for 

CPLM and HPTM were highly consistent with the actual 

value, thereby representing a high level of accuracy in the 

constructed models. It is notable that machine learning-

based CPLM and HPTM triumphed over the traditional 

statistical model (AUC 0.859 vs 0.848, for CPLM; 0.903 

vs 0.883, for HPTM). Meanwhile, an independent 

validation dataset used in our research also verified the 

superiority of the constructed models. This evidence 

adequately demonstrates the advantages of employed 

machine learning algorithms, proving that they are highly 

effective models for predicting outcomes. To gain further 

clarification regarding the clinical applicability of CPLM 

and HPTM, both models were compared with AMH and 

AFC, which are the most commonly used clinical 

characteristics for ovarian response prediction. As 

anticipated, CPLM proved to be more effective for 

outcome prediction than AMH and AFC (0.868 vs 0.824 

[AMH], and 0.796 [AFC]), as did HPTM (0.903 vs 0.824 

[AMH], and 0.796 [AFC]). A previous meta-analysis 

using random intercept logistic regression demonstrated 

that AMH and AFC are both accurate ovarian response 

predictors. In this study, CPLM and HPTM proved to be 

more accurate than AMH and AFC, and other reported 

prediction models where AUC varied between 0.39 and 

0.88 [14, 36–39]. These findings strongly demonstrate 

that there is great clinical application potential for this 

study’s constructed CPLM and HPTM due to the high 

accuracy they have for POR prediction. 

 

To further evaluate the importance of the features 

incorporated in the chosen CPLM and HPTM, variable 

importance rankings were established. It is notable that 

both models displayed robust significance in AMH, AFC, 

and FSH, irrespective of different time periods, thereby 

indicating the important value of these traits during IVF 

concluded in previous researches [40–42]. It is of great 

significance that this study’s results were similar to those 

obtained through previous studies, which indicates that 

AMH with the highest variable importance value in 

CPLM and HPTM is the most important variable for 

POR prediction [43, 44]. Although age had previously 

been considered to be of great value for ovarian response 

prediction [45], several studies have placed more focus 

on “ovarian age”, and this study was consistent with them 

in demonstrating that age should not be regarded as a 

stable characteristic for POR prediction [14, 46, 47]. In 

addition, variable importance results in HPTM proved 

that both E2 levels and follicle number on hCG day play 

important roles, as E2 levels on hCG day can reflect the 

secretory function of follicles and they are related to the 

number and size of follicles in both ovaries during COS, 
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which is considered to be a marker of ovarian reactivity 

[48]. Previous research has also demonstrated that E2 

level on hCG day is an independent POR marker, which 

further highlights the importance of the indicator [49, 

50]. It is of interest that days of Gn are associated with 

follicular maturation and appropriate extension of days of 

Gn can improve follicular maturation and retrieved 

oocytes [51]. Similarly, the models used in this study also 

attached significant importance to days of Gn, proving 

that clinicians should have greater focus on the 

individualized use of ovulatory drugs. 

 

In this study, the prediction efficiency of HPTM was 

proven to be greater than that of CPLM. The main 

reason for this could be that HPTM incorporates 

additional important characteristics (E2 lever and follicle 

number on hCG day), which are particularly significant 

in ovarian response prediction [52, 53]. However, it is 

 

 
 

Figure 5. Potential differences between high- and low-risk groups identified by CPLM or HPTM. (A–J) Distribution of AMH, 
oocytes retrieved, follicle number on hCG day, E2 level on hCG day, AFC, E2, FSH, dosages of Gn, age, and days of Gn in the high-risk group and 
poor ovarian response in the high-risk group. 
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notable that HPTM is better suited to hCG pre-trigger in 

terms of delayed information. Accordingly, clinicians 

can access ovarian response based on the CPLM before 

treatment cycles for the formulation of individualized 

regimens, whereas HPTM can be used for guidance on 

hCG administration day. 

 

This study was limited due to being retrospective 

regarding design and the data was obtained from only 

one fertility center. In addition, the models failed in the 

prediction of retrieved oocytes, embryo quality, or IVF 

outcomes. Therefore, long-term research with a greater, 

multicenter sample and a more in-depth exploration  

of IVF outcomes is required in order to provide 

confirmation of the efficacy of our findings. 

 

CONCLUSIONS 
 

To summarize, the current study’s CPLM and HPTM 

exhibited higher accuracy for poor ovarian response 

prediction in sterile women than the reported models of 

AMH and AFC as clinical indicators. The constructed 

models used in this study can access more precise 

individualized interference for the implementation of 

related clinical processes which will help achieve better 

pregnancy outcomes. 

 

Data availability statement 

 

All generated data was included in the present study. 

 

Abbreviations 
 

POR: Poor ovarian response; ART: assisted reproduction 

technology; COS: Controlled ovarian stimulation; RF: 

Random forest; XGBoost: eXtreme Gradient Boosting; 

SVM: Support vector machine; ANN: Artificial neural 

networks; CPLM: COS pre-launch model; HPTL: hCG 

pre-trigger model; AMH: Anti-Müllerian hormone; AFC: 

Antral follicle count; FSH: follicle stimulating hormone; 

LASSO: least absolute shrinkage and selection operator; 

AUC: Area under curve; NRI: net-classification index; 

C-index: concordance-index. 

 

AUTHOR CONTRIBUTIONS 
 

S. Y.: conceptualization; S. Y. and W. J.: methodology; 

S. Y. and J. D: data curation; S. Y. and W. J: formal 

analysis; S. Y. and J. D.: writing original draft 

preparation; J. Y.: writing-review and editing; S. Y.: 

visualization; J. Y, T. Y and Y. Z: project administration; 

J. Y: funding acquisition. 

 

CONFLICTS OF INTEREST 
 

The authors declared that no conflicts of interest exists. 

FUNDING 
 

This work was supported by the National Key  

Research and Development Program of China (No. 

2018YFC1002804, 2016YFC1000600), and the National 

Natural Science Foundation of China (No. 81771618, 

81971356 81771662 and 81801540). 

 

REFERENCES 
 
1. La Marca A, Sunkara SK. Individualization of controlled 

ovarian stimulation in IVF using ovarian reserve 
markers: from theory to practice. Hum Reprod Update. 
2014; 20:124–40. 

 https://doi.org/10.1093/humupd/dmt037 
PMID:24077980 

2. Polyzos NP, Devroey P. A systematic review of 
randomized trials for the treatment of poor ovarian 
responders: is there any light at the end of the tunnel? 
Fertil Steril. 2011; 96:1058–61.e7. 

 https://doi.org/10.1016/j.fertnstert.2011.09.048 
PMID:22036048 

3. Bozdag G, Polat M, Yarali I, Yarali H. Live birth rates in 
various subgroups of poor ovarian responders fulfilling 
the bologna criteria. Reprod Biomed Online. 2017; 
34:639–44. 

 https://doi.org/10.1016/j.rbmo.2017.03.009 
PMID:28366519 

4. Broer SL, van Disseldorp J, Broeze KA, Dolleman M, 
Opmeer BC, Bossuyt P, Eijkemans MJ, Mol BW, 
Broekmans FJ, and IMPORT study group. Added value 
of ovarian reserve testing on patient characteristics in 
the prediction of ovarian response and ongoing 
pregnancy: an individual patient data approach. Hum 
Reprod Update. 2013; 19:26–36. 

 https://doi.org/10.1093/humupd/dms041 
PMID:23188168 

5. Kailasam C, Keay SD, Wilson P, Ford WC, Jenkins JM. 
Defining poor ovarian response during IVF cycles, in 
women aged <40 years, and its relationship with 
treatment outcome. Hum Reprod. 2004; 19:1544–47. 

 https://doi.org/10.1093/humrep/deh273 
PMID:15142994 

6. Surrey ES, Schoolcraft WB. Evaluating strategies for 
improving ovarian response of the poor responder 
undergoing assisted reproductive techniques. Fertil 
Steril. 2000; 73:667–76. 

 https://doi.org/10.1016/s0015-0282(99)00630-5 
PMID:10731523 

7. Fauser BC, Diedrich K, Devroey P, and Evian  
Annual Reproduction Workshop Group 2007. 
Predictors of ovarian response: progress towards 
individualized treatment in ovulation induction and 

https://doi.org/10.1093/humupd/dmt037
https://pubmed.ncbi.nlm.nih.gov/24077980
https://doi.org/10.1016/j.fertnstert.2011.09.048
https://pubmed.ncbi.nlm.nih.gov/22036048
https://doi.org/10.1016/j.rbmo.2017.03.009
https://pubmed.ncbi.nlm.nih.gov/28366519
https://doi.org/10.1093/humupd/dms041
https://pubmed.ncbi.nlm.nih.gov/23188168
https://doi.org/10.1093/humrep/deh273
https://pubmed.ncbi.nlm.nih.gov/15142994
https://doi.org/10.1016/s0015-0282(99)00630-5
https://pubmed.ncbi.nlm.nih.gov/10731523


 

www.aging-us.com 17149 AGING 

ovarian stimulation. Hum Reprod Update. 2008; 
14:1–14. 

 https://doi.org/10.1093/humupd/dmm034 
PMID:18006561 

8. Lin MH, Wu FS, Hwu YM, Lee RK, Li RS, Li SH. Dual 
trigger with gonadotropin releasing hormone agonist 
and human chorionic gonadotropin significantly 
improves live birth rate for women with diminished 
ovarian reserve. Reprod Biol Endocrinol. 2019; 17:7. 

 https://doi.org/10.1186/s12958-018-0451-x 
PMID:30609935 

9. Zhang J, Wang Y, Mao X, Chen Q, Hong Q, Cai R, Zhang 
S, Kuang Y. Dual trigger of final oocyte maturation in 
poor ovarian responders undergoing IVF/ICSI cycles. 
Reprod Biomed Online. 2017; 35:701–07. 

 https://doi.org/10.1016/j.rbmo.2017.09.002 
PMID:28993105 

10. Grisendi V, Mastellari E, La Marca A. Ovarian reserve 
markers to identify poor responders in the context of 
poseidon classification. Front Endocrinol (Lausanne). 
2019; 10:281. 

 https://doi.org/10.3389/fendo.2019.00281 
PMID:31139145 

11. Fleming R, Seifer DB, Frattarelli JL, Ruman J. Assessing 
ovarian response: antral follicle count versus anti-
müllerian hormone. Reprod Biomed Online. 2015; 
31:486–96. 

 https://doi.org/10.1016/j.rbmo.2015.06.015 
PMID:26283017 

12. Mutlu MF, Erdem M, Erdem A, Yildiz S, Mutlu I, Arisoy 
O, Oktem M. Antral follicle count determines poor 
ovarian response better than anti-müllerian hormone 
but age is the only predictor for live birth in in vitro 
fertilization cycles. J Assist Reprod Genet. 2013; 
30:657–65. 

 https://doi.org/10.1007/s10815-013-9975-3 
PMID:23508679 

13. Zheng H, Chen S, Du H, Ling J, Wu Y, Liu H, Liu J. 
Ovarian response prediction in controlled ovarian 
stimulation for IVF using anti-müllerian hormone in 
Chinese women: a retrospective cohort study. 
Medicine (Baltimore). 2017; 96:e6495. 

 https://doi.org/10.1097/MD.0000000000006495 
PMID:28353597 

14. Scheinhardt MO, Lerman T, König IR, Griesinger G. 
Performance of prognostic modelling of high and low 
ovarian response to ovarian stimulation for IVF. Hum 
Reprod. 2018; 33:1499–505. 

 https://doi.org/10.1093/humrep/dey236 
PMID:30007353 

15. Tsakos E, Tolikas A, Daniilidis A, Asimakopoulos B. 
Predictive value of anti-müllerian hormone, follicle-

stimulating hormone and antral follicle count on the 
outcome of ovarian stimulation in women following 
GnRH-antagonist protocol for IVF/ET. Arch Gynecol 
Obstet. 2014; 290:1249–53. 

 https://doi.org/10.1007/s00404-014-3332-3 
PMID:25001569 

16. Iliodromiti S, Nelson SM. Ovarian response biomarkers: 
physiology and performance. Curr Opin Obstet 
Gynecol. 2015; 27:182–86. 

 https://doi.org/10.1097/GCO.0000000000000175 
PMID:25919234 

17. Brodin T, Hadziosmanovic N, Berglund L, Olovsson M, 
Holte J. Comparing four ovarian reserve markers—
associations with ovarian response and live births after 
assisted reproduction. Acta Obstet Gynecol Scand. 
2015; 94:1056–63. 

 https://doi.org/10.1111/aogs.12710  
PMID:26184379 

18. Caraviello DZ, Weigel KA, Craven M, Gianola D, Cook 
NB, Nordlund KV, Fricke PM, Wiltbank MC. Analysis of 
reproductive performance of lactating cows on large 
dairy farms using machine learning algorithms. J Dairy 
Sci. 2006; 89:4703–22. 

 https://doi.org/10.3168/jds.S0022-0302(06)72521-8 
PMID:17106103 

19. Katz MH. Multivariable analysis: a primer for readers of 
medical research. Ann Intern Med. 2003; 138:644–50. 

 https://doi.org/10.7326/0003-4819-138-8-200304150-
00012 PMID:12693887 

20. Kotanidis L, Nikolettos K, Petousis S, Asimakopoulos B, 
Chatzimitrou E, Kolios G, Nikolettos N. The use of 
serum anti-mullerian hormone (AMH) levels and antral 
follicle count (AFC) to predict the number of oocytes 
collected and availability of embryos for 
cryopreservation in IVF. J Endocrinol Invest. 2016; 
39:1459–64. 

 https://doi.org/10.1007/s40618-016-0521-x 
PMID:27465668 

21. Devjak R, Burnik Papler T, Verdenik I, Fon Tacer K, 
Vrtačnik Bokal E. Embryo quality predictive models 
based on cumulus cells gene expression. Balkan J Med 
Genet. 2016; 19:5–12. 

 https://doi.org/10.1515/bjmg-2016-0001 
PMID:27785402 

22. Mirsky SK, Barnea I, Levi M, Greenspan H, Shaked NT. 
Automated analysis of individual sperm cells using 
stain-free interferometric phase microscopy and 
machine learning. Cytometry A. 2017; 91:893–900. 

 https://doi.org/10.1002/cyto.a.23189 PMID:28834185 

23. Manna C, Nanni L, Lumini A, Pappalardo S. Artificial 
intelligence techniques for embryo and oocyte 
classification. Reprod Biomed Online. 2013; 26:42–49. 

https://doi.org/10.1093/humupd/dmm034
https://pubmed.ncbi.nlm.nih.gov/18006561
https://doi.org/10.1186/s12958-018-0451-x
https://pubmed.ncbi.nlm.nih.gov/30609935
https://doi.org/10.1016/j.rbmo.2017.09.002
https://pubmed.ncbi.nlm.nih.gov/28993105
https://doi.org/10.3389/fendo.2019.00281
https://pubmed.ncbi.nlm.nih.gov/31139145
https://doi.org/10.1016/j.rbmo.2015.06.015
https://pubmed.ncbi.nlm.nih.gov/26283017
https://doi.org/10.1007/s10815-013-9975-3
https://pubmed.ncbi.nlm.nih.gov/23508679
https://doi.org/10.1097/MD.0000000000006495
https://pubmed.ncbi.nlm.nih.gov/28353597
https://doi.org/10.1093/humrep/dey236
https://pubmed.ncbi.nlm.nih.gov/30007353
https://doi.org/10.1007/s00404-014-3332-3
https://pubmed.ncbi.nlm.nih.gov/25001569
https://doi.org/10.1097/GCO.0000000000000175
https://pubmed.ncbi.nlm.nih.gov/25919234
https://doi.org/10.1111/aogs.12710
https://pubmed.ncbi.nlm.nih.gov/26184379
https://doi.org/10.3168/jds.S0022-0302(06)72521-8
https://pubmed.ncbi.nlm.nih.gov/17106103
https://doi.org/10.7326/0003-4819-138-8-200304150-00012
https://doi.org/10.7326/0003-4819-138-8-200304150-00012
https://pubmed.ncbi.nlm.nih.gov/12693887
https://doi.org/10.1007/s40618-016-0521-x
https://pubmed.ncbi.nlm.nih.gov/27465668
https://doi.org/10.1515/bjmg-2016-0001
https://pubmed.ncbi.nlm.nih.gov/27785402
https://doi.org/10.1002/cyto.a.23189
https://pubmed.ncbi.nlm.nih.gov/28834185


 

www.aging-us.com 17150 AGING 

 https://doi.org/10.1016/j.rbmo.2012.09.015 
PMID:23177416 

24. Al-Azemi M, Killick SR, Duffy S, Pye C, Refaat B, Hill N, 
Ledger W. Multi-marker assessment of ovarian reserve 
predicts oocyte yield after ovulation induction. Hum 
Reprod. 2011; 26:414–22. 

 https://doi.org/10.1093/humrep/deq339 
PMID:21147822 

25. Speybroeck N. Classification and regression trees. Int J 
Public Health. 2012; 57:243–46. 

 https://doi.org/10.1007/s00038-011-0315-z 
PMID:22015650 

26. Menze BH, Kelm BM, Masuch R, Himmelreich U, 
Bachert P, Petrich W, Hamprecht FA. A comparison of 
random forest and its gini importance with standard 
chemometric methods for the feature selection and 
classification of spectral data. BMC Bioinformatics. 
2009; 10:213. 

 https://doi.org/10.1186/1471-2105-10-213 
PMID:19591666 

27. Mills S, Lee JK, Rassekh BM. An introduction to the civil 
registration and vital statistics systems with 
applications in low- and middle-income countries. J 
Health Popul Nutr. 2019 (Suppl 1); 38:23. 

 https://doi.org/10.1186/s41043-019-0177-1 
PMID:31627735 

28. Xiong J, Cai L, Wang F, He X. SVM-based spectral 
analysis for heart rate from multi-channel WPPG 
sensor signals. Sensors (Basel). 2017; 17:506. 

 https://doi.org/10.3390/s17030506 PMID:28273818 

29. Serpen G, Corra J. Training simultaneous recurrent 
neural network with resilient propagation for static 
optimization. Int J Neural Syst. 2002; 12:203–18. 

 https://doi.org/10.1142/S0129065702001199 
PMID:12370962 

30. Held U, Bové DS, Steurer J, Held L. Validating and 
updating a risk model for pneumonia - a case study. 
BMC Med Res Methodol. 2012; 12:99. 

 https://doi.org/10.1186/1471-2288-12-99 
PMID:22817850 

31. Longato E, Vettoretti M, Di Camillo B. A practical 
perspective on the concordance index for the 
evaluation and selection of prognostic time-to-event 
models. J Biomed Inform. 2020; 108:103496. 

 https://doi.org/10.1016/j.jbi.2020.103496 
PMID:32652236 

32. Broer SL, Dólleman M, van Disseldorp J, Broeze KA, 
Opmeer BC, Bossuyt PM, Eijkemans MJ, Mol BW, 
Broekmans FJ, and IPD-EXPORT Study Group. 
Prediction of an excessive response in in vitro 
fertilization from patient characteristics and ovarian 
reserve tests and comparison in subgroups: an 

individual patient data meta-analysis. Fertil Steril. 
2013; 100:420–9.e7. 

 https://doi.org/10.1016/j.fertnstert.2013.04.024 
PMID:23721718 

33. Moolhuijsen LM, Visser JA. Anti-müllerian hormone 
and ovarian reserve: update on assessing ovarian 
function. J Clin Endocrinol Metab. 2020;  
105:3361–73. 

 https://doi.org/10.1210/clinem/dgaa513 
PMID:32770239 

34. Uyar A, Bener A, Ciray HN. Predictive modeling of 
implantation outcome in an in vitro fertilization setting: 
an application of machine learning methods. Med 
Decis Making. 2015; 35:714–25. 

 https://doi.org/10.1177/0272989X14535984 
PMID:24842951 

35. Chen F, De Neubourg D, Debrock S, Peeraer K, 
D’Hooghe T, Spiessens C. Selecting the embryo with 
the highest implantation potential using a data mining 
based prediction model. Reprod Biol Endocrinol. 2016; 
14:10. 

 https://doi.org/10.1186/s12958-016-0145-1 
PMID:26936606 

36. Verhagen TE, Hendriks DJ, Bancsi LF, Mol BW, 
Broekmans FJ. The accuracy of multivariate models 
predicting ovarian reserve and pregnancy after in vitro 
fertilization: a meta-analysis. Hum Reprod Update. 
2008; 14:95–100. 

 https://doi.org/10.1093/humupd/dmn001 
PMID:18292180 

37. Silberstein T, MacLaughlin DT, Shai I, Trimarchi JR, 
Lambert-Messerlian G, Seifer DB, Keefe DL, Blazar AS. 
Mullerian inhibiting substance levels at the time of 
HCG administration in IVF cycles predict both ovarian 
reserve and embryo morphology. Hum Reprod. 2006; 
21:159–63. 

 https://doi.org/10.1093/humrep/dei270 
PMID:16123085 

38. Riggs RM, Duran EH, Baker MW, Kimble TD, Hobeika E, 
Yin L, Matos-Bodden L, Leader B, Stadtmauer L. 
Assessment of ovarian reserve with anti-Müllerian 
hormone: a comparison of the predictive value of anti-
Müllerian hormone, follicle-stimulating hormone, 
inhibin B, and age. Am J Obstet Gynecol. 2008; 
199:202.e1–8. 

 https://doi.org/10.1016/j.ajog.2008.05.004 
PMID:18674663 

39. Xu H, Zeng L, Yang R, Feng Y, Li R, Qiao J. Retrospective 
cohort study: AMH is the best ovarian reserve markers 
in predicting ovarian response but has unfavorable 
value in predicting clinical pregnancy in GnRH 
antagonist protocol. Arch Gynecol Obstet. 2017; 
295:763–70. 

https://doi.org/10.1016/j.rbmo.2012.09.015
https://pubmed.ncbi.nlm.nih.gov/23177416
https://doi.org/10.1093/humrep/deq339
https://pubmed.ncbi.nlm.nih.gov/21147822
https://doi.org/10.1007/s00038-011-0315-z
https://pubmed.ncbi.nlm.nih.gov/22015650
https://doi.org/10.1186/1471-2105-10-213
https://pubmed.ncbi.nlm.nih.gov/19591666
https://doi.org/10.1186/s41043-019-0177-1
https://pubmed.ncbi.nlm.nih.gov/31627735
https://doi.org/10.3390/s17030506
https://pubmed.ncbi.nlm.nih.gov/28273818
https://doi.org/10.1142/S0129065702001199
https://pubmed.ncbi.nlm.nih.gov/12370962
https://doi.org/10.1186/1471-2288-12-99
https://pubmed.ncbi.nlm.nih.gov/22817850
https://doi.org/10.1016/j.jbi.2020.103496
https://pubmed.ncbi.nlm.nih.gov/32652236
https://doi.org/10.1016/j.fertnstert.2013.04.024
https://pubmed.ncbi.nlm.nih.gov/23721718
https://doi.org/10.1210/clinem/dgaa513
https://pubmed.ncbi.nlm.nih.gov/32770239
https://doi.org/10.1177/0272989X14535984
https://pubmed.ncbi.nlm.nih.gov/24842951
https://doi.org/10.1186/s12958-016-0145-1
https://pubmed.ncbi.nlm.nih.gov/26936606
https://doi.org/10.1093/humupd/dmn001
https://pubmed.ncbi.nlm.nih.gov/18292180
https://doi.org/10.1093/humrep/dei270
https://pubmed.ncbi.nlm.nih.gov/16123085
https://doi.org/10.1016/j.ajog.2008.05.004
https://pubmed.ncbi.nlm.nih.gov/18674663


 

www.aging-us.com 17151 AGING 

 https://doi.org/10.1007/s00404-016-4274-8 
PMID:28012077 

40. Lan VT, Linh NK, Tuong HM, Wong PC, Howles CM. 
Anti-müllerian hormone versus antral follicle count for 
defining the starting dose of FSH. Reprod Biomed 
Online. 2013; 27:390–99. 

 https://doi.org/10.1016/j.rbmo.2013.07.008 
PMID:23953069 

41. Chalumeau C, Moreau J, Gatimel N, Cohade C, 
Lesourd F, Parinaud J, Leandri R. Establishment and 
validation of a score to predict ovarian response to 
stimulation in IVF. Reprod Biomed Online. 2018; 
36:26–31. 

 https://doi.org/10.1016/j.rbmo.2017.09.011 
PMID:29111311 

42. Melo MA, Garrido N, Alvarez C, Bellver J, Meseguer M, 
Pellicer A, Remohí J. Antral follicle count (AFC) can be 
used in the prediction of ovarian response but cannot 
predict the oocyte/embryo quality or the in vitro 
fertilization outcome in an egg donation program. 
Fertil Steril. 2009; 91:148–56. 

 https://doi.org/10.1016/j.fertnstert.2007.11.042 
PMID:18455166 

43. Jamil Z, Fatima SS, Ahmed K, Malik R. Anti-mullerian 
hormone: above and beyond conventional ovarian 
reserve markers. Dis Markers. 2016; 2016:5246217. 

 https://doi.org/10.1155/2016/5246217 
PMID:26977116 

44. Li R, Gong F, Zhu Y, Fang W, Yang J, Liu J, Hu L, Yang D, 
Liang X, Qiao J. Anti-müllerian hormone for prediction 
of ovarian response in Chinese infertile women 
undergoing IVF/ICSI cycles: a prospective, multi-centre, 
observational study. Reprod Biomed Online. 2016; 
33:506–12. 

 https://doi.org/10.1016/j.rbmo.2016.07.003 
PMID:27502068 

45. Christensen MW, Kesmodel US, Christensen K, 
Kirkegaard K, Ingerslev HJ. Early ovarian ageing:  
is a low number of oocytes harvested in young 
women associated with an earlier and increased  
risk of age-related diseases? Hum Reprod. 2020; 
35:2375–90. 

 https://doi.org/10.1093/humrep/deaa188 
PMID:32949236 

46. Peluso C, Oliveira R, Laporta GZ, Christofolini DM, 
Fonseca FL, Laganà AS, Barbosa CP, Bianco B. Are 
ovarian reserve tests reliable in predicting ovarian 
response? results from a prospective, cross-sectional, 

single-center analysis. Gynecol Endocrinol. 2021; 
37:358–66. 

 https://doi.org/10.1080/09513590.2020.1786509 
PMID:32613875 

47. Lee RW, Khin LW, Hendricks MS, Tan HH, Nadarajah S, 
Tee NW, Loh SF, Tai BC, Chan JK. Ovarian biomarkers 
predict controlled ovarian stimulation for in vitro 
fertilisation treatment in Singapore. Singapore Med J. 
2020; 61:463–68. 

 https://doi.org/10.11622/smedj.2020130 
PMID:33043373 

48. Reljic M, Vlaisavljevic V, Gavric V, Kovacic B, Cizek-
Sajko M. Value of the serum estradiol level on the day 
of human chorionic gonadotropin injection and on the 
day after in predicting the outcome in natural in vitro 
fertilization/intracytoplasmic sperm injection cycles. 
Fertil Steril. 2001; 75:539–43. 

 https://doi.org/10.1016/s0015-0282(00)01735-0 
PMID:11239538 

49. Vural B, Cakiroglu Y, Vural F. The predictor markers of 
ovarian response in poor responders under 40 years of 
age. Clin Exp Obstet Gynecol. 2016; 43:650–53. 

 PMID:30074312 

50. Sahmay S, Cetin M, Ocal P, Kaleli S, Senol H, Birol F, Irez 
T. Serum anti-müllerian hormone level as a predictor 
of poor ovarian response in in vitro fertilization 
patients. Reprod Med Biol. 2010; 10:9–14. 

 https://doi.org/10.1007/s12522-010-0066-1 
PMID:29699077 

51. Toth TL, Awwad JT, Veeck LL, Jones HW Jr, Muasher SJ. 
Suppression and flare regimens of gonadotropin-
releasing hormone agonist. Use in women with 
different basal gonadotropin values in an in vitro 
fertilization program. J Reprod Med. 1996; 41:321–26. 

 PMID:8725756 

52. Abbara A, Vuong LN, Ho VN, Clarke SA, Jeffers L, 
Comninos AN, Salim R, Ho TM, Kelsey TW, Trew GH, 
Humaidan P, Dhillo WS. Follicle size on day of trigger 
most likely to yield a mature oocyte. Front Endocrinol 
(Lausanne). 2018; 9:193. 

 https://doi.org/10.3389/fendo.2018.00193 
PMID:29743877 

53. Siddhartha N, Reddy NS, Pandurangi M, Tamizharasi 
M, Radha V, Kanimozhi K. Correlation of serum 
estradiol level on the day of ovulation trigger with the 
reproductive outcome of intracytoplasmic sperm 
injection. J Hum Reprod Sci. 2016; 9:23–27. 

 https://doi.org/10.4103/0974-1208.178631 
PMID:27110074 

  

https://doi.org/10.1007/s00404-016-4274-8
https://pubmed.ncbi.nlm.nih.gov/28012077
https://doi.org/10.1016/j.rbmo.2013.07.008
https://pubmed.ncbi.nlm.nih.gov/23953069
https://doi.org/10.1016/j.rbmo.2017.09.011
https://pubmed.ncbi.nlm.nih.gov/29111311
https://doi.org/10.1016/j.fertnstert.2007.11.042
https://pubmed.ncbi.nlm.nih.gov/18455166
https://doi.org/10.1155/2016/5246217
https://pubmed.ncbi.nlm.nih.gov/26977116
https://doi.org/10.1016/j.rbmo.2016.07.003
https://pubmed.ncbi.nlm.nih.gov/27502068
https://doi.org/10.1093/humrep/deaa188
https://pubmed.ncbi.nlm.nih.gov/32949236
https://doi.org/10.1080/09513590.2020.1786509
https://pubmed.ncbi.nlm.nih.gov/32613875
https://doi.org/10.11622/smedj.2020130
https://pubmed.ncbi.nlm.nih.gov/33043373
https://doi.org/10.1016/s0015-0282(00)01735-0
https://pubmed.ncbi.nlm.nih.gov/11239538
https://pubmed.ncbi.nlm.nih.gov/30074312
https://doi.org/10.1007/s12522-010-0066-1
https://pubmed.ncbi.nlm.nih.gov/29699077
https://pubmed.ncbi.nlm.nih.gov/8725756
https://doi.org/10.3389/fendo.2018.00193
https://pubmed.ncbi.nlm.nih.gov/29743877
https://doi.org/10.4103/0974-1208.178631
https://pubmed.ncbi.nlm.nih.gov/27110074


 

www.aging-us.com 17152 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. LASSO Cox regression model. (A) Plot of LASSO coefficient profiles. (B) Plot of partial likelihood deviance for 
the 11 features in the study cohort. 

 

 
 

Supplementary Figure 2. Variable importance ranking in CPLM. 
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Supplementary Figure 3. Parameters of decision tree in COS pre-launch models.  
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Supplementary Figure 4. Parameters of decision tree in hCG pre-trigger models.  

 


