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INTRODUCTION 
 

Sepsis is a systemic inflammatory response syndrome 

and the main cause of death in critically ill patients [1, 

2]. Cardiac dysfunction with left ventricular (LV) 

dilation and reduced LV ejection fraction (LVEF) 

accompanied by sepsis is the main cause of death in 

intensive care units. The infectious organisms and dead 

or damaged cells released pathogen-related molecular 

patterns and damage-related molecular patterns 

(DAMPs) activate inflammatory responses. Over-

production of inflammatory cytokines including tumor 

necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, and 

IL-6 also leads to cardiac dysfunction in sepsis [3–5]. 

Treatments for septic cardiomyopathy include 

optimizing volume loading and blood pressure, 

improving cardiac contractility, and alleviating 

inflammation. Inhibiting inflammation is considered a 

potential therapeutic strategy for sepsis-induced 

cardiomyopathy [6–8]. 

 

Accumulating evidence demonstrates that autophagy is 
involved in the regulation of inflammatory responses, in 

different cell types in the heart and thus plays crucial 

roles in sepsis-induced cardiomyopathy [9–11]. So far, 

the effects of autophagy in the pathogenesis of sepsis 

www.aging-us.com AGING 2021, Vol. 13, No. 11 

Research Paper 

Narciclasine attenuates sepsis-induced myocardial injury by 
modulating autophagy 
 

Rong Tang1, Liu Jia1, Yunlong Li1, Junbo Zheng1,&, Pingping Qi2,& 
 
1Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 
150086, Heilongjiang Province, China 
2Departments of Blood Transfusion, The First Affiliated Hospital of Harbin Medical University, Harbin 150086, 
Heilongjiang Province, China 
 
Correspondence to: Pingping Qi, Junbo Zheng; email: lvliang588@163.com, https://orcid.org/0000-0002-0882-1618; 
zhengjunboicu@163.com, https://orcid.org/0000-0003-1284-7252 
Keywords: acute myocardial injury, narciclasine, autophagy, JNK signaling pathway 
Received: October 19, 2020      Accepted: April 29, 2021 Published: May 25, 2021 
 
Copyright: © 2021 Tang et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Acute myocardial injury (AMI) is often secondary to sepsis, which is a life-threatening disease associated with 
severe cardiac inflammation. Narciclasine, a plant alkaloid isolated from different members of the 
Amaryllidaceae family, has been extensively characterized as an antitumor and anti-inflammatory compound. 
In addition, autophagy is critical for sepsis-induced myocardial injury. However, the role and mechanism of 
autophagy by which narciclasine confers cardioprotection are still unclear. The present study aimed to 
investigate the underlying mechanism by which narciclasine affects the pathogenesis of sepsis-induced 
myocardial injury. Narciclasine effectively attenuated LPS-induced myocardial inflammation in vitro and in vivo. 
In addition, narciclasine protected cardiac function and suppressed the expression of inflammatory cytokines in 
LPS-induced heart tissue. Furthermore, narciclasine upregulated LPS-induced autophagic activity, and the 
autophagy inhibitor 3-MA abrogated narciclasine-mediated protection against LPS-induced AMI. Importantly, 
narciclasine exerted an inhibitory effect on the JNK signaling pathway, and JNK activity was tightly associated 
with narciclasine-induced autophagy and the consequent protective effects during AMI. Taken together, our 
findings indicate that narciclasine protects against LPS-induced AMI by inducing JNK-dependent autophagic 
flux; hence, narciclasine may be an effective and novel agent for the clinical treatment of sepsis-induced 
myocardial injury. 
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remain unclear. The effects of autophagy on 

inflammatory cardiac diseases could be protective or 

adverse depending on the different conditions [12–15]. 

On the one hand, autophagy controls cardiac 

inflammatory responses by limiting the inflammasome 

activators and/or components [16–18] and by 

decreasing DAMPs from mitochondria [19]. On the 

other hand, overactive autophagy in the context of 

myocardial infarction or ischemia/reperfusion stress 

may exacerbate adverse results due to the degradation 

of cellular components, leading to a positive 

inflammatory response [20]. 

 

Natural products from plants and their derivatives are 

valuable sources of therapeutic agents [21, 22]. Plants in 

the Amaryllidaceae family are known for their 

pharmacologically active alkaloids. Traditionally, corm 

extracts from chicory bulbs have been used to treat 

inflammation-related diseases [23]. Narciclasine is an 

isocyanide alkaloid that is present in the bulbs of 

Coneflower extract and has been found to have 

estrogen-killing properties [24]. Narcissus has been 

shown to improve the prognosis of neonatal rats with 

sepsis by inhibiting calprotectin and reducing 

inflammation [25, 26]. Narciclasine has also been 

shown to improve outcomes in septic neonatal rats by 

alleviating inflammatory responses [27]. 

 

The activation of multiple stress signaling cascade like 

mitogen-activated protein kinase (MAPK) is believed to 

play a key role in sepsis-induced cardiomyopathy [28, 

29]. C-jun N-terminal kinase (JNK) is a member of the 

MAPK family that is important in numerous human 

diseases, including sepsis-induced cardiomyopathy  

[30, 31]. Autophagy plays an important role in 

inflammation-induced AMI. However, the role of 

autophagy and the mechanism of narciclasine-afforded 

cardioprotection remain unclear. In this study, we aimed 

to study whether narciclasine could improve LPS-

induced AMI by regulating autophagy and whether the 

regulation of autophagy in AMI is mediated by the JNK 

signaling pathway. 

 
RESULTS 
 

Narciclasine attenuates LPS-induced cardiomyocyte 

inflammation 

 

We stimulated isolated neonatal rat cardiomyocytes 

(NRCMs) with LPS and treated these NRCMs with 

narciclasine (0, 30, 100, and 300 nM). Cell viability of 

NRCMs was not affected by narciclasine (Figure 1A), 

but the LPS-induced decrease in cell viability was 
attenuated by narciclasine treatment in a dose-

dependent manner (Figure 1B). In addition, narciclasine 

suppressed LPS-induced inflammatory cytokine (TNF-

α, IL-1β, and IL-6) release from NRCMs in a dose-

dependent manner (Figure 1C–1E). Narciclasine also 

inhibited LPS-induced apoptosis in NRCMs in a dose-

dependent manner (Figure 1F). These data indicated 

that narciclasine inhibited the LPS-induced inflam-

mation in cardiomyocytes. 

 

Narciclasine attenuates LPS-induced myocardial 

dysfunction 

 

To investigate the role of narciclasine in LPS-induced 

AMI, mice were administered narciclasine before LPS 

injection. Echocardiography was performed to evaluate 

cardiac functions. There was no significant difference 

between the control group and narciclasine groups in 

the absence of LPS stimulation. After 12 h of LPS 

stimulation, the mice showed significant cardiac 

dysfunction, as evidenced by increased LVIDs and 

LVIDd, decreased ejection fraction, and fractional 

shortening compared with those of the control group. 

Interestingly, narciclasine treatment (LPS + Narc) partly 

improved these parameters (Figure 2A). In addition, 

treatment with narciclasine elevated the survival rates of 

LPS-induced mice (Figure 2B). 

 

Narciclasine attenuates the LPS-induced 

inflammatory response in vivo 

 

To evaluate the cardioprotective effects of 

narciclasine on inflammation in LPS-induced AMI, 

the levels of inflammatory indicators were measured. 

An indicator of neutrophil infiltration, MPO, was 

increased in the LPS group, and narciclasine 

effectively abrogated this increase (Figure 3A). 

Additionally, the mRNA expression levels of IL-6, 

IL-1β, TNF-α, and VEGF in heart tissues were 

significantly increased in LPS-induced AMI but were 

notably attenuated by narciclasine treatment (Figure 

3B). These results demonstrated that narciclasine 

could attenuate heart inflammation in LPS-induced 

AMI. 

 

Autophagy is upregulated during narciclasine-

mediated attenuation of LPS-induced AMI 

 

To determine whether narciclasine could activate 

autophagy in LPS-induced AMI, we examined several 

autophagy indicators, such as microtubule-associated 

light chain (LC)-3, p62, and Beclin-1. Beclin-1 and 

LC3-II were increased while the p62 expression level 

was decreased in the LPS group compared with the 

sham group (Figure 4A). However, narciclasine 

administration further upregulated Beclin-1 and LC3-II 
expression and further downregulated p62 expression 

in response to LPS-induced AMI (Figure 4A). 

Furthermore, autophagy was measured by live-cell 
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imaging using a GFP-LC3 adenovirus (Figure 4B). We 

found that narciclasine treatment upregulated the 

autophagy level, as indicated by increased GFP+ 

puncta. These data indicated that narciclasine could 

improve autophagy in the heart during LPS-induced 

AMI. 

 

 
 

Figure 1. Narciclasine attenuates LPS-induced cardiomyocyte inflammation. (A) The viability of cardiomyocytes treated with 

different concentrations of narciclasine (0, 30, 100, and 300 nM) was measured by CCK8 assays. (B) The viability of cardiomyocytes 
stimulated with LPS and treated with different concentrations of narciclasine (0, 30, 100, and 300 nM) was measured by CCK8 assays. (C–E) 
The concentration of inflammatory cytokines (TNF-α, IL-1β, and IL-6) in cardiomyocytes stimulated with LPS and treated with different 
concentrations of narciclasine (0, 30, 100, and 300 nM) was measured by ELISA kits. (F) Quantification of LPS-induced neonatal rat 
cardiomyocyte apoptosis was analyzed by FACS. n = 3 per group. Data represent the mean ± SEM. *P < 0.05 vs. the PBS group. #P < 0.05 vs. 
the LPS group. 
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Autophagy inhibition abrogates narciclasine-

mediated protection against LPS-induced 

myocardial injury 

 

To study the effects of narciclasine-induced autophagy 

in AMI model, C57BL/6 male mice were pretreated with 

autophagy inhibitor 3-methyladenine (3-MA) before 

LPS administration. Echocardiography was performed 

to evaluate heart functions. Based on the ejection 

fraction and fractional shortening parameters, 3-MA did 

not influence heart function in normal hearts but 

abrogated the protective effect of narciclasine on 

 

 
 

Figure 2. Narciclasine attenuates LPS-induced myocardial dysfunction. (A) Echocardiographic analysis of LVEF, LVFS, IVSd, IVSs, 

LVIDs, LVIDd, LVPWd, and LVPWs after LPS challenge for 12 h. (B) The survival rates of LPS-injected mice throughout the 96-h study period. 
LVEF, left ventricular ejection fraction; LVFS, left ventricular fractional shortening; IVSd and IVSs, interventricular septal end diastole and end 
systole, respectively; LVIDd and LVIDs, left ventricular internal diameter end diastole and end systole, respectively; LVPWd and LVPWs, left 
ventricular posterior wall end diastole and end systole, respectively. n = 8 per group. The data are shown as the means ± SEM. *P < 0.05 vs. 
the PBS group. #P < 0.05 vs. the LPS group. 
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LPS-induced myocardial injury (Figure 5A). In addition, 

3-MA increased the mortality rate in narciclasine-

pretreated LPS-induced mice (Figure 5C). Similar results 

were found in mice in which endogenous ATG5 was 

knocked down, which is a genetic strategy that interferes 

with autophagy (Figure 5B and 5D). Taken together, these 

results indicated that narciclasine has cardioprotective 

effects in LPS-induced AMI via autophagy. 

 

The JNK signaling pathway regulates narciclasine-

mediated protection against sepsis-induced 

myocardial injury 

 

To determine the role of JNK signaling pathway in 

narciclasine-induced autophagy, we measured the 

phosphorylation of JNK. Interestingly, LPS treatment 

significantly increased the phosphorylation of JNK 

while narciclasine treatment reduced the phospho-

rylation by LPS (Figure 6A). SP600125, an inhibitor of 

JNK activity, was treated on mice prior to LPS 

stimulation to further study the contribution of JNK 

signaling pathway in autophagy. We found that 

SP600125 treatment suppressed the phosphorylation of 

JNK and increased the autophagy-associated proteins 

expression (Figure 6B). Additionally, SP600125 

pretreatment ameliorated heart function and improved 

the survival rates of LPS-induced AMI mice (Figure 

6C–6D). The above findings indicated that narciclasine-

induced autophagy was mediated by inhibiting the 

phosphorylation of JNK. 

 

Narciclasine-induced autophagy is mediated by JNK 

signaling pathway in cardiomyocytes 

 

To investigate the mechanism of narciclasine in AMI, 

we stimulated NRCMs with 1000 ng/ml LPS to 

simulate the AMI model in vitro. SP600125 is also used 

on NRCMs to inhibit JNK activity, thereby explain the

 

 
 

Figure 3. Narciclasine attenuates the LPS-induced inflammatory response in vivo. (A) Myeloperoxidase (MPO) activity was 

measured by an MPO assay kit. (B) The mRNA expression levels of IL-6, IL-1β, TNF-α, and VEGF in heart tissues were measured by q-PCR. n = 3 
per group. The data are shown as the means ± SEM. *P < 0.05 vs. the PBS group. #P < 0.05 vs. the LPS group. 
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regulatory role of JNK in autophagy. Narciclasine 

decreased JNK phosphorylation levels in response to 

LPS stress in NRCMs, which was similar to the effect 

in the in vivo LPS-induced AMI model (Figure 7A–7B). 

Besides, the phosphorylation of JNK was inhibited by 

SP600125, while LC3B-II/Iand Beclin-1 levels were 

increased and p62 levels were decreased in NRCMs 

(Figure 7A–7B). We also confirmed this result by live-

cell imaging using a GFP-LC3 adenovirus and found 

that SP600125 increased the autophagy level compared 

to that in the LPS group. These results demonstrated 

that inhibition of JNK could enhance autophagic 

activity in cardiomyocytes. 

 

DISCUSSION 
 

Narciclasine is an isocyanide alkaloid that is present in 

the bulbs of coneflower extract and has been shown to 

have estrogen-killing properties. Narciclasine has also 

been shown to improve the prognosis of neonatal rats 

with sepsis by reducing inflammation [25–27]. In the 

present study, we evaluated the role and the underlying 

mechanism of narciclasine on the pathogenesis of AMI. 

We demonstrated that narciclasine attenuated LPS-

induced cardiomyocyte inflammation, protected heart 

function and suppressed inflammation in LPS-induced 

AMI. Mechanistically, narciclasine protected against 

LPS-induced AMI by inducing JNK-dependent auto-

phagy. 

The heart is an important organ that is frequently 

affected by sepsis [32–34]. Sepsis-induced systemic 

inflammatory syndrome is a result of the combined 

actions of PAMPs (pathogen-associated molecular 

patterns) and DAMPs, which initiate the overwhelming 

production of inflammatory cytokines [35, 36]. LPS 

triggers inflammatory cytokine secretion, resulting in 

the release of DAMPs from activated, injured, or 

necrotic cells [37, 38]. The LPS-induced AMI model 

was treated with or without narciclasine, and we 

measured the expression of inflammatory cytokines and 

found that narciclasine inhibited neutrophil infiltration 

and decreased the expression of IL-6, IL-1β, and TNF-

α. Our results indicated that narciclasine attenuates 

cardiac inflammation in LPS-induced AMI. 

 

Multiple researches indicate that sepsis initiates 

autophagy in multiple organs, including the heart. 

Autophagy is critical for cell survival and death, 

homeostasis, and development [39, 40]. Evidence from 

CLP and LPS-induced sepsis models suggests that 

inducing autophagy pharmacologically protects the 

heart, providing evidence that autophagy is a cellular 

adaptive response [9, 41]. In line with these 

observations, we showed that narciclasine can increase 

Beclin-1 and LC3B-II level, decrease p62 level, and 

promote autophagic activity in LPS-induced AMI mice. 

In order to determine the protective role of narciclasine-

induced autophagy, 3-MA was used to inhibit 

 

 
 

Figure 4. Narciclasine upregulates autophagy in a mouse model of LPS-induced myocardial injury. (A) Western blot analysis of 

autophagy markers, including Beclin-1, p62 and microtubule-associated light chain (LC)-3, in heart tissue. (B) The autophagy level was 
measured by live-cell imaging using Ad-GFP-LC3. Scale bar, 20 μm. n = 3 per group. The data are shown as the means ± SEM. *P < 0.05 vs. the 
PBS group. #P < 0.05 vs. the LPS group. 
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narciclasine-induced autophagy. We found that 3-

MA abolished the beneficial effect of narciclasine 

on LPS-induced AMI in mice by blocking 

autophagy. These data suggested that narciclasine 

confers its cardioprotective effects via induction of 

autophagy. 

 

JNK signaling pathway is important for the 

regulation of autophagy [42]. It was reported that 

JNK phosphorylation was increased in sepsis-induced 

acute lung injury [43, 44]. Our study also showed that 

in the LPS-induced AMI mouse model, p-JNK levels 

in the heart increased after LPS stimulation, while 

narcissus reduced pJNK levels and upregulated 

autophagy. More importantly, the inhibitory effect of 

SP600125 on JNK also triggered autophagy and 

reduced heart damage. Similar findings were 

observed in vitro. The inhibitory effect of SP600125 

on JNK further enhanced the effect of autophagy in 

NRCMs on LPS attack. Although these results 

indicate that narciclasine-induced autophagy on AMI 

is mediated by the inhibition of JNK signaling 

pathway, the mechanism by which narciclasine 

inhibits JNK still needs further study. 

 

 
 

Figure 5. The autophagy inhibitor 3-MA and knockdown of ATG5 abrogates narciclasine-mediated protection against LPS-
induced myocardial injury. (A–B) Echocardiographic analysis of the LVEF and LVFS in mouse hearts after LPS challenge for 12 h. (C–D) The 
survival rates of LPS-injected mice throughout the 96-h study period. n = 8 per group.  The data are shown as the means ± SEM. *P < 0.05 vs. 
the Narc group. #P < 0.05 vs. the Narc+LPS group. 
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In summary, we demonstrated that narciclasine could 

alleviate LPS-induced AMI by increasing autophagy, 

and uncovered the mechanism by which autophagy 

protects against AMI by the inhibition of JNK signaling 

pathway. These data suggest that narciclasine acts as a 

promising agent to protect the heart against sepsis 

injury, and autophagy may also be a therapeutic target 

for AMI treatment. 

 

 
 

Figure 6. The JNK signaling pathway is responsible for narciclasine-mediated protection against sepsis-induced myocardial 
injury. (A) The expression levels of total JNK and phosphorylated JNK (p-JNK) were measured by western blotting. Mice were treated with 
SP600125, an inhibitor of JNK activity, prior to LPS stimulation to further investigate the role of JNK in autophagy. (B) The levels of autophagy-
associated proteins, p-JNK and JNK were assessed by western blotting. (C) The LVEF and LVFS of mouse hearts after LPS challenge for 96 h 
were measured by echocardiography. (D) The survival rates of LPS-injected mice throughout the 96-h study period. n = 3–8 per group. The 
data are shown as the means ± SEM. *P < 0.05 vs. the PBS group. #P < 0.05 vs. the LPS group. 
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MATERIALS AND METHODS 
 

Animals 

 

Adult male C57BL/6 mice were used in the 

experiments. All procedures involving animals were 

performed in accordance with the Guidelines of the 

National Institutes of Health for Animal Care and Use 

and were approved by the Institutional Animal Care and 

Use Committee and Ethics Committee of Harbin 

Medical University. The saline injected mice or the 

LPS-treated mice (a single 6 mg/kg injection of LPS) 

were pretreated with or without narciclasine (0.1 mg/kg 

body weight) administered by gavage for 7 days. 

 

 
 

Figure 7. Narciclasine-induced autophagy is associated with JNK activity in cardiomyocytes. Neonatal rat cardiomyocytes were 
pretreated with narciclasine (300 nmol/L, 30 min) or SP600125 (SP, 20 μmol/L, 30 min) before LPS challenge. (A) JNK activity in the presence 
or absence of narciclasine was measured by western blotting. (B) The levels of autophagy-associated proteins, p-JNK, and JNK were examined 
by western blotting. n = 3 per group. The data are shown as the means ± SEM. *P < 0.05 vs. the PBS group. #P < 0.05 vs. the LPS group. 
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Control mice were given equal volumes of saline by 

gavage. The mice were killed, and the hearts were 

collected after 6 hours. 

 

Echocardiography 

 

Transthoracic echocardiography (VEVO 2100, Visual 

Sonics) with a 25-MHz imaging transducer was 

performed on anesthetized animals as previously 

described [18]. Left ventricular (LV) ejection fraction 

(LVEF), LV fractional shortening (LVFS), 

interventricular septal end diastole and end systole 

(IVSd, IVSs), LV systolic dimension (LVDs), LV 

posterior wall diastolic dimensions (LVPWd) and LV 

posterior wall systolic dimensions (LVPWs) were 

measured. 

 

Isolation and culture of NRCMs 

 

The isolation and culture of NRCMs were performed as 

described previously [7]. Briefly, cardiomyocytes were 

collected from the freshly dissected ventricles of 1–3-

day-old Sprague Dawley rats were plated on gelatin-

coated dishes in Dulbecco’s modified Eagle’s medium, 

20% M199, 15% FBS and 1% penicillin/streptomycin 

(P/S). The cells were transferred to low-serum 

maintenance media containing DMEM, 18.5% M199, 

5% horse serum, 1% P/S after 24 hours and maintained 

at 37°C and 5% CO2 in a humidified environment. 

 

Real-time polymerase chain reaction 

 

The real-time PCR was performed as described 

previously [20]. The following primer sequences were 

used: TNF-α, forward: 

CATCTTCTCAAAATTCGAGTGACAA, reverse: 

TGGGAGTAGACAAGGTACAACCC; IL-1β, 

forward: GTGGCTGTGGAGAAGCTGTG, reverse: 

GAAGGTCCACGGGAAAGACAC; IL-6, forward: 

GAGGATACCACTCCCAACAGACC, reverse: 

AAGTGCATCATCGTTGTTCATACA; and GAPDH, 

forward: TGACCTCAACTACATGGTCTACA, 

reverse: CTTCCCATTCTCGGCCTTG. 

 

Western blotting 

 

The heart tissues and neonatal rat cardiomyocytes 

proteins were extracted with RIPA lysis buffer 

(containing protease and phosphatase inhibitors, 

Thermo Scientific), after which the lysate was 

centrifuged at 12,000 rpm, 30 min at 4°C. The protein 

supernatant was then collected and analyzed by 

standard immunoblotting. Protein samples were 
prepared for PAGE after the concentrations were 

measured by a BCA assay (Thermo Scientific). The 

proteins were then transferred to a PVDF membrane 

(0.45 μm, BioRad) and probed with the indicated 

antibodies. The primary antibodies used were Beclin 

1 (3738S, Cell Signaling Technology), P62 (23214, 

Cell Signaling Technology), LC3 (ab192890, 

Abcam), JNK (ab199380, Abcam), p-JNK 

(ab215208, Abcam) and GAPDH (2118, Cell 

Signaling Technology). 

 

Enzyme-linked immunosorbent assay (ELISA) and 

myeloperoxidase (MPO) activity measurement 
 

TNF-α, IL-1β, and IL-6 levels in cardiomyocyte lysates 

were quantitatively measured by commercial ELISA 

kits according to the manufacturer's instructions 

(ABclonal, Wuhan, China; Dakewe, Shenzhen, China). 

MPO activity in heart lysates was measured according 

to the manufacturer's procedure (Nanjing Jiancheng 

Corp., Nanjing, China). 

 

Quantification of apoptosis by fluorescence-activated 

cell sorting (FACS) 
 

The high affinity of Annexin-V (AV) for 

phosphatidylserine (PI) (Beyotime, China), which is 

exposed on the surface of apoptotic cells, was used to 

examine apoptosis as described previously [27]. The 

data are reported as the percentages of early apoptotic 

cells (FITC+/PI-) and late apoptotic cells (FITC+/PI+). 
 

AAV9 vector generation and transfection 
 

We prepared AAV9-shNC and AAV9-shATG5 vectors 

as described [45]. We injected 4- to 5-week-old male 

C57 mice with 1 × 1012 vg of AAV9-shNC and AAV9-

shATG5 intravenously via the tail vein as described 

previously [46]. 
 

Statistical analysis 
 

Results are expressed as the mean ± standard error of 

the mean (SEM). GraphPad Prism 8.0 (GraphPad 

Software Inc., CA, USA) is used to determine the 

statistical significance among multiple groups by one-

way ANOVA with the Bonferroni post hoc test. A 2-

tailed p-value of less than 0.05 was considered 

statistically significant. 
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