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INTRODUCTION 
 

Vascular calcification (VC) is an active 

pathophysiological process in which mesenchymal cells, 

especially vascular smooth muscle cells (VSMCs), 

transdifferentiated into an osteo-/chondroblast-like 

phenotype under the action of complex factors, resulting 

in local abnormal calcium precipitation and vascular 

tissue mineralization [1, 2]. VC reduces vascular 

compliance, causes local hypoxia, and increases the  

risk of vascular rupture and aneurysm formation,  

which is related to atherosclerosis and comorbidities, 

such as diabetes, heart failure, and chronic kidney 

disease (CKD) [3]. Although this process is traditionally 
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ABSTRACT 
 

In the present study, the effects and mechanism of action of U50,488H (a selective κ-opioid receptor agonist) 
on calcification of rat vascular smooth muscle cells (VSMCs) induced by β-glycerophosphate (β-GP) were 
investigated. VSMCs were isolated and cultured in traditional FBS-based media. A calcification model was 
established in VSMCs under hyperphosphatemia and intracellular calcium contents. Alkaline phosphatase 
(ALP), lactate dehydrogenase (LDH), and lactate were detected in cell culture supernatants before and after 
treatment. Alizarin red staining was used to detect the degree of calcification of VSMCs. Expression levels of 
key molecules of osteogenic markers, fructose-2,6-biphosphatase 3 (PFKFB3), and proline hydroxylase 2 (PHD2), 
were determined using western blotting. Further, vascular calcification was induced by vitamin D3 plus nicotine 
in rats and isolated thoracic aortas, calcium concentration was assessed in rat aortic rings in vitro. We 
demonstrated that U50,488H inhibited VSMC calcification in a concentration-dependent manner. Moreover, 
U50,488H significantly inhibited osteogenic differentiation and ALP activity in VSMCs pretreated with β-GP. 
Further studies confirmed that PFKFB3 expression, LDH level, and lactate content significantly increased during 
calcification of VSMCs; U50,488H reversed these changes. PHD2 expression showed the opposite trend 
compared to PFKFB3 expression. nor-BNI or 3-PO abolished U50,488H protective effects. Besides, U50,488H 
inhibited VSMC calcification in rat aortic rings ex vivo. Collectively, our experiments show that κ-opioid receptor 
activation inhibits VSMC calcification by reducing PFKFB3 expression and lactate content, providing a potential 
drug target and strategy for the clinical treatment of vascular calcification. 
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considered passive, degenerative, and quiescent, recent 

studies suggested that VC is an active process beginning 

with the deposition of cell-derived matrix vesicles  

into the extracellular matrix, where osteogenic 

differentiation plays a predominant role [4–6]. Ectopic 

osteogenesis driven by oxidative stress and metabolic 

are responsible for VC initiation [7, 8]. 

 

Glycolysis is related to the osteogenic transformation 

and the VSMC phenotype switch [9–11]. PFKFB3 is a 

key enzyme in glycolysis [12]. Previous studies have 

confirmed that PFKFB3 is related to diabetic 

atherosclerosis and vascular remodeling [13]. Lactate is 

the end product of anaerobic glycolysis [14]. The 

glycolysis pathway is reportedly activated under the 

action of a variety of calcification factors and produces 

excessive glycolysis products [15]. Observations in 

hypoxia-cultured VSMCs were like those in lactate-

cultured VSMCs [16]. A recent VSMC calcification 

study revealed that lactate accelerates osteoblastic 

phenotype transition in VSMCs through BNIP3-

mediated mitophagy suppression [17]. They also 

investigated the specific links between lactate and VC. 

Mechanistically, lactate enhanced fission but halted 

mitophagy via activation of the NR4A1/DNA-PKcs/p53 

pathway, finally accelerating calcium deposition and 

osteoblastic phenotype transition in VSMCs [18]. 

Therefore, glucose metabolism is closely associated 

with VC [18, 19]. Approximately 70.1% of total ATP 

originated from glycolysis in human aortic VSMCs 

under normal conditions, and β-glycerophosphate (β-

GP)-induced osteo-/chondrogenic transdifferentiation 

and calcification of VSMCs were proven to be more 

oxidative and less glycolytic, which indicates that 

interference of VSMC metabolic pathways may regulate 

VC progression [9, 20]. 

 

Of note, the cell’s major energetic source is glycolysis, 

which is stimulated by hypoxia, and VC is related to 

hypoxia. Hypoxia is a primary condition contributing 

to VC [21]. Hypoxic gene activation is linked to CKD 

and stimulates bone cell osteogenic differentiation 

[22]. Although a direct link between hypoxia and VC 

has not been described, studies have associated 

hypoxia-inducible factor-1 (HIF-1) with VC [23]. 

Therefore, hypoxic signaling may indeed be 

implicated in VSMC osteogenic transdifferentiation, 

leading to VC [24]. The human genome encodes three 

potential HIF-1a prolyl-4-hydroxylases, designated 

prolyl hydroxylase domain-containing proteins 1, 2, 

and 3 (PHD1, PHD2, and PHD3), each of which is 

capable of hydroxylating two proline residues within a 

HIF-1a peptide substrate in vitro [25]. Phd2 is most 
abundant at the protein level in most organs [26]. HIF-

1a activation leads to increased PFKFB3 expression  

in type 1 diabetes, leading to increased glycolysis 

products such as lactic acid and LDH [13]. Previous 

studies have confirmed that PHD2 inhibited VSMC 

proliferation by regulating HIF-1a expression, but it is 

unknown whether it can regulate PFKFB3 level in  

VC [27]. 

 

The κ-opioid receptor (κ-OR) is predominantly 

expressed in the cardiovascular system [28]. As a 

selective agonist of κ-OR, U50,488H can improve 

hemodynamics and vascular endothelial function  

and reverse vascular remodeling by activating 

cardiovascular κ-OR [28–30]. Previous studies have 

confirmed that a higher dose of U50,488H significantly 

prevented the myocardial ischemia and reperfusion 

(I/R) injury-induced increase in myocardial lipid 

peroxidation and depletion of myocardial antioxidants 

and that κ-OR stimulation exerts a protective effect  

on vascular endothelium [31, 32]. However, the impact 

of κ-OR stimulation on vascular remodeling during  

VC remains elusive. Details regarding the osteo-

/chondrogenic transdifferentiation of VSMCs and the 

underlying mechanism are largely unknown [33]. At 

present, whether κ-OR stimulation reverses the 

osteogenic transformation of VSMCs, improves the 

local calcium-phosphorus ratio, and glycolysis level has 

not yet been reported. 

 

In this study, the effect of U50,488H on VSMC 

exposed to β-GP, parameters of calcification degree, 

and calcification-related proteins were examined. The 

influence of U50,488H and nor-BNI on key 

modulators of glycolysis, namely fructose-2,6-

biphosphatase 3 (PFKFB3), PHD2, LDH, and lactate 

content, were observed. We also attempted to explore 

the role of κ-OR stimulation in a rat VC model and 

further analyzed the effect of U50,488H on the 

calcification level of rat thoracic aorta cultured in 
vitro. Thus, in this study, we sought to provide an 

experimental and theoretical basis to further 

understand VC pathogenesis and prevention. 

 

RESULTS 
 

Effect of κ-OR stimulation on VSMC calcification 

induced by β-GP 

 

To determine the effect of κ-OR stimulation on VSMC 

calcification induced by high phosphorus, VSMCs were 

treated with β-GP in the presence or absence of various 

concentrations of U50,488H (10–80 μmol/L) for ten 

days. After ten days of treatment, the VSMC 

calcification cell model was successfully established, 

confirming that U50,488H dose-dependently inhibited 

the expression of osteogenic specific transcription  

factor (RUNX2), of which 40 μmol/L U50,488H 

elicited the most evident inhibitory effect on osteogenic 
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differentiation of VSMCs (the decrease was up to 

approximately 60.94% in 40 μmol/L); therefore, this 

dose was used in all subsequent experiments (Figure 

1A, 1B). An inhibitory effect of U50,488H on calcium 

deposition was also observed by Alizarin red staining. 

After U50,488H treatment, the amount of calcium 

deposition decreased to 56.42% (Figure 1C, 1D). The 

intracellular calcium and ALP contents in VSMCs 

increased significantly with 10-day β-GP treatment 

(619.32% and 152.12% compared with the control 

group) and were markedly attenuated by U50,488H, the 

decrease of intracellular calcium was 34.18 %, and ALP 

content was 48.62 % (P < 0.05). This effect of 

U50,488H was abolished by nor-BNI treatment (P < 

0.05) (Figure 1E, 1F). These results suggest that κ-OR 

stimulation significantly attenuates β-GP-induced 

calcification in VSMCs. 

 

Effects of κ-OR stimulation on the expression of 

osteogenic differentiation proteins in VSMCs treated 

with β-GP 

 

To further investigate the effect of κ-OR stimulation on 

osteogenic differentiation, we examined RUNX2, 

BMP2, and SM22a protein levels via western blotting in 

vitro. As shown in Figure 2A–2C, the expression of 

RUNX2 and BMP2 was significantly increased in the β-

GP group compared with the control group (P < 0.05). 

After U50,488H treatment, RUNX2 and BMP2 

expression was significantly decreased (P < 0.05). 

However, the inhibitory effect of U50,488H was 

abolished by nor-BNI treatment (P < 0.05). Besides, the 

expression of SM22a (a smooth muscle protein) was 

significantly decreased in the β-GP group (P < 0.01), 

which increased significantly in the U50,488H 

treatment group (P < 0.01), and these effects were 

significantly reduced by nor-BNI (P < 0.05) (Figure 2A, 

2D). These data suggest that κ-OR stimulation inhibits 

osteogenic differentiation. 

 

Effects of κ-OR stimulation on the expression of 

PFKFB3, PHD2 and glycolysis products in VSMCs 

treated with β-GP 

 

We further investigated the mechanism by which κ-OR 

stimulation affects VSMC calcification and glycolysis. 

The expression of PFKFB3 in the β-GP group was 

significantly higher than that in the control group (P < 

0.01), which was decreased by U50,488H (P < 0.01), 

whereas this effect was abolished by nor-BNI (P < 0.05) 

(Figure 3A, 3B). The expression of PHD2 in the β-GP 

group was significantly decreased relative to the control 

group (P < 0.01), in which it was significantly increased 
by U50,488H (P < 0.01). Of note, this effect was 

abolished by nor-BNI (P < 0.01) (Figure 3A, 3C), 

indicating that κ-OR stimulation reduced PFKFB3 

expression and increased the expression of PHD2 

during calcification of VSMCs treated with β-GP. To 

explore the association between PHD2 and PFKFB3, 

we used IOX2, a specific inhibitor of PHD2, to inhibit 

PHD2 and observe changes in PFKFB3. Results showed 

that U50,488H significantly inhibited PFKFB3 

expression compared with the β-GP group, while IOX2 

abolished this effect (P < 0.01, Figure 3D, 3E). To 

further clarify the association between κ-OR stimulation 

and expression of PFKFB3, normal or calcified VSMCs 

were incubated with or without U50,488H for ten days, 

and the cellular PFKFB3 distributions were visualized 

by immune fluorescence staining. The images indicated 

that U50,488H significantly inhibited PFKFB3 

expression by 16.45% in the nuclei than the β-GP 

group, while this effect was abolished by nor-BNI (P < 

0.05, Figure 3C, 3D). Besides, compared with the 

control group, lactic acid levels increased by up to 

42.33% and LDH in the β-GP group increased 83.72% 

compared with the control group, and U50,488H 

treatment decreased 34.42% lactic acid content and 

22.89% LDH activity and in VSMCs cells after ten days 

(P < 0.05). However, the inhibitory effect of U50,488H 

was abolished by nor-BNI treatment (P < 0.05, Figure 

3E, 3F). These results reveal that κ-OR stimulation 

significantly decreases PFKFB3 expression and 

glycolysis production in VSMC calcification induced by 

β-GP. 

 

Inhibition of PFKFB3 expression reversed VSMC 

calcification induced by β-GP 

 

To explore the mechanism by which PFKFB3 affects 

VSMC calcification induced by β-GP, we attempted to 

use 3-PO, a small molecule inhibitor of PFKFB3, to 

inhibit PFKFB3 expression and observe changes in 

osteogenic differentiation proteins and calcified nodule 

formation. Results showed that RUNX2 and BMP2 

expression was significantly increased by β-GP-induced 

calcification in VSMCs for ten days (P < 0.05, Figure 

4A–4C), which was inhibited by treatment with 3-PO. 

In contrast, SM22a expression was significantly 

reduced in the β-GP group (P < 0.01), which increased 

significantly in the 3-PO group (P < 0.01, Figure 5A, 

5D). In addition, 3-PO significantly decreased the 

number of β-GP-induced calcified nodules by 56.43% 

(P < 0.01, Figure 4E, 4F). These results indicate that 3-

PO suppresses the osteogenic transition of VSMC 

calcification induced by β-GP and subsequent VC by 

inhibiting PFKFB3. 

 

Effect of κ-OR stimulation on VSMC calcification 

induced by lactate 

 

To further visualize the effect of κ-OR stimulation 

against VSMC calcification by lactate, we investigated 
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Figure 1. Effects of κ-OR stimulation on VSMC calcification induced by β-GP. Control: VSMCs were incubated in the absence of β-
GP. β-GP: VSMCs were incubated in 10% FBS-DMEM containing β-GP (10 mmol/L) for ten days. U50,488H (10 - 80 mmol/L) was added before 
β-GP treatment to investigate the effect of U50,488H on VSMC calcification. (A) Cell lysates were collected and analyzed for RUNX2 using 
western blotting. (B) Quantitative analysis of RUNX2 expression. (C) Calcium nodules were stained with Alizarin red. Red nodules indicate 
calcium deposition. Scale bar = 50 μm. (D) Quantification of mineralization. (E, F) The contents of intracellular calcium and ALP were detected 
using calcium assay kits and ALP activity kits. U, U50,488H; β-GP, β-Glycerophosphate disodium salt pentahydrate; N, nor-BNI; Data obtained 
from quantitative densitometry were presented as means ± SEM. n=4 in each group. *P < 0.05 versus the control group, **P < 0.01 versus the 
control group, #P < 0.05 versus the β-GP group, ##P < 0.01 versus the β-GP group, $P < 0.05 versus the β-GP+U group. 
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changes in the expression of osteogenic differentiation 

proteins influenced by U50,488H in the presence of 

lactate. In our study, VSMCs were cultured with or 

without lactate for five days. Results showed that the 

expression of RUNX2 and BMP2 was significantly 

increased in the lactate-treated group (P < 0.01,  

Figure 5A–5C), while SM22a expression decreased 

significantly (P < 0.01) (Figure 5A, 5D). After treatment 

with U50,488H, the expression of RUNX2 and BMP2 

was significantly decreased (P < 0.05), while the 

expression of SM22a was significantly increased  
(P < 0.01). These effects of U50,488H were reversed by 

nor-BNI treatment (P < 0.05). Besides, lactate treatment 

significantly increased calcium deposition by 

approximately 106.36%, as assessed by Alizarin red 

staining after 14 days. However, U50,488H significantly 

relieved calcium deposition, decreased by 83.08%, while 

the effect of U50,488H was abolished by nor-BNI (P < 

0.01, Figure 5E, 5F). Furthermore, ALP activity was 

significantly increased by up to 104.52 % with lactate-

induced calcification in VSMCs for five days, which 

was inhibited by up to 37.72% treatment with U50,488H 
(P < 0.05, Figure 5G). This effect of U50,488H was 

abolished by nor-BNI treatment (P < 0.01, Figure 5G). 

These data reveal that κ-OR stimulation suppresses 

lactate-induced VSMC calcification. 

 

 
 

Figure 2. Effects of κ-OR stimulation on osteogenic protein expression in VSMCs treated with β-GP. (A) Representative blot 

images of osteogenic differentiation-associated proteins. (B) Quantitative analysis of RUN2 protein expression using densitometry. (C) 
Quantitative analysis of BMP2 protein expression using densitometry. (D) Quantitative analysis of SM22a protein expression using 
densitometry. U, U50,488H; β-GP, β-Glycerophosphate disodium salt pentahydrate; N, nor-BNI; Data obtained from quantitative 
densitometry were presented as means ± SEM. n=4 in each group. *P < 0.05 versus the control group, **P < 0.01 versus the control 
group, #P < 0.05 versus the β-GP group, ##P < 0.01 versus the β-GP group, $P < 0.05 versus the β-GP+U group, $$P < 0.01 versus the  
β-GP+U group. 
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Figure 3. Effects of κ-OR stimulation on the expression of PFKFB3, PHD2, and glycolysis products in VSMCs treated with β-
GP. (A) Representative blot images of PFKFB3 and PHD2. (B) Quantitative analysis of PFKFB3 protein expression using densitometry. (C) 
Quantitative analysis of PHD2 protein expression using densitometry. (D) Representative blot images of PFKFB3. (E) Quantitative analysis of 
PFKFB3 protein expression using densitometry. (F) After various treatments, PFKFB3 nuclear translocation was evaluated via 
immunofluorescence using confocal microscopy. At least 10-15 cells per condition were imaged. Scale bar = 10μm. (G) Quantification of 
PFKFB3 immunofluorescence intensity. (H, I) Lactic acid content and LDH levels were detected. U, U50,488H; β-GP, β-Glycerophosphate 
disodium salt pentahydrate; N, nor-BNI; Data obtained from quantitative densitometry were presented as means ± SEM. n=5 in each group. 
**P < 0.01 versus the control group, #P < 0.05 versus the β-GP group, ##P < 0.01 versus the β-GP group, $P < 0.05 versus the β-GP+U group, $$P 
< 0.01 versus the β-GP+U group. 
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Figure 4. Effects on VSMC calcification induced by inhibiting PFKFB3 expression by β-GP. (A) Representative blot images of 
osteogenic differentiation-associated proteins. (B) Quantitative analysis of RUN2 protein expression using densitometry. (C) Quantitative 
analysis of BMP2 protein expression using densitometry. (D) Quantitative analysis of SM22a protein expression using densitometry. (E) 
Calcium nodules were stained with Alizarin red. Red nodules indicate calcium deposition. Scale bar = 50μm. (F) Quantification of 
mineralization. β-GP, β-Glycerophosphate disodium salt pentahydrate; Data were normalized using log10 and analyzed using one-way ANOVA 
tests; U, U50,488H; 3-PO, a novel small molecule inhibitor of the PFKFB3 isozyme; Data obtained from quantitative densitometry were 
presented as means ± SEM. n=5 in each group. **P < 0.01 versus the control group, #P < 0.05 versus the β-GP group, ##P < 0.01 versus the β-GP 
group. 
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Figure 5. Effects of κ-OR stimulation on the expression of osteogenic proteins in VSMCs treated with lactate. (A) 

Representative blot images of osteogenic differentiation-associated proteins. (B) Quantitative analysis of RUN2 protein expression using 
densitometry. (C) Quantitative analysis of BMP2 protein expression using densitometry. (D) Quantitative analysis of SM22a protein 
expression using densitometry. (E) Calcium nodules were stained with Alizarin red. Red nodules indicate calcium deposition. Scale bar = 50 
μm. (F) Quantification of mineralization (mean ± SEM; n = 6). (G) ALP activity was detected using ALP activity kits. Data were normalized using 
log10 and analyzed using one-way ANOVA tests; U, U50,488H; N, nor-BNI; Data obtained from quantitative densitometry were presented as 
means ± SEM. n=5 in each group. *P < 0.05 versus the control group, **P < 0.01 versus the control group, #P < 0.05 versus the β-GP group, ##P 
< 0.01 versus the β-GP group, $P < 0.05 versus the β-GP+U group, $$P < 0.01 versus the β-GP+U group. 
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Effect of κ-OR stimulation on mineralization of 

aortic rings 

 

To further confirm the effect of κ-OR stimulation on 

the mineralization of aortic rings, we examined 

whether U50,488H suppressed the mineralization of 

vessels induced by β-GP. In this experiment, we 

developed an ex vivo aortic calcification model based 

on the rat aortic ring, which was stained with Alizarin 

red after β-GP treatment for four weeks. Mineralization 

was assessed using histology, and calcium levels were 

measured using the o-cresol phthalein complex assay. 

Our results showed a significant increase by up to 3.12-

fold mineralization after β-GP treatment (P < 0.05). 

U50,488H effectively prevented this change, which 

was decreased by up to 44.21% (P < 0.05), and the 

effect of U50,488H was abolished by nor-BNI (P < 

0.05, Figure 6A, 6B). These data suggest that κ-OR 

stimulation reduces β-GP-induced VC in rat aortic 

rings. 

 

DISCUSSION 
 

VC represents the pathological heterotopic accumulation 

of calcium and phosphate in the intimal and  

medial layers of the arteries, characterized by 

transdifferentiation of VSMCs from a contractile 

phenotype into an osteochondrogenic one, while matrix 

remolding events co-occur [34, 35]. Intracellular calcium 

overload triggers superoxide metabolism disruption, 

 

 
 

Figure 6. Effects of κ-OR stimulation on β-GP-induced mineralization in aortic rings from rats. (A) Representative Alizarin red-

stained sections of aortic rings from rats; Scale bar = 500 μm (above panel) and 100 μm (below panel). (B) Quantification of mineralization in 
the aortic rings using the O-cresol phthalein complex one assay. Aortic rings from rats were incubated in control medium (Con; serum-free 
DMEM), phosphate medium (β-GP; serum-free DMEM + 10 mmol/L β-GP), phosphate medium + U50,488H (40 mmol/L), or phosphate 
medium + nor-BNI (80 mmol/L) + U50,488H (40 mmol/L) for ten days. U, U50,488H; β-GP, β-Glycerophosphate disodium salt pentahydrate; 
N, nor-BNI; Data are shown as mean ± SEM and were analyzed using one-way ANOVA tests. n = 4 in each group. *P < 0.05 versus the control 
group, #P < 0.05 versus the β-GP group, $P < 0.05 versus the β-GP+U group. 
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subsequently inducing high aerobic glycolysis [17, 36]. 

Accumulation of glycolytic products may promote VC, 

but the mechanisms remain elusive [18], indicating that 

interference with glycolysis may influence VC. 

 

A previous study’s findings suggested that U50,488H 

significantly prevented an isoproterenol-induced increase 

in myocardial lipid peroxidation and depletion of 

myocardial antioxidants (glutathione, superoxide 

dismutase, and catalase) [37]. The enhanced intracellular 

Ca2+ transient and L-type Ca2+ currents elicited by 

isoprenaline in cardiomyocytes were significantly 

inhibited by U50,488H, both of which provide evidence 

that U50,488H reduces myocardial calcium influx and 

oxidative stress [31]. However, our previous study 

demonstrated that administration of U50,488H 

significantly decreased mean pulmonary arterial pressure 

and right ventricular hypertrophy, showing promise in 

attenuating vascular remodeling [38]. We also found that 

U50,488H interacted with the calcium-sensing receptor 

(CaSR) in the pulmonary artery and inhibited pulmonary 

hypertension and vascular remodeling through the 

CaSR/MAPK signaling pathway [28]. The above studies 

show that κ-OR protect the cardiovascular system by 

inhibiting intracellular calcium signals after activation, 

suggesting that κ-OR stimulation may exert a regulatory 

effect on cardiovascular tissue calcification. 

 

Regarding cellular bioenergetics of VSMCs, we 

exposed rat aortic VSMCs to a phosphate donor,  

β-glycerophosphate, mimicking VC during hyper-

phosphatemia [39]. In a pro-calcifying environment, we 

found that calcium phosphate precipitation and ALP 

activity significantly elevated and increased levels of 

osteochondrogenic proteins, such as Runx2 and BMP. 

U50,488H treatment effectively inhibited the osteogenic 

transformation of VSMCs induced by β-GP. 

Morphological experiments support this effect of 

U50,488H. Alizarin red staining revealed that U50,488H 

inhibited the expression of Runx2 in a concentration-

dependent manner. This U50,488H effect on calcification 

was blocked by nor-BNI, a selective κ-opioid receptor 

antagonist, indicating that κ-opioid receptors may be 

involved in VC regulation. This effect of U50,488H on 

calcification has also been demonstrated in studies with 

rat ex vivo aortic calcification rings. 

 

Subsequently, we observed the expression levels of 

PFKFB3 and lactate to investigate whether the effect of 

U50,488H-induced attenuation of calcification was 

related to glycolysis. As critical kinases in glycolysis, 

PFKFBs synthesize and degrade PFK-1, a rate-limiting 

enzyme that catalyzes the conversion of fructose-6-
phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2), 

and PFKFB3 is the only inducible isoform mainly 

expressed in vascular cells [13]. Upregulated PFKFB3 

reportedly mediates collagen synthesis and proliferation 

of pulmonary artery SMCs, contributing to vascular 

remodeling in pulmonary arterial hypertension [40]. 

Our study detected higher levels of PFKFB3, lactate, 

and LDH activity in a pro-calcifying environment 

induced by β-GP. Conversely, PFKFB3 and glycolytic 

products were notably reduced after treatment with 

U50,488H. Moreover, PFKFB3 inhibition by the 

chemical inhibitor 3-PO attenuated VSMC calcification, 

which indicated that PFKFB3 might alleviate VC upon 

κ-OR stimulation. 

 

As a set of membrane receptors, κ-ORs have been 

identified prominently in the vascular system [41]. 

PFKFB3, a key enzyme in glycolysis, is widely present 

in the nucleus of VSMCs [42]. Therefore, what seems 

puzzling is the interaction between the κ-ORs and 

PFKFB3 and their regulatory mechanism. Previous 

studies have shown that U50,488H has a protective 

effect on pulmonary vessels of rats exposed to chronic 

hypoxia [43]. In multiple diseases, hypoxia acutely 

influences PFKFB3 expression [13, 40, 44]. Then, we 

further confirmed that U50,488H repressed the PFKFB3 

expression by upregulating the PHD2. We further 

observed the association between ectopic expression of 

nuclear PFKFB3 when κ-OR is activated. The present 

study indicated that U50,488H significantly inhibited 

PFKFB3 expression in β-GP-treated VSMCs; this effect 

was blocked by nor-BNI. These results suggest that 

PFKFB3 inhibition efficiently suppressed osteogenic 

differentiation and VSMC calcification induced by β-

GP. 

 

Previous studies have suggested κ-OR stimulation 

protects against hypoxic pulmonary hypertension (HPH) 

by inhibiting PASMCs autophagy [30]. In a hypoxic 

environment, VSMCs undergo phenotypic changes that 

can lead to vascular dysfunction, such as vascular 

inflammation and calcification [45]. Hypoxia contributes 

to VC by inducing osteochondrogenic differentiation of 

VSMC in a HIF-1a–dependent and mitochondria-derived 

reactive oxygen species–dependent manner [21]. Of the 

three PHD isoforms, PHD2 appears to be the primary 

HIF-1a hydroxylase based on genetically engineered 

mice and cell culture studies [46]. In the present study, 

we have shown that the PHD2 regulated PFKFB3 

expression in VSMCs during calcification. However, the 

detailed mechanisms and inter-molecular interactions 

warrant further investigation. 

 

Lactate is the final product of glycolysis and is directly 

regulated by PFKFB3 [13, 47]. Previous studies have 

suggested that lactate accelerates calcification in VSMCs, 
and our study confirmed similar results [17]. Our study 

found that U50,488H inhibited osteogenic differentiation 

of VSMCs in the high lactic environment. These results 
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were also confirmed by Alizarin red staining and the 

ALP activity assay. These experimental results indicate 

that U50,488H effectively inhibits the lactate-induced 

osteogenic transformation of VSMCs. 

 

Our study also has some limitations. The increase in κ-

OR stimulation may affect the glucose enzyme 

metabolism, especially HIF-1α, an important molecule 

in VSMC calcification [24]. A follow-up study will 

investigate the relationship between κ-OR and key 

enzymes of glucose metabolism. Another limitation of 

our study lies in the physiological experiments; the 

number of experiments about functional effects is small, 

ultimately irrelevant from a translational point of view. 

Further studies will be required to provide direct 

evidence for glucose enzyme metabolism and VC 

studies in vivo. 

 

In summary, we have demonstrated that activating κ-

OR by its selective agonist U50,488H attenuates 

osteochondrogenic transdifferentiation prominently 

induced by β-GP, which may be mediated by inhibition 

of PFKFB3 expression and lactate. This study provides 

an experimental, theoretical basis to understand the 

pathogenesis and prevention of VC. 

 

MATERIALS AND METHODS 
 

Animals 

 

Adult Sprague-Dawley male rats (age 4-6 weeks, 

weighing 150-200 g) were supplied by the Animal 

Center of the Fourth Military Medical University. Rats 

were housed with free access to food and water under 

pathogen-free conditions using a 12 h light and 12 h 

dark cycle. All animal experiments were performed in 

accordance with institutional guidelines and abided for 

the Care and Use of Laboratory Animals published by 

the U.S. National Institutes of Health, NIH Publication 

No. 85–23 (revised 1996 and approved by the 

University Ethics Committee of the Fourth Military 

Medical University). 

 

Cell culture and identification 

 

Primary rat VSMCs were isolated according to 

previously published methods [48]. After attachment, 

the VSMCs (6 × 105 cells per well) were cultured in 

Dulbecco's modified Eagle's medium (DMEM), 

containing streptomycin and penicillin, 2 mmol/L L-

glutamine, and 12% FBS (GIBCO, USA) (see 

Supplementary Figure 1 for experimental details). 

VSMCs were identified by immunofluorescence, 

following subculture from 6-9 generations, for further 

experiments (please refer to Supplementary Figure 2 for 

experimental details). 

VSMCs were randomly divided into ten groups. (1) 

Control group: normal culture in a normoxic incubator 

with 12% FBS; (2) Con+U group: U50,488H (Sigma, 

USA, 40 mm/L), a selective κ-opioid receptor agonist, 

was administered on the foundation of the control 

group; (3) β-GP group: β-glycerol (Sigma-Aldrich, 

USA, 10 mmol/L) was administered for ten days to 

establish a calcification model according to the 

literature [49]; (4) β-GP+U group: U50,488H (40 

mm/L) was administered 10 min before treatment with 

β-glycerol; (5) β-GP+N+U group: nor-binaltorphimine, 

MCE, USA, 5 mm/L), a selective κ-opioid receptor 

antagonist, was administered 20 min before treatment 

with β-GP. After the administration of nor-BNI for 10 

min, U50,488H was administered; (6) β-GP+U+IOX2 

group: IOX2, MCE, USA, 5 mm/L), a selective PHD2 

antagonist, was administered 15 min before treatment 

with β-GP. After the administration of IOX2 for 10 min, 

U50,488H was administered; (7) Control+3-PO group: 

3-PO, a new type of small molecule PFKFB3 

isoenzyme inhibitor, was administered on the 

foundation of the control group; (8) β-GP+3-PO group: 

3-PO was administered 20 min before treatment with β-

GP; (9) Control+Lactate group: Lactate (Solarbio, 

Beijing, China, 10 mmol/L) was administered on the 

foundation of the control group; (10) 

Control+Lactate+U group: U50,488H (40 mm/L) was 

administered 10 min before treatment with lactate; (11) 

Control+Lactate+N+U group: nor-BNI (5 mm/L) was 

administered 10 min before treatment with U50,488H, 

and then the cells were treated with β-glycerol (10 

mmol/L) 10 min later. 

 

Immunofluorescence (IF) 

 

Primary rat VSMCs cells (6 × 105 cells per well) were 

seeded in six-well plates with 12 % FBS at room 

temperature for 24 h. After washing in phosphate-

buffered saline (PBS), cells were fixed for 30 min at  

37° C in 4% paraformaldehyde, blocked with 3% 

bovine serum albumin (BSA) for 1 h, and incubated 

overnight at 4° C in PBS containing anti-rabbit α-SMA 

antibody (CST19245, 1:200). Subsequently, cells were 

washed three times with PBS and incubated for 45 min 

at 37° C with anti-rabbit secondary antibody Alexa 

Fluor 488 Donkey anti-Rabbit IgG (H+L) (34206ES60, 

1:200). The images were acquired using an 

immunofluorescence microscope (Nikon, Tokyo, Japan) 

with ×40 magnification. 

 

Measurement of the calcium content and ALP 

activity 

 
The calcium content of VSMCs was determined using a 

Calcium Assay kit (Nanjing Jian Cheng Institute, 

Jiangsu, China) and normalized to the total protein 
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content using the bicinchoninic acid (BCA) protein 

assay kit (Beyotime, Shanghai, China). 

 

For ALP activity determination, the VSMCs pretreated 

with β-GP were solubilized with RIPA (Beyotime 

Shanghai, China). After centrifugation, the supernatants 

were examined with the ALP activity kit (Nanjing Jian 

Cheng Institute, Jiangsu, China) and normalized to the 

total protein content. 

 

Alizarin red staining 

 

For Alizarin red staining, the VSMCs were fixed with 

4% paraformaldehyde (Sigma) for 15 min at room 

temperature, rinsed twice with PBS, and stained with 

0.1% Alizarin red (Solarbio, Beijing, China) for 30 min. 

The excess reagent was removed and rinsed twice with 

ddH2O. 

 

Aortic specimens were fixed in 4% paraformaldehyde, 

embedded in paraffin, and cut into 4 μm thick sections. 

Sections were deparaffinized, stained with 2% Alizarin 

red for 10 min, and rinsed with PBS. Thereafter, 

sections were immersed in anhydrous acetone solution 

for 40 s, anhydrous acetone-xylene (volume ratio = 1:1) 

solution for 15 s, and xylene for 1 min twice. The 

calcium phosphate salts were visualized by red staining. 

 

Calcium nodules were observed and photographed 

using an inverted microscope (Nikon, Japan). The 

quantification of the calcium deposits was assessed by 

measuring the optical density (OD) at 405 nm. 

 

Lactate and LDH measurements 

 

VSMCs (5 × 105) were seeded in 6-well plates. After 

incubation (72 h) at room temperature, cell culture 

media were collected to determine the lactate content, 

measured using a lactate assay kit (Nanjing Jian Cheng 

Institute, Jiangsu, China). Lactate production was 

determined using a linear range of standard lactate 

concentrations according to the manufacturer’s 

instructions, and the colorimetric method was used to 

measure the absorbance at 530 nm. 

 

To test for released lactate viability, lactate 

dehydrogenase (LDH) levels were measured in VSMCs 

using an LDH assay kit (Nanjing Jian Cheng Institute, 

Jiangsu, China) and a standard (Roche, Indianapolis, 

IN, USA). 

 

Western blotting analysis 

 
VSMCs were lysed according to the manufacturer’s 

instructions, and the protein concentration was 

measured using a BCA protein quantification kit 

(Pierce Biotechnology). Runt-related transcription 

factor 2 (RUNX2) (12556; 1:1000) was obtained from 

Cell Signaling Technology (Danvers, MA, USA). 

Anti-bone morphogenetic protein 2 (BMP-2) 

(ab14933), anti-TAGLN/Transgelin (SM22a, 1:1000), 

anti-PFKFB3 (ab181861), and anti-GAPDH (ab8245) 

were purchased from Abcam (Cambridge, MA, USA) 

(1:1000). Subsequently, 15-25 μg of protein was 

separated via 10% SDS-PAGE and then transferred 

onto nitrocellulose membranes. The membranes were 

blocked with 5% BSA for 1 h. Thereafter, membranes 

were incubated with primary antibodies overnight at  

4° C, followed by incubation with anti-rabbit or anti-

mouse IgG conjugated with horseradish peroxidase at 

37° C for 1 h. The blots were detected using electro-

chemiluminescence (ECL), and the results were 

quantified using Quantity One software (1.8.0 

version). 

 

Laser confocal microscopy assays 

 

VSMCs cells (1 × 105 cells per well) were seeded in 15 

mm-diameter culture dishes and cultured in DMEM with 

12% FBS at 37° C for 72 h. Cells were washed with PBS, 

fixed in 4 % paraformaldehyde, and blocked with 3% 

BSA for 1 h. Cells were then incubated with goat anti-

rabbit PFKFB3 (ab181861, 1:200) at 4° C overnight. 

Subsequently, cells were incubated with Alexa Fluor 488 

Donkey anti-Rabbit IgG (H+L) (34206ES60, 1:200) at 

room temperature for 45 min and imaged using a 

confocal laser scanning microscope (Olympus FV 1000, 

Olympus Corporation, Tokyo, Japan) at 488 nm to 

observe PFKFB3 nuclear translocation. Images were 

obtained every 10 s, and the relative fluorescence 

intensity was measured using Image J software. 

 

Rat model of calcification 

 

A rat model of thoracic aorta calcification was 

developed as previously reported [50]. A total of 20 SD 

male rats, aged 6-8 weeks (150-200 g), were used in this 

experiment. After an adaptation period of one week, rats 

received vitamin D3 (300,000 IU/kg in arachis oil, 

intramuscularly) and nicotine (25 mg/kg in 5 mL peanut 

oil, intragastrically) dissolved in peanut oil. The rats 

were administered a nicotine/peanut oil mixture 8 h 

later. Four weeks later, extensive calcification appeared 

in the medial vascular area. 

 

Ex vivo rat aortic ring assay 

 

Calcification model rats were anesthetized by 

intraperitoneal injection of pentobarbital sodium (60 
mg/kg). The thoracic aortas were carefully dissected 

from the perivascular fat and connective tissues, and 

collected in Kerb’s solution (0–4° C). The adventitia 
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was carefully removed, and the intimal surface was 

scraped to remove endothelial cells. Next, thoracic 

aortas were cut into 5-6 mm vascular rings and cultured 

in vitro based on a previously published method [51]. 

Rings were randomly divided into five groups. (1) 

Control group: aortic rings were incubated in serum-

free DMEM (GIBCO, USA). The medium was changed 

every 48–72 h for ten days; (2) Con+U group: 

U50,488H (Sigma, USA,40 mm/L) was administered on 

the foundation of the control group; (3) β-GP group: β-

glycerol (MCE, USA,10 mm/L) was administered for 

ten days; (4) β-GP+U group: U50,488H (40 mm/L) was 

administered 10 min before treatment with β-glycerol; 

(5) β-GP+N+U group: nor-BNI (nor-binaltorphimine, 

MCE, USA, 5 mm/L), a selective κ-opioid receptor 

antagonist, was administered 20 min before treatment 

with β-GP. After the administration of nor-BNI for 10 

min, U50,488H was administered, and aortic rings were 

collected, fixed, and embedded in paraffin. Some 

sections were then stained with Alizarin red for 

calcification. Calcium was extracted from other rings 

using hydrochloric acid (0.6 mmol/L) for 1 h. The 

concentration of calcium was determined by the o-

cresol phthalein complex ketone method and 

normalized to weight. 

 

Statistical analysis 

 

Unless otherwise stated, the data were expressed as the 

mean ± SEM and analyzed using GraphPad Prism 8.0 

(GraphPad Software, San Diego, CA, USA). 

Differences among groups were compared using one-

way ANOVA followed by a pairwise comparison using 

the SNK-q method. Statistical significance was set at  

P < 0.05. 
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Supplementary Figure 1. Evaluation of VSMCs morphology in rat thoracic aorta. The isolated rat thoracic aorta vascular tissue 

block was inoculated and cultured. After 2-4 days, the cells could be seen crawling out of the edge. After 6-10 days of culture, the cells grew 
rapidly, spreading in a spindle shape, and fused into pieces. Passage after reaching 80% density, the characteristic "peak-valley" phenomenon 
of smooth muscle cells can be seen during the growth process. (A) VSMCs crawled out of the tissue block. (B) VSMCs fusion after 6-10 days. 
Quantitative analysis of RUNX2 expression. (C) Peak-valley phenomenon. (magnification: ×40). 
 

 
 

Supplementary Figure 2. Identification of vascular smooth muscle cells (VSMCs). Expression of α-SMA in VSMCs was determined 

using immunofluorescence (magnification: ×400). VSMCs at passage 6 were used for smooth muscle-specific protein (α-SMA) 
immunofluorescence staining and the result was obtained from a confocal microscopy. A large number of actin filaments parallel to the long 
axis (green fluorescence) in the cytoplasm was observed and regarded as α-SMA-positive cells. The nuclei were stained with DAPI. The 
percentage of α-SMA positive cells was more than 95%. Scale bar = 20μm. 


