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INTRODUCTION 
 

Pulmonary arterial hypertension (PAH) is a serious 

cardiovascular disease leading to right heart failure and 

eventually death [1]. The main pathophysiology of PAH 

is incrassation of the medial and intimal layers of the 
pulmonary arterial wall, which might result in increased 

pulmonary vascular resistance and haemodynamic 

derangements [2]. Although many genes and related 

biological processes have been reported to be involved 

in the development of PAH in recent years [3], the 

underlying molecular mechanism of PAH remains 

unclear. In terms of PAH therapy, the curative effects of 

specific drugs related to the prostacyclin pathway [4], 

endothelin pathway [5] or nitric oxide pathway [6] are 

not satisfactory following the support of clinical trials 

consisting of all PAH subtypes. Therefore, investigation 

of the underlying mechanisms of PAH and a search for 

auxiliary potential drugs for its treatment are still 

desperately needed. 
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ABSTRACT 
 

Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disease without a clear mechanism or 
drugs for treatment. Therefore, it is crucial to reveal the underlying molecular mechanism and identify 
potential drugs for PAH. In this study, we first integrated three human lung tissue datasets (GSE113439, 
GSE53408, GSE117261) from GEO. A total of 151 differentially expressed genes (DEGs) were screened, followed 
by KEGG and GO enrichment analyses and PPI network construction. Five hub genes (CSF3R, NT5E, ANGPT2, 
FGF7, and CXCL9) were identified by Cytoscape (Cytohubba). GSEA and GSVA were performed for each hub 
gene to uncover the potential mechanism. Moreover, to repurpose known and therapeutic drugs, the CMap 
database was retrieved, and nine candidate compounds (lypressin, ruxolitinib, triclabendazole, L-BSO, 
tiaprofenic acid, AT-9283, QL-X-138, huperzine-a, and L-741742) with a high level of confidence were obtained. 
Then ruxolitinib was selected to perform molecular docking simulations with ANGPT2, FGF7, NT5E, CSF3R, JAK1, 
JAK2, JAK3, TYK2. A certain concentration of ruxolitinib could inhibit the proliferation and migration of rat 
pulmonary artery smooth muscle cells (rPASMCs) in vitro. Together, these analyses principally identified CSF3R, 
NT5E, ANGPT2, FGF7 and CXCL9 as candidate biomarkers of PAH, and ruxolitinib might exert promising 
therapeutic action for PAH. 
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Recently, there has been a growing trend for PAH 

research to utilize high-throughput technologies to 

explore novel diagnostic or prognostic biomarkers and 

therapeutic targets. For example, Wang et al. reported 

that YWHAB was a diagnostic biomarker for idiopathic 

pulmonary arterial hypertension [3], and Zhu et al. 

uncovered that miR-140-5p and TNF-α might be 

therapeutic targets for PAH [7]. Recently, many 

bioinformatics tools were developed and FocusHeuristics 

is a competitive approach to explore disease-associated 

genes [8]. On the other hand, “Cytohubba”, a plug-in of 

Cytoscape, is a useful and user-friendly tool to obtain hub 

genes in biological network and has been widely applied 

[9]. However, the limited sample sizes make these studies 

inconsistent and can lead to unconvincing conclusions 

about biological functions. Therefore, it is much more 

critical to elucidate the underlying molecular mechanism 

of PAH, which will in turn provide possible routes on 

which potential treatments can be designed. 

 

Regarding PAH treatment, to develop a novel drug 

requires substantial costs and a lengthy process of 

ensuring its safety and tolerance in the human body [10, 

11]. By contrast, repurposing a non-novel drug with 

precise and new mode of action is relatively more cost-

efficient and time-saving. Recently, an increasing 

number of free databases and online tools have been 

developed, which could help our repositioning of 

known drugs. For example, the Connectivity map 

(CMap; https://clue.io/) database serves as a potentially 

useful tool for drug screening that can predict molecular 

targeted agents based on DEGs [12]. Combined with 

high-throughput data, it facilitates the repurposing of 

known drugs which has passed the toxicology and 

dosage analyses. Recently, a study reanalysed CMap 

whole-genome transcriptome data by combining 26 

similarity scores with 6 different heuristics. It provided 

an insight to find a known drug by comparing the 

effects on the transcriptomes [13]. Then, molecular 

docking simulation and in vitro experiments can be 

performed to verify the prediction results. 

 

In the present study, we integrated 3 datasets containing 

132 human lung tissue samples to obtain DEGs. Then, 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

and Gene Ontology (GO) enrichment analyses were 

performed based on the DEGs. After obtaining the hub 

genes from the protein-protein interaction (PPI) 

network, Gene set enrichment analysis (GSEA) and 

gene set variation analysis (GSVA) were utilized to 

further reveal the potential biological functions of the 

hub genes [14]. Then, the CMap database was 

employed to search for potential compounds for PAH 
treatment. Molecular docking simulation between 

candidate compound and the proteins encoded by hub 

genes was conducted to validate their prospective 

application in PAH therapy. Ultimately, in vitro 

experiments verified the effects of ruxolitinib in PAH. 

 

RESULTS 
 

Identification of DEGs related to PAH 

 

The study design is illustrated in Figure 1. We 

downloaded the raw data of GSE113439, GSE53408, 

and GSE117261 from the Gene Expression Omnibus 

(GEO; https://www.ncbi.nlm.nih.gov/gds/) database 

[15]. Supplementary Table 1 shows the general 

characteristics of the three datasets. Next, they were 

inputted into R by “affy” package and the missing data 

were filled by “impute” package [16]. Then, “sva” 

package was used to remove batch effects [17]. The Q-

Q plot shows the effect of batch removal 

(Supplementary Figure 1). The heterogeneity of the 

datasets before and after batch effect removal was 

examined by “pca” package (Figures 2A, 2B). To 

annotate the data, we used R software to match each 

probeset to the corresponding gene symbol according to 

“hugene10sttranscriptcluster.db” package. If multiple 

probesets mapped to a same gene symbol, the maximum 

expression value was selected. In total, 18,820 genes 

were obtained. 

 

To identify the DEGs, the 132 samples were divided 

into 47 control samples (CON group) and 85 pulmonary 

arterial hypertension samples (PAH group). “Limma” 

package was utilized to conduct the differential gene 

expression analysis, and a total of 151 significant DEGs 

(103 upregulated and 48 downregulated) were identified 

(adjusted P value < 0.05, FC > 1.5; Supplementary 

Table 2) [18]. All DEGs were used to perform 

hierarchical clustering analysis, and the heatmap 

showed evidently different expression between the two 

groups (Figure 2C). 

 

GO and KEGG pathway enrichment analyses of 

DEGs 

 

We carried out GO enrichment analysis on DEGs with 

the help of “clusterprofiler” package to explore their 

biological features [19]. Biological process (BP) terms 

showed that the DEGs were enriched in “regulation  

of inflammatory response”, “peptidyl-tyrosine 

phosphorylation” and “peptidyl-tyrosine modification” 

(Figure 3A), suggesting that the inflammatory response 

might play an important role in the development of 

PAH. In terms of cellular component (CC), the terms 

“extracellular matrix”, “membrane raft” and “membrane 

microdomain” were significantly enriched (Figure 3B). 
Therefore, we hypothesized that the DEGs mainly 

played roles in the extracellular matrix. The major 

enriched molecular function (MF) terms of the DEGs 

https://clue.io/
https://www.ncbi.nlm.nih.gov/gds/
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were “receptor ligand activity”, “integrin binding” and 

“sulfur compound binding” (Figure 3C). 

 

Moreover, to explore the more profound function of 

DEGs, we conducted KEGG pathway enrichment 

analysis with “clusterprofiler” package [19]. Based on 

the results, the following pathways were significantly 

enriched in DEGs: “PI3K-AKT signalling pathway”, 

“focal adhesion” and “hypertrophic cardiomyopathy” 

(HCM) (Figure 3D). 

 

PPI network analysis and hub gene recognition 

 

To find the hub genes, a PPI network was constructed 

with Search Tool for the Retrieval of Interacting Genes 

(STRING; https://string-db.org/) [20], and a total of 128 

nodes and 858 edges were in the PPI network (Figure 

4A). Next, we took advantage of Cytoscape's plug-in 

“Cytohubba” to explore the PPI network. To have a 

more credible result, all 12 algorithms were utilized to 

calculate the degree of connectivity of DEGs. We 

selected top 40 genes in each algorithm (As many genes 

scored equally in the MNC, Stress, BottleNeck, and 

EcCentricity algorithms, the number of obtained 

candidate genes was over 40 (Supplementary Table 3)). 

Then we intersected the results of 12 algorithms. 

Finally, five hub genes (CSF3R, NT5E, ANGPT2, 

FGF7, and CXCL9) were obtained (Figure 4B and 

Supplementary Table 4). The five hub genes are 

labelled in the volcano plot to show their expression 

levels (Figure 4C). 

 

GSEA and GSVA to reveal the potential functions of 

hub genes 

 

To further reveal the potential function of the five hub 

genes, GSEA was performed based on each single hub 

gene (Figures 5A, 5C, 5E, 5G, 5I). The NT5E, CSF3R 

and ANGPT2 groups were enriched in the spliceosome 

pathway. Meanwhile, the cell cycle was enriched in 

FGF7, ANGPT2 and CSF3R groups, whereas focal 

adhesion was enriched in the FGF7, ANGPT2 and  

NT5E groups. The other enriched items were specific to 

single groups. For example, the chemokine signalling 

pathway, purine metabolism, cytokine-cytokine receptor 

interaction and the MAPK signalling pathway were

 

 
 

Figure 1. The study design. PAH: pulmonary arterial hypertension; GEO: Gene Expression Omnibus; GO: Gene Ontology; PPI: protein-

protein interaction; CMap: Connectivity Map; KEGG: Kyoto Encyclopedia of Genes and Genomes; GSEA: Gene Set Enrichment Analysis; GSVA: 
Gene Set Variation Analysis; MTT: 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium Bromide; CCK-8: Cell Counting Kit-8. 

https://string-db.org/
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Figure 2. The result of DEGs identification. (A) Principal component analysis (PCA) before batch effects removement. (B) PCA after batch 

effects removement. (C) Heatmap of 151 DEGs screened by “Limma” package. In the differentiating gene sets (GSE113439, GSE117261 and 
GSE53408), samples were sorted by columns, and genes were sorted by rows. Cyan squares represented the control group, and red squares 
represented the PAH group. DEGs: differentially expression genes. 
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enriched in a group of CXCL9. Most of the pathways 

were closely associated with cell proliferation. 

 

Furthermore, the top 20 GSVA terms of the five groups 

are shown in Figures 5B, 5D, 5F, 5H, 5J, and the details 

of the 20 terms are shown in Supplementary Tables 5–9. 

The top GSVA term in each result was “one carbon 

pool by folate”, “propanoate metabolism”, “graft versus 

host disease”, “valine leucine and isoleucine 

degradation”, and “protein export”. In summary, these 

results confirmed that these hub genes contributed to 

proliferation processes. 

 

CMap analysis and molecular docking simulation 

 

To find drugs for PAH therapy, we searched the CMap 

database. Nine candidate compounds (lypressin, 

ruxolitinib, triclabendazole, L-BSO, tiaprofenic acid, 

AT-9283, QL-X-138, huperzine-a, and L-741742) were 

considered with high levels of confidence (Table 1). 

Their 2D structures were provided by PubChem 

(https://pubchem.ncbi.nlm.nih.gov/; Supplementary 

Figure 2) [21]. Because the 2D structure of QL-X-138 

was not retrieved, only eight 2D structures are 

presented. The targets of these nine compounds 

provided by the CMap database were utilized to 

construct drug-target networks in Cytoscape software 

(Supplementary Figure 3). 

 

Furthermore, molecular docking simulation was utilized 

to delve into the possible therapeutic mechanisms of 

these drugs. Five hub genes were supposed to serve as 

potential therapeutic targets in PAH. Among the nine 

compounds, lypressin ranked first, but its 3D structure 

was not provided on ZINC (http://zinc.docking.org/) 

[22]. In addition, ruxolitinib, described as a Janus-

associated kinase (JAK) inhibitor in the CMap database, 

obtained the second highest score (97.86). Activation of 

 

 
 

Figure 3. The result of GO and KEGG pathway enrichment analyses. (A) Biological process GO terms for DEGs. (B) Cellular 
component GO terms for DEGs. (C) Molecular function GO terms for DEGs. (D) KEGG pathways for DEGs. Top 10 sorted by GeneRatio of GO 
terms or KEGG pathways were shown. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes. DEGs: differentially expression 
genes. 

https://pubchem.ncbi.nlm.nih.gov/
http://zinc.docking.org/
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Figure 4. PPI network construction and hub genes analyses. (A) PPI network. Quadrangles represented proteins and lines represented 

interactions between proteins. hub genes were in red color. (B) Flower plot of results from twelve algorithms. (C) Volcano plot of all genes. 
Orang dots represented 103 up-regulated genes and cyan dots represented 48 down-regulated genes. CSF3R, NT5E, ANGPT2, FGF7, CXCL9 
marked in the figure were hub genes. PPI: protein-protein interaction. 
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Figure 5. GSEA and GSVA of hub genes in the PAH. (A, C, E, G, I) Top 3 KEGG pathways in the high-expression group of single hub 
genes. (A) ANGPT2; (C) CSF3R; (E) CXCL9; (G) NT5E; (I) FGF7. (B, D, F, H, J) GSVA-derived clustering heatmaps of top 20 differentially 
expressed pathways for each hub gene. (B) ANGPT2; (D) CSF3R; (F) CXCL9; (H) NT5E; (J) FGF7. 
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Table 1. The result of CMap. 

Drug name Score Description Target 

lypressin 98.84 Vasopressin receptor agonist AVPR1A, AVPR1B, AVPR2 

ruxolitinib 97.86 JAK inhibitor JAK1, JAK2, TYK2, JAK3 

triclabendazole 94.73 Microtubule inhibitor DNMT1 

L-BSO 94.66 Glutathione transferase inhibitor GCLM 

tiaprofenic-acid 93.96 Cyclooxygenase inhibitor PTGS2, PTGS1 

AT-9283 91.00 JAK inhibitor 
AURKA, AURKB, ABL1, BCR, FLT3, JAK2, JAK3, 

RPS6KA6, STK17A 

QL-X-138 90.35 MTOR inhibitor BTK, JAK3, MKNK2, MTOR, PRKDC 

L-741742 -90.13 Dopamine receptor antagonist DRD4, DRD3, SCN1A, SCN3A 

huperzine-a -90.46 Acetylcholinesterase inhibitor ACHE 

 

the JAK-STAT signalling pathway has been reported to 

induce the transcription of pro-angiogenesis and pro-

inflammatory genes, leading to the progression of PAH 

[23]. Consequently, ruxolitinib was selected to dock 

with the proteins encoded by hub genes. We downloaded 

the 3D structures of NT5E (PDB: 4H2F), ANGPT2 

(PDB: 4JZC), FGF7 (PDB: 1QQL), CSF3R (PDB: 

2D9Q) and ruxolitinib to perform the molecular docking 

simulations, whereas the 3D structure of CXCL9 was 

not provided on RCSB PDB (https://www.rcsb.org/) 

[24]. In addition, JAK1 (PDB: 4GS0), JAK2 (PDB: 

2B7A), JAK3 (PDB: 3ZC6) and TYK2 (PDB: 4GFO) as 

known targets of ruxolitinib served as positive controls. 

The binding energies between ruxolitinib and ANGPT2, 

FGF7, NT5E, CSF3R, JAK1, JAK2, JAK3, TYK2 were 

-6.42, -5.25, -6.30, -3.69, -3.59, -3.65, -3.90, -4.73 

kcal/mol, respectively (Figure 6). It indicated that 

ANGPT2, FGF7 and NT5E may be the targets of 

ruxolitinib in treatment of PAH (The binding energies of 

these 3 proteins were higher than the positive controls). 

Other details of the results, such as the hydrogen bond, 

atomic distance and binding site data, are shown in 

Figure 6. From the above findings, ruxolitinib may have 

an unexpected effect in the treatment of PAH. 

 

Ruxolitinib significantly inhibits the proliferation and 

migration abilities of hypoxia-induced rPASMCs 

 

To further explore the effects of ruxolitinib in PAH, we 

investigated the regulation of rPASMCs migration and 

proliferation by ruxolitinib. Firstly, the cytotoxicity of 

ruxolitinib was assessed by 3-[4,5-Dimethylthiazol-2-yl]-

2,5-diphenyltetrazolium Bromide (MTT) assay and 

evaluated by the 50% inhibitory concentration (IC50) 

values (6.719 µM under hypoxic and 58.26 µM  

under normoxic) (Figures 7A, 7B). Therefore, the 

concentrations of ruxolitinib was used including 0,  

0.1, 0.5, 1 and 2.5 µM. The result of CCK-8 assay 

indicated the inhibited proliferation in PASMCs with the 

treatment of ruxolitinib (Figure 7C). With concentration 

increasing, the inhibition effect became more obvious. 

Coincidentally, immunofluorescence assay demonstrated 

that administration of ruxolitinib significantly decreased 

the expression of Ki67 (a marker of proliferation) in 

hypoxia-induced rPASMCs (Figures 7D, 7F). Moreover, 

scratch wound assay showed that rate of closure was 

increased under hypoxia exposure for 12h and 24h, 

nevertheless hypoxia-induced migration was significantly 

suppressed by ruxolitinib (Figures 7E, 7G). Collectively, 

these data strongly suggest that ruxolitinib could 

effectively inhibit cell proliferation and cell migration 

under hypoxia exposure in vitro. 

 

DISCUSSION 
 

Here, we identified five hub genes of PAH and potential 

mechanism of PAH with bioinformatic analyses. 

Further studies are urgently needed to verify the hub 

genes. Furthermore, nine candidate compounds were 

predicted through the CMap database, in which 

ruxolitinib was considered the drug with the most 

clinical potential given its ability to target ANGPT2, 

FGF7 and NT5E, especially ANGPT2 and inhibit 

proliferation and migration of hypoxia-induced 

rPASMCs. These findings will shed new light on 

promising therapeutic strategies to treat PAH. 

 

PAH is a serious pulmonary vascular disease caused by 

multiple risk factors [17]. Although great progress has 

been made in the study of PAH, there is still a lack of 

effective methods to diagnose and treat PAH. 

Fortunately, with the development of high-throughput 

technologies, an increasing number of novel biomarkers 

and therapeutic targets for PAH have been uncovered. 

For example, Sun et al. found that Smad9, BMPR2, 

Eng, and IL4 were differentially expressed in PAH 

mice. On the other hand, lncRNAs NR-036693, NR-

027783, NR-033766, and NR-001284 played an 

important role in PAH pathology and might serve as 

therapeutic targets for PAH. In the present study, we 

https://www.rcsb.org/
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integrated three human lung tissue datasets, obtaining 

151 significant DEGs to explore the critical genes, 

pathways and potential drugs that are associated with 

PAH. 

 

According to the integrated expression data, 151 DEGs 

were identified between the CON group and PAH group. 

The results of the BP term GO annotation analysis 

indicated that the DEGs were markedly enriched in the 

inflammatory response, which was consistent with the 

previous demonstration that inflammation was emerging 

as a key disease-related factor in PAH [25]. The 

enriched CC terms of DEGs were related to the extra-

cellular matrix, which was in accordance with published 

literature showing that the extracellular matrix plays a 

central role in the pathogenesis of PAH [26]. The MF 

analysis of GO terms revealed that the DEGs were the 

most significantly enriched in receptor ligand activity, 

suggesting that receptor-ligand interactions are an 

essential component of PAH [27]. Additionally, KEGG 

analysis suggested that the DEGs were the most 

significantly enriched in the PI3K-AKT signalling 

pathway, which was consistent with the previous 

demonstration that pulmonary hypertension involves 

crosstalk with proliferation and apoptosis mechanisms 

[28, 29]. The results of the enrichment analysis exactly 

support the validity of the DEGs obtained in the 

previous analysis. 

 

 
 

Figure 6. The results of the molecular docking simulations. (A) There were two hydrogen bonding between the amino acid residue of 
ANGPT2 (PDB: 4JZC) (GLU29) and ruxolitinib, and the distance between the atoms was 2.1Å and 2.4Å. (B) The amino acid residue of FGF7 
(PDB: 1QQL) bound to ruxolitinib was GLN35, and the distance was 2.0Å. (C) The amino acid residue of NT5E (PDB: 4H2F) bound to ruxolitinib 
was GLU125, and the distance was 2.1Å. (D) The amino acid residue of CSF3R (PDB: 2D9Q) bound to ruxolitinib was GLN234, and the distance 
was 2.2Å. (E) The amino acid residue of JAK1 (PDB: 4GS0) bound to ruxolitinib was GLU441, and the distance was 2.1Å. (F) The amino acid 
residues of JAK2 (PDB: 2B7A) bound to ruxolitinib were VAL1110 and ASN1111, and the distance were 2.2Å and 2.1Å. (G) The amino acid 
residue of JAK3 (PDB: 3ZC6) bound to ruxolitinib was GLU938, and the distance was 2.1Å. (H) The amino acid residue of TYK2 (PDB: 4GFO) 
bound to ruxolitinib was GLU1053, and the distance was 2.2Å. 
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Figure 7. Ruxolitinib inhibits hypoxia-induced rPASMCs proliferation and migration. Nx = Normoxia group; Hx = Hypoxia group; Hx 
+ Ruxo = Hypoxia plus Ruxolitinib group. (A, B) Determination of IC50 values. RPASMCs were incubated with ruxolitinib at different 
concentrations (0, 0.1, 0.5, 1 and 2.5 µM) for 24 h under hypoxia (A) and normoxia (B), viable cell number was determined by MTT assay. The 
results yielded IC50 values were 6.719 µM (A) and 58.26 µM (B), respectively. (C) CCK-8 assay for cell proliferation. RPASMCs were treated 
with indicated concentrations of ruxolitinib for 24 h, and the cell proliferation was determined by CCK-8 assay. (D, F) Immunofluorescence 
staining of Ki67(red) in rPASMCs of indicated groups. RPASMCs were treated with or without indicated concentrations of ruxolitinib for 24 h 
under hypoxic conditions, the untreated cells were treated as a normoxia control group. Cells nuclear were counterstained with DAPI (blue). 
(E, G) Wound scratch assay. RPASMCs were treated with ruxolitinib at a specified concentration in the presence or absence of oxygen for 12h 
and 24h, migration capabilities were represented by relative migration distances. Data are presented as mean ± SEM, *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001. 
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In the present study, five hub genes (FGF7, CXCL9, 

NT5E, ANGPT2 and CSF3R) were identified. Among 

them, FGF7 was upregulated in PAH and confirmed to 

be inhibited by miR-455-3p-1 via the RAS/ERK 

signalling pathway [30]. Belperio et al. showed that there 

was no significant difference in CXCL9 expression in the 

plasma of normal and PAH patients [31]. However, in 

this study, we used a much larger sample size and 

selected human lung tissue samples, which confirmed 

that CXCL9 was expressed at higher levels in the lung 

tissue of PAH patients than in the lung tissues of healthy 

controls. Moreover, ANGPT2 was upregulated in chronic 

obstructive pulmonary disease (COPD) patients with 

PAH [32]. However, the specific role of ANGPT2 in the 

progression of PAH is still unclear. As far as the other 

hub genes, the roles of NT5E and CSF3R have not been 

identified. Therefore, exploring the functions of these 

genes could provide useful information. 

 

To further explore the role of the hub genes in the 

progression of PAH, GSEA and GSVA were performed 

based on each hub gene. GSEA is a powerful analytical 

method using the cross-exchange hypothesis test model 

to evaluate the score of the gene sets and can reveal 

many related biological pathways [14]. In addition, 

GSVA is another gene set enrichment analysis method 

that can estimate the variation of pathway activity over 

every sample in an unsupervised manner and further 

identify related gene sets [33]. By combining the two 

enrichment analytical methods, we were able to obtain 

more credible results. In the present research, many cell 

cycle-related pathways were enriched, including cell 

cycle, DNA replication and mismatch repair pathways, 

suggesting that the genes involved in these pathways 

may contribute to proliferation processes. 

 

In the present study, we found nine potential small 

molecular compounds that can reverse the altered 

expression of the DEGs and improve PAH through 

CMap analysis. Among the nine compounds, lypressin 

is an antidiuretic hormone that has been found in pigs 

and some marsupial families [34]. Triclabendazole is an 

anthelminthic drug and is used in the treatment of 

fascioliasis [35]. Tiaprofenic acid is a non-steroidal 

anti-inflammatory drug that is widely used to treat pain, 

particularly arthritis pain [36]. As a multitarget kinase 

inhibitor, AT-9283 can inhibit the process of STAT3 

tyrosine phosphorylation and inhibit multiple myeloma 

cell proliferation [37] and is widely used in cancer 

treatment [38, 39]. Another study showed that AT-9283 

is an aurora kinase/JAK inhibitor [40]. Huperzine-a is 

reported as acetylcholinesterase inhibitor and 

neuroprotective agent [41, 42]. L-741742 is a dopamine 
receptor antagonist [43]. Nevertheless, previous reports 

have not shown whether these drugs are effective in 

treating PAH.  

Overall, ruxolitinib obtained the second highest score 

(97.86) and targets JAK1, JAK2, TYK2 and JAK3 based 

on the CMap database. Previously, ruxolitinib was 

confirmed to be used to treat myelofibrosis [44]. 

Epidemiological studies found PAH to be a common 

complication of myelofibrosis [45], and ruxolitinib could 

effectively improve PAH in myelofibrosis patients [46]. 

However, a case report reported that ruxolitinib might 

exacerbate PAH, but its mechanism was unclear [47]. To 

further explore the interaction between ruxolitinib and 

PAH, we performed molecular docking simulations 

between ruxolitinib and the proteins encoded by hub 

genes (ANGPT2, FGF7, NT5E, and CSF3R). Among 

the hub genes, CXCL9 was not considered due to the 

lack of 3D structure. The results showed that ruxolitinib 

has good binding ability with ANGPT2, FGF7 and 

NT5E, suggesting that ruxolitinib has potential utility in 

PAH therapy. Therefore, in vitro experiments were 

conducted. The obtained results displayed the 

significantly suppressive effect of ruxolitinib on 

rPASMCs proliferation and migration. Interestingly, as 

an inhibitor of JAK, ruxolitinib significantly reduced 

cytokine-mediated lung adenocarcinoma proliferation by 

inhibiting the JAK/STAT signal pathway [48]. Similarly, 

in the basic study of JAK2-V617F-positive leukemia 

cells, ruxolitinib may inhibit cell proliferation through 

dephosphorylation of the JAK2 substrate STAT5 and 

further regulation of the mTORC1/S6K/4EBP1 signal 

pathway [49]. This study was highly correlated with our 

results of enrichment analysis (PI3K-AKT signalling 

pathway). Recently, a study reported ruxolitinib has a 

therapeutic effect on PAH through blocking Jak2-Stat3 

signalling pathway [50]. The view in this article supports 

our result that ruxolitinib might exert promising 

therapeutic action for PAH. However, relevant 

molecular mechanisms that the article has studied are 

different than the ones we explored. In present study, the 

proteins encoded by 3 hub genes (ANGPT2, FGF7, 

NT5E) were considered as the targets. Meanwhile, 

ruxolitinib acted by suppressing the proliferation via 

PI3K-AKT signalling pathway. These demonstrated  

that ruxolitinib may have particular value in the 

treatment of PAH. However, the effects and mechanisms 

of ruxolitinib should still be validated by further 

experimental evidence and long-term clinical trials. 
 

MATERIALS AND METHODS 
 

Identification of DEGs 
 

The raw data of three eligible microarray datasets 

(GSE113439, GSE53408, GSE117261) based on 

platform GPL6244 (Affymetrix Human Gene 1.0 ST 
Array) were downloaded from GEO database. 

Background correction, normalization and expression 

calculation of the raw data were carried out with “affy” 
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package using the Robust Multi-array Average (RMA) 

method [51]. Then the “Knn” method in “impute” 

package was used to fill the missing data. To remove 

the batch effects, “sva” package in R software was 

applied. We matched the probesets with corresponding 

gene symbols with “hugene10sttranscriptcluster.db” 

package in R software. To select the DEGs, “Limma” 

package was utilized with cut-offs of adjusted P value < 

0.05 and fold change (FC) > 1.5. 

 

GO and KEGG pathway enrichment analyses 

 

GO enrichment analysis is a commonly used 

bioinformatic approach for searching comprehensive 

information of large-scale gene data, including BP, CC 

and MF. KEGG pathway enrichment analysis is widely 

used to understand biological mechanisms and functions. 

GO and KEGG enrichment analyses were performed 

with “clusterprofiler” package. The top 10 genes sorted 

by the GeneRatio of GO terms and KEGG pathways 

were visualized by “GOplot” package [47]. 

 

PPI network construction and hub gene identification 

 

A PPI network of DEGs was constructed by the STRING 

database with a combined score > 0.7 as the cut-off point 

to assess the direct and indirect associations of the DEGs. 

“Cytohubba” (a plug-in) was utilized to identify the hub 

genes in Cytoscape (version 3.7.1). Then, 12 algorithms 

(MCC, DMNC, MNC, Degree, EPC, BottleNeck, 

Eccentricity, Closeness, Radiality, Betweenness, Stress 

and Clustering coefficient) in “Cytohubba” were used to 

calculate the weight of each gene in total. 

 

GSEA and GSVA 

 

The “clusterprofile” package was utilized to perform 

GSEA of the hub genes with integrated gene expression 

data. PAH samples were divided into two groups (high 

expression and low expression) based on the median 

expression of each hub gene. Then differential expression 

analysis was performed with “Limma” package. The log2 

fold change is used as the rank list for GSEA analysis 

[52]. Finally, the top 3 GSEA terms was visualized by 

“enrichplot” package. Additionally, “GSVA” package 

was used to further explore the significant signalling 

pathways associated with the hub genes [33]. GSVA 

requires two files, a gene set and a gene expression 

matrix. “GSVAdata” package was used to read a file of 

gene set in GMT format. Then, the gene set and the gene 

expression matrix were integrated by “GSVA” package. 

Next, a matrix of KEGG pathway was obtained. 

Furthermore, “Limma” was used to find significant 
KEGG pathway. “C2.cp.kegg.v7.0.symbols.gmt” served 

as the reference gene set for both GSEA and  

GSVA, which was downloaded from MSigDB 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp) 

[53]. The top 20 GSVA terms were visualized by 

“pheatmap” package. P value < 0.05 was considered 

statistically significant. 

 

Prediction of potential drugs for PAH treatment 

 

The CMap database is an online resource that can be 

used to establish links between genes, compounds and 

diseases based on similar and opposite gene expression 

profiles. In the present study, the DEGs of PAH were 

divided into two groups (upregulated genes and 

downregulated genes). Then, the DEGs were loaded into 

the “QUERY” page. In this study, connectivity scores > 

90 or < -90 were selected. 2D structures of candidate 

compounds were obtained from PubChem. To further 

investigate the specific mechanism of the compounds, 

the molecular docking simulation was performed on 

AutoDock 4 software (version 4.2.6), which was 

designed to forecast how small molecules bind to a 

receptor of known 3D structure [54]. The 3D structures 

of proteins and compounds were downloaded from 

RCSB PDB and ZINC, respectively. Then, PyMOL was 

utilized to remove the water molecules and separate 

proteins from small molecules. Next, we used AutoDock 

to prepare the specific coordinate file (PDBQT). Then, 

the file was implemented to run AutoGrid and 

AutoDock. We selected the molecular docking of 

minimal binding energy with hydrogen bonds and 

exported the results as a PDBQT file. The file was 

converted into a PDB file by OpenBabel software 

(version 2.4.1). Finally, PyMOL software (version 2.3) 

was used to view and visualize the results [55]. 

 

Chemical reagents 

 

Ruxolitinib was purchased from Selleck (Selleck, 

Houston, TX, USA). MTT powder was purchased from 

Solarbio company (Solarbio Co., Beijing, China), 

dissolved by ultrasonic instrument, and finally prepared 

into MTT reagent (50mg/ mL, PBS). DMSO, DMEM, 

fetal bovine serum (FBS) were obtained from Thermo 

Fisher (Thermo Scientific Fisher, Wilmington, USA). 

 

Extraction and culture of rPASMCs 

 

Sprague-Dawley rats were anesthetized, immobilized, 

shaved, and disinfected. After opening the thorax of the 

rats, the heart and lungs were excised and the pulmonary 

artery was extracted. The pulmonary artery was 

transferred to high-pressure treated PBS for cleaning and 

the membrane and intima were removed carefully [56]. 

The pulmonary medium membrane was cut into small 
pieces and then cultured in DMEM containing 10% FBS 

(5% CO2 in 37° C). The primary rPASMCs were 

passaged after being cultured for 1 week. When the 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
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rPASMCs confluence reached 80% ~ 90%, they were 

subcultured to new petri dishes using trypsin–EDTA. 

The third to the fifth passage of rPASMCs were selected 

for the following experiments. 

 

MTT assay 

 

To explore the inhibition effect of ruxolitinib on 

hypoxic rPASMCs, we utilized MTT cytotoxicity 

assays to perform the cell viability tests [57]. 

RPASMCs were inoculated into 96-well plates with 

8000-10000 cells/well and allowed to attach for 6-8 h. 

RPASMCs were treated with ruxolitinib of different 

concentrations (from 5 mM to 0.1 nM) under hypoxia 

conditions to obtain the IC50 values. After 24 h of 

modelling, MTT reagent (5 mg/ml, 25 µl) was added 

into each well and incubated for another 4 h. We 

discarded all the medium from the wells, next, added 

DMSO (150 μl) into each well to dissolve formazan 

crystals. Then the absorbance at 490 nm was detected 

by a microplate reader and the IC50 value was 

calculated by linear regression analysis. 

 

Examination of cell proliferative ability 

 

Cell proliferation assay was measured by Cell Counting 

Kit-8 (CCK-8) assay (Dojindo, Kumamoto, Japan). We 

seeded the rPASMCs into 96-well plates (8000-10000 

cells/well) and preincubated until the cells attached. 

Then, rPASMCs were treated with different 

concentrations of ruxolitinib (0, 0.1, 0.5, 1 and 2.5 mM) 

and incubated for 24 h (5% O2, 5% CO2 in 37° C). 

Whereafter, we added 10 ul of CCK-8 assay solution to 

each well and the incubation continued for 4 h. The 

capacity of cell proliferation was determined by the 

absorbance measured at 450 nm through a microplate 

reader. 

 

Examination of cell migratory ability 

 

Wound scratch assay was performed to determine the 

ability of cell migratory. RPASMCs were plated onto 

12-well plates at a density of 6~8×103 cells/well and 

cultured up to 90% cell density. Then the streak wounds 

were scratched with a sterile 20 μl pipette tip. The cell 

culture medium was changed and treated with different 

concentrations of ruxolitinib (0, 0.1, 0.5, 1 and 2.5 

mM). We photographed the wounds in the same view at 

0, 12 and 24 h time points. The relative distance of cell 

migration was exhibited and measured by ImageJ 

software (National Institutes of Health, Bethesda, MD). 

 

Immunofluorescence 

 

To measure the effect of ruxolitinib on the  

cellular proliferation phenotype, we performed cell 

immunofluorescence analyses to detect the expression of 

Ki67 in rPASMCs. RPASMCs were planted on a glass 

cover slip, fixed with 4% paraformaldehyde and washed 

with PBS. Respectively, we used 0.1% Triton X-100 and 

5% BSA to permeabilize cell membranes and to block 

cells at room temperature. After the blocking solution 

was washed off, Ki67 (1:500, AF0198; Affinity) 

antibodies were used as primary antibody and slides 

were incubated overnight at 4° C. The next day, cells 

were incubated with the donkey anti-rabbit (1:1000; 

Alexa Fluor 594) for 1 h after being washed 3 times. 

Nuclei were counterstained with DAPI stain for 5 min. 

Images were observed with a fluorescence microscope 

(Olympus, Tokyo, Japan). 
 

Statistical analysis 
 

Statistical analyses were performed with GraphPad Prism 

6.0 (GraphPad Software, CA, USA). All the results 

presented were represented from at least 3 independent 

experiments. All the data were expressed as the mean 

standard error of mean (SEM). Comparisons between 

two groups were analysed by unpaired two-tailed 

Student’s t-test, and multiple comparisons were 

analysed by one-way analysis of variance (ANOVA). P 

values of <0.05 were considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. The quantile-quantile (Q-Q) plot of the batch effect of GSE113439, GSE53408 and GSE117261 
datasets is removed. 
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Supplementary Figure 2. 2D structure of the candidate compounds. (A) lypressin, (B) ruxolitinib, (C) triclabendazole, (D) L-BSO,  

(E) tiaprofenic acid, (F) AT-9283, (G) huperzine-a, (H) L-741742. 
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Supplementary Figure 3. The drug-target network for nine candidate drugs. Yellow represented drug and blue represented target. 

(A) ruxolitinib. (B) lypressin. (C) QL-X-138. (D) tiaprofenic-acid. (E) AT-9283. (F) triclabendazole. (G) L-BSO. (H) huperzine-a. (I) L-741742. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Characteristics of the individual dataset. 

GEO ID Platform Tissue type Sample size Country Time 

GSE113439 
GPL6244 (Affymetrix Human Gene 1.0 

ST Array) 
human lung tissue 15 vs. 11 Canada 2018 

GSE53408 
GPL6244 (Affymetrix Human Gene 1.0 

ST Array) 
human lung tissue 12 vs. 11 Canada 2013 

GSE117261 
GPL6244 (Affymetrix Human Gene 1.0 

ST Array) 
human lung tissue 58 vs. 25 United States 2018 

 

Supplementary Table 2. All differentially expressed genes. 

 

Supplementary Table 3. The result of PPI. 

Algorithm Gene 

MCC 

FGF7, POSTN, LCN2, S100A8, CSF3R, SAA1, S100A12, S100A9, ITGA2, ITGB3, CD69, MME, FAP, 

ABCB1, ASPN, SERPINE2, HAS2, SFRP2, INHBA, BIRC3, CFH, OGN, HBB, ECM2, SULF1, PDGFD, 

WIF1, RGS5, RSPO3, RNASE2, SAA2 

 

DMNC 

MME, AREG, CCDC80, SAA2, PDGFD, CSF3R, ITGA2, ANGPT2, IFI44L, S100A9, FGF7, FAP, SELE, 

SERPINE2, BIRC3, CXCL9, C5, SFRP2, HAS2, ANKRD22, NT5E, RGS5, SULF1, ACE2, S100A8, SAA1, 

ECM2, MEDAG, ADRA1A, VCAM1, THY1, CD69, S100A12, LUC7L3, RAMP2, PTPN13, LRRC17, 

RSPO3, LCN2, CA4 

 

MNC 

IGF1, PTGS2, POSTN, VCAM1, THY1, SELE, CXCL9, ASPN, LCN2, ITGB3, INHBA, FGF7, NT5E, 

ANGPT2, S100A8, SFRP2, AREG, FAP, CD69, ITGA2, S100A12, OGN, EPHA3, CSF3R, SAA1, CFH, 

TTN, S100A9, SERPINE2, HBB, ABCB1, DCLK1, HAS2, WIF1, LTBP1, BCHE, ANK2, SULF1, ECM2, 

BIRC3, EPHA4 

 

Degree 

IGF1, PTGS2, POSTN, VCAM1, THY1, SELE, CXCL9, ASPN, LCN2, ITGB3, INHBA, FGF7, NT5E, 

ANGPT2, S100A8, FAP, SFRP2, CD69, AREG, CFH, TTN, ITGA2, S100A12, OGN, EPHA3, CSF3R, 

ABCB1, SAA1, SERPINE2, S100A9, HBB, DCLK1, HAS2, WIF1, LTBP1, BCHE, ANK2, SULF1, ECM2, 

EPHA4 

 

EPC 

IGF1,PTGS2,POSTN,VCAM1,THY1,SELE,CXCL9,ASPN,LCN2,ITGB3,INHBA,FGF7,NT5E,ANGPT2,S1

00A8,FAP,SFRP2,CD69,AREG,CFH,TTN,ITGA2,S100A12,OGN,EPHA3,CSF3R,ABCB1,SAA1,SERPINE

2,S100A9,DCLK,1,HAS2,WIF1,LTBP1,BCHE,SULF1,ECM2,BIRC3,ESM1,MME 

 

BottleNeck 

IGF1,PTGS2,POSTN,THY1,CXCL9,LCN2,FGF7,NT5E,ANGPT2,FAP,CD69,AREG,CFH,TTN,ITGA2,CSF

3R,ABCB1,S100A9,DCLK1,WIF1,LTBP1,BCHE,EPHA4,PAMR1,GEM,RSPO3,TBX3,RGS5,DLG2,CCDC

80,PDGFD,CPA3,LRRC32,ADAMTS9,MEDAG,LRRC17,TDO2,ANKRD22,ABCC9,WEE1,XAF1,LUC7L

3,RAMP2,TSHZ2,LILRA2,SLC7A2,HIF3A,MSMB 

 

Eccentricity 

IGF1,PTGS2,POSTN,VCAM1,THY1,SELE,CXCL9,ASPN,LCN2,ITGB3,INHBA,FGF7,NT5E,ANGPT2,S1

00A8,FAP,SFRP2,CD69,AREG,CFH,TTN,ITGA2,S100A12,OGN,EPHA3,CSF3R,ABCB1,SAA1,SERPINE

2,S100A9,HBB,DCLK1,HAS2,WIF1,LTBP1,BCHE,ANK2,SULF1,ECM2,EPHA4,BIRC3,ESM1,PAMR1,G

EM,MME,RGS1,RSPO3,TBX3,ENPP2,RGS5,RNASE2,MATN2,DLG2,HMCN1,ITGB6,CCDC80,CA1,PD

GFD,ACE2,GBP5,CPA3,LRRC32,PDE1A,SLC6A4,ADAMTS9,ANKRD1,ADRA1A,CA4,PI15,MEDAG,L

RRC17,ALAS2,TDO2,ANKRD22,SEMA3D,WEE1,IFI44L,XAF1,LUC7L3,SAA2,SLC9A3R2,ABCA8,RA

MP2,C5,BPIFA1,HSPH1,PLAC8,CHIT1,IL13RA2,ZNF521,ANKRD28,FCN3,S100A3,SLC7A2,RASGRP1,

HIVEP2,VIPR1,PTPN13,HIF3A,MSMB,SLCO4A1, 
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Closeness 

IGF1,PTGS2,POSTN,VCAM1,THY1,SELE,CXCL9,ASPN,LCN2,ITGB3,INHBA,FGF7,NT5E,ANGPT2,S1

00A8,FAP,SFRP2,CD69,AREG,CFH,TTN,ITGA2,S100A12,OGN,EPHA3,CSF3R,ABCB1,SAA1,SERPINE

2,S100A9,HBB,DCLK1,HAS2,WIF1,LTBP1,BCHE,ANK2,ECM2,EPHA4,BIRC3, 

 

Radiality 

IGF1,PTGS2,POSTN,VCAM1,THY1,SELE,CXCL9,ASPN,LCN2,ITGB3,INHBA,FGF7,NT5E,ANGPT2,S1

00A8,FAP,SFRP2,CD69,AREG,CFH,TTN,ITGA2,OGN,EPHA3,CSF3R,ABCB1,SAA1,SERPINE2,HBB,D

CLK1,HAS2,WIF1,LTBP1,BCHE,ANK2,ECM2,EPHA4,BIRC3,ESM1,TBX3, 

 

Betweenness 

IGF1,PTGS2,POSTN,VCAM1,THY1,SELE,CXCL9,ASPN,LCN2,ITGB3,INHBA,FGF7,NT5E,ANGPT2,S1

00A8,FAP,SFRP2,CD69,CFH,TTN,S100A12,OGN,EPHA3,CSF3R,ABCB1,SAA1,SERPINE2,DCLK1,WIF

1,ANK2,EPHA4,PAMR1,GEM,TBX3,RNASE2,PDGFD,MEDAG,ABCC9,LUC7L3,LILRA2, 

 

Stress 

IGF1,PTGS2,POSTN,VCAM1,THY1,SELE,CXCL9,ASPN,LCN2,ITGB3,INHBA,FGF7,NT5E,ANGPT2,S1

00A8,FAP,SFRP2,CD69,CFH,TTN,S100A12,OGN,EPHA3,CSF3R,ABCB1,SAA1,SERPINE2,HBB,DCLK1

,WIF1,ANK2,EPHA4,ESM1,PAMR1,GEM,TBX3,RNASE2,PDGFD,ABCC9,LUC7L3,LILRA2, 

 

Clustering, 

coefficient 

SELE,CXCL9,FGF7,NT5E,ANGPT2,S100A8,SFRP2,AREG,ITGA2,S100A12,CSF3R,SAA1,SERPINE2,S10

0A9,HAS2,SULF1,ECM2,BIRC3,MME,ENPP2,RGS5,HMCN1,CCDC80,CA1,PDGFD,ACE2,SLC6A4,ADA

MTS9,CA4,SEMA3D,IFI44L,SAA2,SOSTDC1,C5,CHIT1,IL13RA2,LILRA2,PTPN13,BPIFB1,ANKRD36B, 

 

Supplementary Table 4. The information of five hub genes. 

Gene symbol Full name Log (fold change) P value 

CSF3R colony stimulating factor 3 receptor -0.641687 1.61E-14 

NT5E 5'-nucleotidase ecto 0.703553 3.98E-16 

ANGPT2 angiopoietin 2 1.047516 6.1E-9 

FGF7 fibroblast growth factor 7 0.736298 3.27E-7 

CXCL9 C-X-C motif chemokine ligand 9 0.609940 0.000549 

 

Supplementary Table 5. The top 20 GSVA terms of ANGPT2. 

Pathways LogFC P.value FDR 

KEGG_ONE_CARBON_POOL_BY_FOLATE 0.243792192 5.86E-05 0.001317033 

KEGG_PROTEIN_EXPORT 0.233239809 0.000238508 0.002194269 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 0.232604737 0.000427454 0.003292363 

KEGG_SPLICEOSOME 0.231820688 1.50E-05 0.000552429 

KEGG_NON_HOMOLOGOUS_END_JOINING 0.210725052 0.002509695 0.012152209 

KEGG_PROPANOATE_METABOLISM 0.192878556 0.002170981 0.011568672 

KEGG_RNA_DEGRADATION 0.189000949 0.000137356 0.001534455 

KEGG_CELL_CYCLE 0.186071751 7.77E-06 0.000476692 

KEGG_MISMATCH_REPAIR 0.185866007 0.001760087 0.010120498 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 0.184198544 0.00014177 0.001534455 

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG -0.179973823 0.001329905 0.008288554 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0.176774474 0.004419167 0.01805783 

KEGG_BASAL_TRANSCRIPTION_FACTORS 0.170206927 0.000470546 0.003463222 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES -0.167989923 0.000584972 0.004139802 

KEGG_CYSTEINE_AND_METHIONINE_METABOLISM 0.166307349 1.32E-05 0.000552429 

KEGG_SULFUR_METABOLISM -0.165247017 0.002200563 0.011568672 

KEGG_ECM_RECEPTOR_INTERACTION 0.156670637 3.40E-05 0.001042607 

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 0.152255983 4.24E-05 0.001113465 

KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 0.150071579 9.25E-05 0.001511601 

KEGG_CIRCADIAN_RHYTHM_MAMMAL 0.148754719 0.006024413 0.023146939 
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Supplementary Table 6. The top 20 GSVA terms of CSF3R. 

Pathways LogFC P.value FDR 

KEGG_PROPANOATE_METABOLISM -0.295856535 1.43E-06 0.000131203 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES 0.275953058 4.08E-09 7.50E-07 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION -0.268552435 6.01E-05 0.001381529 

KEGG_STEROID_BIOSYNTHESIS 0.237527029 0.000184989 0.003403804 

KEGG_BUTANOATE_METABOLISM -0.226972724 9.60E-06 0.000353348 

KEGG_MISMATCH_REPAIR -0.212629125 0.000318776 0.003910318 

KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 0.207225325 7.50E-06 0.000344979 

KEGG_FATTY_ACID_METABOLISM -0.187955978 0.000315136 0.003910318 

KEGG_NON_HOMOLOGOUS_END_JOINING -0.18645673 0.007698082 0.03219198 

KEGG_CELL_CYCLE -0.169366017 5.27E-05 0.001381529 

KEGG_DNA_REPLICATION -0.165048486 0.002357046 0.015489158 

KEGG_SPLICEOSOME -0.162908395 0.002795828 0.01607601 

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG 0.157441906 0.005180597 0.025947799 

KEGG_SULFUR_METABOLISM 0.156650672 0.003757833 0.02033651 

KEGG_GALACTOSE_METABOLISM 0.156212812 0.000123689 0.002528749 

KEGG_LYSINE_DEGRADATION -0.155685152 0.000437974 0.005036704 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 0.151678381 0.001026703 0.008586969 

KEGG_BETA_ALANINE_METABOLISM -0.145542379 0.000570707 0.00583389 

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_CHONDROITIN

_SULFATE 

0.144237139 0.000886173 0.007764567 

KEGG_HOMOLOGOUS_RECOMBINATION -0.141959376 0.002459603 0.015605755 

 

Supplementary Table 7. The top 20 GSVA terms of CXCL9. 

Pathways LogFC P.value FDR 

KEGG_GRAFT_VERSUS_HOST_DISEASE 0.282957086 1.27E-06 2.93E-05 

KEGG_ALLOGRAFT_REJECTION 0.28130979 1.62E-07 7.47E-06 

KEGG_PRIMARY_IMMUNODEFICIENCY 0.274200636 1.34E-08 1.24E-06 

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 0.273124844 5.38E-09 9.90E-07 

KEGG_TYPE_I_DIABETES_MELLITUS 0.216729898 5.40E-06 0.000110495 

KEGG_AUTOIMMUNE_THYROID_DISEASE 0.205178161 1.03E-06 2.71E-05 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION -0.194472279 0.00419016 0.027535338 

KEGG_PROPANOATE_METABOLISM -0.186295189 0.003106107 0.021167542 

KEGG_ASTHMA 0.178999868 0.000488451 0.005617185 

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 0.178873662 1.78E-05 0.000297079 

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 0.16991138 2.46E-07 9.06E-06 

KEGG_BUTANOATE_METABOLISM -0.159434902 0.002278434 0.017467998 

KEGG_VIRAL_MYOCARDITIS 0.152406694 7.50E-06 0.00013791 

KEGG_FATTY_ACID_METABOLISM -0.146538754 0.005412575 0.034341853 

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 0.144855573 0.000747094 0.007650551 

KEGG_CHEMOKINE_SIGNALING_PATHWAY 0.141466051 1.23E-07 7.47E-06 

KEGG_BETA_ALANINE_METABOLISM -0.140925451 0.000866423 0.008390627 

KEGG_CELL_ADHESION_MOLECULES_CAMS 0.140619537 6.53E-07 2.00E-05 

KEGG_HEMATOPOIETIC_CELL_LINEAGE 0.137185897 4.99E-05 0.000765681 

KEGG_LEISHMANIA_INFECTION 0.132412529 0.000748424 0.007650551 
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Supplementary Table 8. The top 20 GSVA terms of NT5E. 

Pathways LogFC P.value FDR 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 0.268767259 5.92E-05 0.000726073 

KEGG_PROPANOATE_METABOLISM 0.26782988 1.49E-05 0.000355897 

KEGG_NON_HOMOLOGOUS_END_JOINING 0.241074038 0.000507512 0.003735287 

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG -0.238695958 1.55E-05 0.000355897 

KEGG_MISMATCH_REPAIR 0.237927072 5.06E-05 0.000664519 

KEGG_PROTEIN_EXPORT 0.210218429 0.000977788 0.005758475 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GLOBO_SERIES -0.206021643 1.99E-05 0.000366165 

KEGG_FATTY_ACID_METABOLISM 0.203952086 8.62E-05 0.000933061 

KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM 0.203586763 2.54E-08 4.68E-06 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0.202799915 0.001030024 0.005758475 

KEGG_RENIN_ANGIOTENSIN_SYSTEM 0.189854677 3.03E-06 0.000139364 

KEGG_SPLICEOSOME 0.183352551 0.000725563 0.004450122 

KEGG_LYSINE_DEGRADATION 0.182695153 3.14E-05 0.000480322 

KEGG_BUTANOATE_METABOLISM 0.177215104 0.000656871 0.004167734 

KEGG_SULFUR_METABOLISM -0.176625112 0.00103277 0.005758475 

KEGG_BASAL_TRANSCRIPTION_FACTORS 0.167026339 0.000605049 0.003976034 

KEGG_COLORECTAL_CANCER 0.16453329 8.69E-08 8.00E-06 

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION -0.164283705 8.32E-05 0.000933061 

KEGG_OLFACTORY_TRANSDUCTION -0.160357734 0.000263719 0.002426211 

KEGG_RNA_DEGRADATION 0.159304048 0.001426328 0.007718949 

 

Supplementary Table 9. The top 20 GSVA terms of FGF7. 

Pathways LogFC P.value FDR 

KEGG_PROTEIN_EXPORT 0.387193054 1.47E-10 1.35E-08 

KEGG_NON_HOMOLOGOUS_END_JOINING 0.350637284 2.03E-07 1.78E-06 

KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 0.341186071 9.03E-09 1.85E-07 

KEGG_ONE_CARBON_POOL_BY_FOLATE 0.327332488 3.01E-08 4.61E-07 

KEGG_MISMATCH_REPAIR 0.31217779 5.10E-08 5.87E-07 

KEGG_SPLICEOSOME 0.292664541 2.25E-08 3.76E-07 

KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 0.291787649 7.32E-06 3.74E-05 

KEGG_CELL_CYCLE 0.274431256 4.17E-12 7.68E-10 

KEGG_PROTEASOME 0.267658925 1.61E-05 7.41E-05 

KEGG_RNA_DEGRADATION 0.265276504 3.62E-08 5.12E-07 

KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.263666936 1.68E-09 7.74E-08 

KEGG_SULFUR_METABOLISM -0.26215574 5.76E-07 3.99E-06 

KEGG_NUCLEOTIDE_EXCISION_REPAIR 0.24581461 2.03E-07 1.78E-06 

KEGG_BASAL_TRANSCRIPTION_FACTORS 0.245156814 2.30E-07 1.92E-06 

KEGG_CITRATE_CYCLE_TCA_CYCLE 0.236617885 3.59E-05 0.000157218 

KEGG_DNA_REPLICATION 0.235961202 9.30E-06 4.60E-05 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 0.2267432 2.36E-06 1.31E-05 

KEGG_PROPANOATE_METABOLISM 0.221093362 0.000404135 0.001352016 

KEGG_HOMOLOGOUS_RECOMBINATION 0.218482259 1.75E-06 1.08E-05 

KEGG_TERPENOID_BACKBONE_BIOSYNTHESIS 0.211187654 0.00022772 0.00080578 

 


