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INTRODUCTION 
 

Acute myeloid leukemia (AML) is the most common 

form of acute leukemia in adults, and the incidence and 

mortality risks increase with age [1, 2]. As a hetero-

geneous disease of the blood system, AML is 

characterized by differentiation arrest and malignant 

clonal expansion of myeloid lineage blasts. Many 

oncogene activating mutations and cytogenetic 

abnormalities in AML, such as core-binding factor 

(CBF), retinoic acid receptor-α (RAR-α), FLT3, RAS, 

p53, WNT, nucleophosmin (NPM1), and CEPBAdouble, 

are associated with high-risk clinical characteristics and 

adverse prognosis [3–5]. The complex genetic 

background substantially impacts risk stratification, 

treatment responses, and prognosis prediction. Hence, it 

is urgent to authenticate potential and independent 

biomarkers involved in diagnosis, treatment, and 

prognosis of patients with AML. 

 
The RhoBTB subfamily, represented in mammals by 

three isoforms, RhoBTB1, RhoBTB2, and RhoBTB3, 

was recognized in the lower eukaryote Dictyostelium 
discoideum, and thus became the de novo addition to 
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ABSTRACT 
 

Rho-related BTB domain (RhoBTB) proteins belong to Rho guanosine triphosphatases (GTPases). Their putative 
role implicated in carcinogenesis has been supported by accumulating evidence. However, their expression 
pattern and potential role in acute myeloid leukemia (AML) remain unclear. 
We profiled RHOBTB mRNA expression via the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) 
database. Survival analysis was conducted with GEPIA2 and UALCAN. Univariate and multivariate Cox 
regression analyses were performed to validate RHOBTB genes as independent prognostic indicators in the 
LAML cohort from The Cancer Genome Atlas (TCGA). Data regarding expression in different subtypes and 
relationships with common disease-related genes were retrieved from UALCAN. Co-expressed genes were 
screened out and subsequently subjected to functional enrichment analysis. 
We observed aberrant transcription levels of RHOBTB genes in AML patients. RHOBTB2 was identified as a 
prognostic candidate for overall survival (OS), independent of prognosis-related clinical factors and genetic 
abnormalities. Moreover, RHOBTB2 expression was increased in non-acute promyelocytic leukemia (APL) 
subtypes, patients without FLT3 mutation and PML/RAR fusion, and imparted a positive correlation with the 
expression of FLT3, FHL1, and RUNXs. Co-expressed genes of RHOBTB2 were enriched in functional pathways 
in AML. 
Our findings suggest that RHOBTB2 might be a novel biomarker and independent prognostic indicator in AML 
and provide insights into the leukemogenesis and molecular network of AML. 
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Rho-related proteins [6]. As atypical members of small 

guanosine triphosphatases (GTPases), RhoBTB 

proteins possess a salient architecture: a proline-rich 

region follows the GTPase domain, a tandem of two 

BTB (broad complex, tramtrack, and bric-a-brac) 

domains, and a carboxyl-terminal BTB and C-terminal 

Kelch (BACK) domain [7]. RHOBTB genes have been 

identified as tumor suppressors and are reduced or 

abolished in diverse solid tumors. RHOBTB2 (also 

called deleted in breast cancer 2 (DBC2)) has been 

reported as a gene homozygously deleted in breast 

cancer samples. It exerts a tumor-suppressive function 

by inhibiting cancer cell proliferation, migration, and 

invasiveness [8, 9]. Silenced RHOBTB2 expression 

has been further observed in lung, bladder, bone, and 

gastric cancer [10–14]. RHOBTB1 is heterozygously 

deleted in head and neck squamous cell carcinomas 

(HNSCCs), and its expression is silenced in colon 

cancer by miR-31 [15]. RHOBTB3 is significantly 

decreased in renal carcinoma and acts as a tumor 

suppressor by promoting ubiquitination and 

degradation of HIFa [16]. To date, little is known 

about the expression profiles of RHOBTB genes and 

their relationships with clinicopathological features 

and prognosis in leukemia. Here, we applied 

bioinformatics analyses to determine the expression of 

RHOBTB genes in AML patients based on large-scale 

gene expressions in copy numbers published online 

and validate RHOBTB2 as an independent prognostic 

indicator and a tumor biomarker. 

 

RESULTS 
 

Transcriptional levels of RHOBTB genes in patients 

with AML 

 

The RHOBTB genes comprise three members, 

RHOBTB1, RHOBTB2, and RHOBTB3, in mammalian 

cells. We compared the transcriptional levels of 

RHOBTB genes in the bone marrow of AML patients 

(TCGA-LAML, n = 173) with those in normal samples 

(GTEx, n = 70) through Gene Expression Profiling 

Interactive Analysis 2 (GEPIA2) (Figure 1). Gene 

expression analysis using box plots indicated that the 

transcriptional levels of RHOBTB1 and RHOBTB3 were 

decreased (P < 0.05, Figure 1A and 1C), while that of 

RHOBTB2 was significantly increased (P < 0.05, Figure 

1B). Consistently, three datasets indicated increased 

RHOBTB2 expression; six datasets and five datasets 

showed reduced RHOBTB1 and RHOBTB3 expression, 

respectively, in leukemia compared to normal samples in 

the ONCOMINE database (Supplementary Figure 1). 

Downregulation of RHOBTB1 and RHOBTB3 has been 

reported in various types of tumors, and this pattern was 

confirmed in AML. RHOBTB2 showed notably 

divergent expression patterns between AML and other 

 

 

 
Figure 1. RHOBTB mRNA expression levels in patients with AML (GEPIA2). Box plots show the expression profiles of RHOBTB1 (A), 

RHOBTB2 (B), and RHOBTB3 (C) in bone marrow samples of patients in the TCGA-AML cohort (n = 173) compared to those in normal 
matched samples (n = 70) from GTEx. The transcriptional levels were log-normalized by the log2(TPM+1) method. A t-test was used to 
compare the differences in expression between tumor and normal tissues. *P < 0.05. 
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tumor types, which led us to further explore the 

underlying clinical significance. 

 

Prognostic values of RHOBTB genes in patients with 

AML 

 

Intriguingly, a high expression level of RHOBTB2 was 

associated with poor overall survival (OS) (Hazard ratio 

(HR) (high) = 2.9; P = 0.00041, Figure 2B) while a low 

expression level of RHOBTB3 was associated with poor 

OS for patients with AML (HR (high) = 0.44; P = 

0.0045, Figure 2C) in GEPIA2. However, there was no 

difference for RHOBTB1 (HR (high) = 1.1; P = 0.85, 

Figure 2A). The prognostic evaluation capacity of 

RHOBTB2 and RHOBTB3 was validated with the 

UALCAN database (Supplementary Figure 2) and 

Kaplan-Meier (KM) survival analysis (log-rank P-value 

= 0.000239 for RHOBTB2, log-rank P-value = 0.00024 

for RHOBTB3) in the TCGA-LAML cohort (n = 151) 

obtained from https://portal.gdc.cancer.gov/ in January 

2020 (Figure 3A–3B). RHOBTB2 overexpression was 

recognized as a risk factor for OS with HR = 1.672 (95% 

confidence interval (CI), 1.285–2.176) (Figure 3A) via 

Cox proportional hazards analysis, while high 

expression of RHOBTB3 as a protective factor with HR 

= 0.444 (95% CI, 0.288–0.685) (Figure 3B). The median 

survival time of the RHOBTB2 high-expression group 

was 0.8 years and that of the low-expression group was 

 

 
 

Figure 2. Prognostic analysis of RHOBTB gene expression in AML patients (GEPIA2). Survival analysis was performed based on 

the mRNA expression levels of RHOBTB1 (A), RHOBTB2 (B), and RHOBTB3 (C) and survival status in the TCGA-AML cohort (106 patients 
were analyzed) via GEPIA2. Kaplan-Meier (KM) curves were plotted with P-values and HRs by log-rank tests and Cox regression models. 
Dotted lines indicate the 95% CI. Gene expression levels were dichotomized, generating a high expression group (solid red line) and a low 
expression group (solid blue line), based on the median expression level of each gene as the cut-off value. OS, overall survival. HR, hazard 
ratio. CI, confidence interval. **P < 0.01. ***P < 0.001. ns, not significant. 

https://portal.gdc.cancer.gov/
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Figure 3. Prognostic value of RHOBTB2 and RHOBTB3 in the TCGA-LAML cohort. Kaplan-Meier survival analysis of RHOBTB2 (A) 

and RHOBTB3 (B) in AML patients. P-values and hazard ratios (HRs) with 95% confidence intervals (95%CIs) were generated along with log-
rank tests and univariate Cox proportional hazards regression. Dotted lines indicate the 95%CI. The survival probability of a total of 140 
patients from the LAML cohort was computed after case-wise deletion. Patients were grouped by a dichotomization method based on the 
median expression level of each gene. Solid red lines represent the high expression groups while solid blue lines represent the low 
expression groups. Red and blue arrows indicate the median survival time of the two groups, respectively. (C–D) Time-dependent ROC 
analysis was performed for the 1-, 3-, 5-year time points to determine the predictive accuracy of RHOBTB2 and RHOBTB3. AUC values 
represent the prediction ability in 1-, 3-, 5-year OS. ROC, receiver operating characteristic. AUC, area under the curve. (E) Multivariate Cox 
regression analyses of RHOBTB2, RHOBTB3, and clinical features in the TCGA-LAML cohort. The forest plots were generated with the P-
values, HR, and 95% CI of each variable through ‘forestplot’ R package. (F) Univariate and multivariate Cox regression analyses of RHOBTB2, 
RHOBTB3, and three other potential prognosis-related genes (FHL1, HOPX, and FAM124B). A P-value < 0.05 was considered statistically 
significant. Asterisks represent levels of significance (*P < 0.05, **P < 0.01, and ***P < 0.001). 
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2.3 years. In comparison, the median survival times of 

the RHOBTB3 high and low-expression groups were 

2.3 years and 0.7 years, respectively (Figure 3A–3B). 

Time-dependent receiver operating characteristic 

(ROC) analysis of RHOBTB2 and RHOBTB3 was 

performed to compare each gene's predictive accuracy. 

RHOBTB2 had a larger area under the curve (AUC) 

than RHOBTB3, especially for 3- and 5-year survival 

(3-year AUC = 0.732 vs. 0.673, 5-year AUC = 0.802 

vs. 0.720) (Figure 3C–3D). Therefore, the results 

above suggest that both RHOBTB2 and RHOBTB3 

may be potential prognostic factors for patients with 

leukemia, and RHOBTB2 showed better prognostic 

performance. 

 

Identification of RHOBTB2 as an independent 

prognostic indicator in AML 

 

We performed univariate and multivariate Cox 

regression analyses to determine whether RHOBTB2 

and RHOBTB3 are robust AML OS-related genes that 

can be used for prognosis prediction. 

 

Multiple clinical factors, such as age, WBC count, blast 

cell percentage, and cytogenetic abnormalities, impact 

the prognosis of AML. Some individual genes, 

including four-and-a-half LIM domain 1(FHL1), HOPX 

and FAM124B have been recently identified as 

candidate prognostic factors through a genome-wide 

Cox regression screening project [17]. Thus, RHOBTB2 

and RHOBTB3, combined with risk factors including 

age (≥60 years old), WBC count (≥30 × 109/L), blast 

cell percentage, cytogenetic abnormalities, therapeutic 

agent target (FLT3, DNMT3A, and TP53 mutations, 

etc.), and de novo prognostic indicators (FHL1, HOPX, 

and FAM124B) (Supplementary Table 1) were used for 

multivariate Cox regression analysis of the TCGA-

LAML cohort (n = 151). As shown in Figure 3E, the 

forest plots indicated that high RHOBTB2 expression, 

but not high RHOBTB3 expression, was strongly 

predictive of poor outcome in AML patients (HR = 

1.581; 95% CI, 1.102–2.270; P = 0.012), independent of 

clinical features including age, WBC count, blast cell 

percentage and gene mutation status (Figure 3E). 

Compared to RHOBTB3 and the three potential 

prognostic indicators (FHL1, HOPX and FAM124B), 

only RHOBTB2 displayed prognostic value (P-value = 

0.003, vs. P-value = 0.057 for RHOBTB3, P-value = 

0.896 for FHL1, P-value = 0.087 for FAM124B, and P-

value = 0.184 for HOPX), and a higher HR (HR = 

1.685; 95% CI, 1.188–2.388) in the Cox model (Figure 

3F, right panel), even though all five genes were 

statistically significant in univariate Cox regression 
analysis (Figure 3F, left panel). The results above verify 

that RHOBTB2 can be used as an independent and 

effective predictor of the OS for AML patients. 

Association of RHOBTB2 expression with AML 

classification and clinical characteristics 

 

The French–American–British (FAB) classification, 

devised in the 1970s and 1980s, recognizes eight 

subtypes of AML (FAB M0-M7) based mostly on 

morphology and cytochemistry [18]. The more precise 

World Health Organization (WHO) classification  

has been used in recent years, which considers clinical 

features, morphology, immunophenotyping, cyto-

genetics, and molecular genetics [19]. A set of 

recurring chromosomal and genetic lesions related to 

oncogenes, tumor suppressor genes, and other 

regulatory elements that control vital cell functions, 

such as t(15;17) (q22;q12), PML-RARα, t(8;21) 

(q22;q22), RUNX1-RUNX1T1, FLT3-ITD mutation and 

NPM1 mutation, have been introduced in many patients 

[19–22]. 

 

We further clarified the expression profile of 

RHOBTB2 in different subtypes of AML using 

UALCAN. The box plots showed that RHOBTB2 was 

remarkably increased in FAB subtypes M0, M1, M2, 

M4, and M5 compared to that in M3 (also known as 

acute promyelocytic leukemia (APL)), which has a 

higher degree of differentiation (P < 0.001 for M0 vs. 

M3, M1 vs. M3, M2 vs. M3, M4 vs. M3 and M5 vs. M3, 

Figure 4A). FAB subtypes M6 and M7 were not 

considered because of the small sample size for each. It 

seems like progenitor cells have higher RHOBTB2 

expression levels than their progeny. 

 

Next, the correlation between RHOBTB2 expression 

and clinical features, such as age, gender, FLT3 

mutation, PML/RAR-fusion, and RAS activation status 

in AML patients, was analyzed through UALCAN 

(Figure 4B–4F). Box plots showed that the expression 

level of RHOBTB2 was higher in the 61–80-year-old 

group than in the 21–40-year-old group (P = 0.015, 

Figure 4B) and higher in the male group than in the 

female group (P < 0.001, Figure 4C). We did not 

analyze the 80–100-year-old group, as it had only five 

samples. In addition, RHOBTB2 expression was 

increased in AML patients without FLT3 mutation (P = 

0.024, Figure 4D) and patients without PML-RAR 

fusion (P = 0.0038, Figure 4E). The presence of FLT3 

mutations in AML enabled the recent approval of 

targeted drugs that can help patients achieve prolonged 

remission. PML-RAR is a fusion gene that is associated 

with the specific subtype of leukemia APL. 

 

Furthermore, the correlation between RHOBTB2 and 

disease-related genes was analyzed. The statistical scatter 
plots from the GEPIA2 database showed that RHOBTB2 

expression had a positive association with the expression 

of FLT3 (Pearson’s correlation = 0.37, P = 5.56E-07), 
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FHL1 (Pearson’s correlation = 0.37, P = 3.8E-07), 

RUNX1 (Pearson’s correlation = 0.17, P = 0.023), 

RUNX2 (Pearson’s correlation = 0.3, P = 4.9E-05), and 

RUNX3 (Pearson’s correlation = 0.42, P = 6.2E-09) 

(Figure 4G). FLT3 is overexpressed on CD34+ blast cells 

in approximately 93% of AML cases and might 

 

 
 

Figure 4. The mRNA expression levels of RHOBTB2 in various classes of AML (UALCAN) and the correlations between 
RHOBTB2 and disease-related genes in the TCGA-LAML cohort (GEPIA2). (A) Box plots representing RHOBTB2 expression levels in 

different French–American–British (FAB) subtypes. (B–F) Box plots representing RHOBTB2 expression levels in subgroups based on age (B), 
gender (C), FLT3 mutation (D), PML/RAR-fusion (E), and RAS activation status (F). (G) The scatter plots show the correlation between 
RHOBTB2 and disease-related genes such as FLT3, NPM1, FHL1, and RUNX1-3 according to Pearson’s correlation analysis (GEPIA2). A non-
log scale of mRNA expression levels was used for calculation and a log2-scale axis was used for visualization. R values indicate correlation 
coefficients. A P-value < 0.05 was considered statistically significant. *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant. 
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share the same expression pattern with RHOBTB2 in 

bone marrow samples. High expression of FHL1 and 

RUNX1-3 is related to poor prognosis. NPM1, the high 

expression of which predicts a superior prognosis, was 

negatively correlated with RHOBTB2, but the 

correlation was not significant. 

 

Functional enrichment analyses of RHOBTB2 and 

co-expressed genes in AML 

 

To further explore the potential function and molecular 

pathways of the RHOBTB2 gene in AML, we utilized 

the LinkedOmics database [23] to identify co-expressed 

genes of RHOBTB2 in data of 173 patients from 

TCGA. A total of 8,198 genes related to RHOBTB2 

were altered, which reflects the considerable impact of 

the core gene RHOBTB2 on AML pathogenesis. The 

2,309 gene clusters of these related genes that were 

positively related to RHOBTB2 are displayed as red 

dots, whereas the 2,028 gene clusters that were 

negatively associated with RHOBTB2 are represented 

by green dots in the volcano plot (P < 0.01 and FDR < 

0.01, Figure 5A). The top 20 significant gene sets 

positively and negatively associated with RHOBTB2 

are presented in Table 1. 

 

RHOBTB2 and its top 200 associated gene clusters 

were subjected to gene ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

functional enrichment analyses to identify enriched 

categories and signaling pathways in the TCGA-LAML 

cohort. The bubble diagrams showed that the gene 

clusters were located in cell morphogenesis involved in 

differentiation, small GTPase mediated signal 

transduction, and positive regulation of catalytic activity 

(http://amigo.geneontology.org/amigo, GO:0000902, 

GO:0000904, GO:0007264, GO:0043085, etc) in the 

aspect of biological processes (Figure 5B). The 

functions of these categories above may be related to 

cell division, cell cycle, proliferation, and 

differentiation of blast cells in AML. In the aspect of 

cellular components, Chang et al. found that RhoBTB2 

is distributed in a vesicular pattern [24], and 

coincidentally these genes are putative structural 

constituents of phagocytic vesicle (GO:0045335), 

endocytic vesicle (GO:0030139) and cytoplasmic 

vesicle membrane (GO:0030659) (Figure 5C). When it 

comes to the aspect of molecular functions, they are 

localized in RHOBTB2-related utilities such as Rho 

GTPase binding (GO:0017048), Rac GTPase binding 

(GO:0048365) and GTPase activator activity 

(GO:0005096) (Figure 5D). The top 10 pathways 

related to RHOBTB2 and co-expressed gene clusters 
were defined by KEGG analysis. These pathways such 

as cytotoxicity (https://www.kegg.jp/kegg/, hsa04650), 

phagosome (hsa04145), leukocyte transendothelial 

migration (hsa04670), and apoptosis (hsa04210), have 

been intriguingly implicated in vital pathological 

processes including cell fate determination and 

migration of leukocytes (Figure 5E). Given our results 

and the architecture, localization and biological 

functions of RHOBTB2 postulated in previous research, 

we hypothesized that overexpression of RHOBTB2 in 

leukemic blast cells could regulate cell differentiation, 

cell cycle, proliferation, apoptosis, migration and 

vesicle transport. 

 

MATERIALS AND METHODS 
 

GEPIA2  

 

GEPIA2 (http://gepia2.cancer-pku.cn/, Beijing, China) 

is an interactive web-based tool for analyzing cancer-

related RNA sequencing data provided by TCGA and 

GTEx projects [25]. General gene expression profiles, 

survival analysis, and correlation analysis were 

conducted through the “Expression Analysis” module 

with the TCGA- LAML cohort (n = 173) and normal 

tissues (n = 70), the data of which are available in the 

panel “dataset sources”. Student’s t-test was used to 

perform expression analysis. The survival results were 

displayed by Kaplan-Meier curves with HRs and P 

values from a log-rank test. A P-value = 0.05 was used 

as the threshold of statistical significance. 

 

Univariate and multivariate Cox regression analyses 
 

Univariate and multivariate Cox regression analyses 

were performed to identify candidate prognostic genes 

in the LAML cohort from TCGA. The data (available 

through https://portal.gdc.cancer.gov/) were updated in 

Jan 2020, and the cohort contains 151 AML patients 

with high-throughput sequencing (RNA-Seq) data and 

detailed clinical information [26]. 

 

A forest plot with the P-value, HR and 95% CI of each 

variable was built through “survival”, “survminer” and 

“forestplot” R packages in RStudio 4.0.3. Gene 

expression levels were dichotomized based on the 

median expression level in the cohort as the cutoff 

value. 

 

LinkedOmics  
 

LinkedOmics (http://www.linkedomics.org) provides a 

unique portal to analyze cancer multi-omics data and 

clinical data for 32 cancer types and 11 158 patients 

from TCGA project [23]. Genes associated with 

RHOBTB2 were identified in the TCGA-LAML cohort 
(n = 173) and are presented in volcano plots. Pearson’s 

correlation test was used to evaluate the statistical 

relationship. 

http://amigo.geneontology.org/amigo
https://www.kegg.jp/kegg/
http://gepia2.cancer-pku.cn/
https://portal.gdc.cancer.gov/
http://www.linkedomics.org/
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Figure 5. Co-expressed genes of RHOBTB2 (LinkedOmics) and functional enrichment analyses in AML (WebGestalt). (A) 

Genes positively and negatively correlated with RHOBTB2 in AML were indicated by the volcano plot. Red dots in the right sector 
represent positively correlated genes, while green dots in the left sector are negatively correlated genes. A total of 8,198 genes with 
significant associations were defined (P < 0.05), among which there were 2,309 positively associated genes and 2,028 negatively 
associated genes when FDR < 0.01 and P-value < 0.01 were used as thresholds. Pearson’s test was used to identify the correlations in the 
TCGA-LAML cohort (n = 173). Bubble plots display the functional enrichment results of GO analysis in terms of biological processes (B), 
cellular components (C), molecular functions (D) and KEGG signaling pathways (E). The top 10 functional categories and pathways were 
annotated with color gradient bubbles of different sizes. A (-log10) P-value>1.3 (P-value < 0.05) was considered statistically significant. 
FDR, false discovery rate. 
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Table 1. Representative genes positively and negatively associated to RHOBTB2 by Pearson’s test from LinkedOmics 
database. 

Associated genes Pearson Correlation Coefficient P-value FDR (BH) 

Top 20 positively associated genes 

FLNB 0.650972985 3.16E-22 2.24E-18 

NUP210 0.650504829 3.46E-22 2.24E-18 

TFEB 0.638588116 3.33E-21 1.62E-17 

CYTH4 0.632993672 9.32E-21 3.63E-17 

HMHA1 0.630347457 1.51E-20 4.88E-17 

PLXNB2 0.623049163 5.52E-20 1.53E-16 

SIPA1 0.620465063 8.68E-20 2.11E-16 

MEF2D 0.61724265 1.52E-19 3.28E-16 

ARHGAP4 0.616523644 1.72E-19 3.34E-16 

KCTD17 0.613370759 2.94E-19 5.19E-16 

NCOR2 0.608853961 6.28E-19 1.02E-15 

IRF8 0.599255299 3.04E-18 4.55E-15 

PLD4 0.596469425 4.76E-18 6.61E-15 

PAK1 0.588692953 1.62E-17 2.10E-14 

ATP6V0E2 0.587904178 1.84E-17 2.23E-14 

KIAA1949 0.585777691 2.55E-17 2.92E-14 

MFSD2A 0.581547428 4.87E-17 5.26E-14 

DUSP7 0.580947776 5.34E-17 5.46E-14 

LILRB4 0.573953331 1.52E-16 1.41E-13 

UNC93B1 0.573436959 1.64E-16 1.45E-13 

Top 20 negatively associated genes 

FNDC3B –0.576323492 1.07E-16 1.04E-13 

CASP6 –0.570890084 2.39E-16 1.86E-13 

RAB5B –0.560513869 1.06E-15 6.47E-13 

MST4 –0.554995474 2.31E-15 1.25E-12 

BMS1P5 –0.554977234 2.31E-15 1.25E-12 

BLID –0.551717218 3.63E-15 1.81E-12 

THUMPD1 –0.550233952 4.45E-15 2.11E-12 

KDM5B –0.543785876 1.06E-14 4.70E-12 

CLINT1 –0.540830204 1.58E-14 6.56E-12 

SIX3 –0.538128546 2.25E-14 8.80E-12 

ITPR2 –0.537446438 2.46E-14 9.21E-12 

FAM5B –0.536216849 2.89E-14 1.04E-11 

MAX –0.534375272 3.67E-14 1.19E-11 

AVEN –0.534276355 3.72E-14 1.19E-11 

TMEM87A –0.532895715 4.45E-14 1.37E-11 

TRNT1 –0.531726008 5.17E-14 1.55E-11 

RPGR –0.531267221 5.49E-14 1.62E-11 
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APLF –0.529254158 7.10E-14 2.01E-11 

PIK3CB –0.528410674 7.90E-14 2.13E-11 

TM7SF3 –0.527464794 8.91E-14 2.34E-11 

FDR(BH): False discovery rate is calculated by BH (Benjamini-Hochberg method). 

 

UALCAN 

 

UALCAN (Birmingham, AL, USA, 

http://ualcan.path.uab.edu) serves as a platform for 

validating specific genes and screening tumor candidate 

biomarkers [27]. RHOBTB gene expression in AML 

subgroups based on various clinicopathologic features 

and survival outcomes was investigated via “Expression 

Analysis” and “Survival Analysis” modules, 

respectively. The processed RNA-sequencing data  

and survival profiles of the AML cohort (n = 163)  

were obtained using TCGA assembler 

(http://www.compgenome.org/TCGA-Assembler/). A 

P-value of 0.05 was used as the threshold for 

significance. 

 

GO and KEGG pathway enrichment analyses 

 

The WebGestalt database 

(http://www.webgestalt.org/option.php) for deriving 

biological insights from gene lists was exploited to 

perform GO and KEGG pathway enrichment analyses 

for RHOBTB2 and the top 200 co-expressed genes. The 

built-in reference human protein-coding genome was 

selected as the background parameter. Bubble plots with 

(-log10) P-values, FDRs, and enrichment ratios were 

generated through “ggplot” and “dplyr” R packages. A 

(-log10) P-value > 1.3 was considered to indicate 

enrichment of a meaningful pathway. 

 

DISCUSSION 
 

As an atypical subfamily of Rho GTPases, RhoBTB 

proteins possess the most salient domain architecture. 
Studies have implicated their pivotal role in the 

regulation of cell growth through cell cycle control and 

apoptosis, vesicle trafficking, and organization of the 

actin filament system. Hitherto increasing evidence has 

implicated the RHOBTB genes in tumorigenesis. The 

expression profile of RHOBTB genes in AML and 

whether they can affect myeloid leukemogenesis, 

pathogenesis, and prognosis remain obscure. In this 

study, we performed bioinformatics analyses to explore 

the expression profile and prognostic value of 

RHOBTB genes in AML and enhance the accuracy of 

prognosis prediction. 
 

We found aberrant RHOBTB gene expression in human 

AML samples through the ONCOMINE and GEPIA2 

databases. RHOBTB1 and RHOBTB3 were decreased 

significantly in AML samples. In contrast, the 

transcriptional level of RHOBTB2 was dramatically 

increased in AML compared to normal samples, unlike 

the pattern found in other tumors. All three RHOBTB 

genes have notable differences in tissue expression 

levels in humans [6]. The status of RHOBTB genes in 

various tumors remains to be further uncovered. 

Although RHOBTB2 is frequently deleted in various 

carcinomas, including breast, lung, and stomach 

carcinomas, many tumor cells still retain RHOBTB2 

expression [28]. Blast cells make up a high proportion 

(20%~100%) of the cells in bone marrow samples from 

AML patients. These myeloid progenitor cells are 

derived from hematopoietic stem cells (alias leukemia 

stem cells (LSCs)), which are different from the stem 

cells of solid tumors. Based on the findings above, we 

hypothesized that there is no overt relationship between 

mRNA expression patterns of the three RHOBTB genes 

and protein architecture. It is reasonable that only 

RHOBTB2 showed expression patterns in AML 

patients that are different from those in solid tumor 

types. 

 

The prognostic value of RHOBTB genes in patients 

with AML was assessed in several databases and by 

Cox regression. Survival analysis suggested that high 

RHOBTB2 expression and low RHOBTB3 expression 

are associated with adverse OS in AML. The ROC 

analysis indicated that RHOBTB2 had a larger AUC 

than RHOBTB3 and had a better prognostic value. 

Subsequently, to demonstrate whether the prognostic 

efficacy of RHOBTB2 and RHOBTB3 is independent 

of other clinical factors, we performed multivariate Cox 

regression analyses in the TCGA-AML cohort. Several 

disease-related factors and gene mutations, such as age, 

WBC count, blast cell percentage, TP53 mutations, 

FHL1, HOPX, and FAM124B, were confirmed to have 

significant and general prognostic value in previous 

studies [17]. We entered RHOBTB2 and RHOBTB3 

with all of these prognostic variables into the 

multivariate analyses. High RHOBTB2 expression was 

identified as an independent indicator for unfavorable 

OS. 

 

We examined the relationship between RHOBTB2 

expression and clinical features and genetic alterations 

of AML patients to validate whether it could be used 

as a tool for risk stratification. RHOBTB2 expression 

http://ualcan.path.uab.edu/
http://www.compgenome.org/TCGA-Assembler/
http://www.webgestalt.org/option.php


 

www.aging-us.com 15279 AGING 

was higher in the 61–80-year-old group, which is 

consistent with the worse 5-year OS of elderly AML 

patients. The RHOBTB2 expression level was 

upregulated in the non-APL FAB subtype, AML 

patients without FLT3 mutation, and patients without 

PML-RAR fusion, although it showed no difference 

between patients with and without RAS activation 

status. Correlation analysis with the GEPIA2 database 

indicated that the RHOBTB2 expression was 

positively associated with the expression of FLT3, 

FHL1, and RUNX1-3. Patients with FLT3 mutation 

have a lower complete remission rate and poorer 

prognosis [29]. FHL1 is a powerful prognostic factor 

for determining OS, event-free survival, and relapse-

free survival [17]. The three RUNX family members 

are lineage-specific master regulators and play an 

essential role in hematopoiesis [30]. These data 

reinforce the role of RHOBTB2 as a prognostic 

indicator for specific AML subtypes. 

 

We also explored the potential of RHOBTB2 co-

expressed genes as biomarkers for AML through the 

LinkedOmics database. GO and KEGG analyses 

indicated that these co-expressed genes were enriched 

in multiple functional categories and pathways that may 

contribute to regulating the cell cycle, apoptosis, 

differentiation, migration and vesicle transport in AML. 

Although there is little research concerning the role of 

RHOBTB2 in AML, in future studies, we will aim to 

determine the possible mechanism based on the 

comprehensive analysis of the expression patterns and 

functional enrichment in AML. RhoBTB2 can function 

in cell cycle and apoptosis through ubiquitination and 

degradation of cancer-related proteins, so we 

hypothesize that RhoBTB2 plays an intricate and 

differential role in tumorigenesis depending on target 

genes with multiple pathways. RHOBTB2 (DBC2) 

downregulates cyclin D1 (CCND1); however, other 

leukemogenesis pathways, such as c-myc and Wint-1, 

might be induced [28]. Scott N. Freeman et al. found 

that RHOBTB2 overexpression, as a target of E2F1 

during mitosis, facilitates cell cycle progression and 

propagation for a short time [31]. E2F1 may promote 

the transcription of RHOBTB2 during mitosis, which 

affects the cell cycle and boosts the proliferation of 

AML leukemia cells. RHOBTB2 is expressed in fetal 

tissues and may control developmental processes [32], 

thus possibly exerting an influence on morphogenesis, 

localization and differentiation of leukemic blast cells. 

The potential role of RhoBTB2 in vesicle transport has 

been addressed by Chang et al. [24]. We hypothesized 

that RhoBTB2 might partly mediate the membrane 

trafficking and distribution of chemotherapeutic drugs 
and thus contribute to the poor outcomes of AML 

treatment, but the in-depth mechanism requires more 

laboratory work. The published reports above have 

introduced some intriguing hypotheses that provide the 

basis for further explorations. 
 

In conclusion, the current study was the first to 

thoroughly identify the aberrant expression and 

prognostic value of RHOBTB family members in AML. 

RHOBTB2 was increased in high-risk subgroups of 

patients with leukemia and thus could serve as a 

potential biomarker. Our results illustrate that the 

overexpression of RHOBTB2 is an independent 

indicator for predicting the adverse outcome of AML 

and might play an essential role in leukemogenesis. 

Further research based on this discovery will aid the 

understanding of the comprehensive gene network of 

leukemogenesis and improve the accuracy of leukemia 

survival and prognostic prediction. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. RHOBTB family members transcription levels in human cancers. The mRNA expression of RHOBTB 1-3 

(cancer vs. normal tissue) in pan-cancers was analyzed through the ONCOMINE database. The red arrow indicates RHOBTB expression in 
AML. The number in the colored cell represents the number of datasets meeting thresholds (P < 0.05, fold change = ALL). The cell color was 
defined as the gene rank percentile in the study. 
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Supplementary Figure 2. The effect of RHOBTB genes expression level on overall survival of AML patients (UALCAN). The 

overall survival (OS) curves of AML patients in different RHOBTB1 (A), RHOBTB2 (B), and RHOBTB3 (C) expression groups were drawn by 
Kaplan-Meier survival analysis. Patients in the TCGA-LAML cohort were divided into a high expression group (n = 41) and a low/medium 
expression group (n = 121) according to the average expression level of each gene. *P < 0.05. 
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Supplementary Table 

 

Supplementary Table 1. Univariate cox regression of clinicopathological characteristics and selected features with 
overall survival in a TCGA-LAML cohort. 

Characteristics HR (95% CI) p value 

Age (≥60 years old) 2.947 (1.998–4.348) 5.083e-08*** 

WBC count (≥30 × 109/L) 1.052 (0.718–1.542) 0.794 

blast cell percentage (bone_marrow) 1.003 (0.995–1.011) 0.444 

blast cell percentage (peripheral_blood) 1.001 (0.995–1.007) 0.796 

RHOBTB2_exp 1.672 (1.285–2.176) 0.0001*** 

RHOBTB3_exp 0.741 (0.637–0.862) 0.0001*** 

adverse cytogenetic risk 1.622 (1.022–2.573) 0.040* 

FLT3_mutation 1.958 (0.925–4.143) 0.079 

NPM1_mutation 0.752 (0.325–1.739) 0.505 

DNMT3A_mutation 0.938 (0.496–1.774) 0.845 

IDH2_mutation 1.403 (0.565–3.480) 0.465 

IDH1_mutation 1.056 (0.426–2.613) 0.907 

RUNX1_mutation 0.926 (0.462–1.854) 0.828 

TET2_mutation 1.542 (0.376–6.330) 0.548 

TP53_mutation 2.343 (1.193–4.602) 0.013* 

NRAS_mutation 0.618 (0.268–1.422) 0.258 

CEBPA_mutation 0.756 (0.237–2.413) 0.636 

WT1_mutation 1.801 (0.568–5.714) 0.318 

PTPN11_mutation 1.202 (0.295–4.903) 0.797 

KRAS_mutation 1.413 (0.515–3.874) 0.502 

*P < 0.05. ***P < 0.001. 
 

 


