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INTRODUCTION 
 

Alzheimer’s disease (AD), a progressive and 
irreversible neurological disorder, is characterized by 

memory loss, aphasia, agnosia, visual and spatial skill 

impairment, executive dysfunction, and personality and 

behavioral changes. For these reasons, it is a common 

cause of dementia. It has a long preclinical period with 

pathophysiological changes occurring 15 to 20 years 

before the onset of symptoms [1, 2]. The prevalence of 

AD increases exponentially with age, as reflected by its 

frequent occurrence in the elderly [2]. No effective 
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ABSTRACT 
 

Purpose: Previous studies in patients with Alzheimer’s disease have shown amyloid beta accumulation in the 
brain and abnormal brain activity, with mild cognitive impairment (MCI) in early stages of the disease. The aim 
of the current study was to investigate functional connectivity in patients with MCI. 
Methods: We recruited 24 subjects in total, including 12 patients with MCI (6 men and 6 women) and 12 
healthy controls (HCs) (6 men and 6 women), matched for age, gender, and lifestyle factors. All subjects 
underwent resting-state functional magnetic resonance imaging scans and voxel-wise degree centrality (DC) 
was used to evaluate alterations in the strength of brain network connectivity. 
Results: The DC value of the left inferior temporal gyrus was lower in MCI but significantly higher in the right 
fusiform gyrus and the left supplementary motor area, compared with HCs. The DC value in left inferior 
temporal gyrus correlated positively with disease duration and negatively with Mini-Mental State Examination. 
ROC curve analysis of brain regions showed acceptable specificity and accuracy of DC values between MCIs and 
HCs in the area under the curve (right fusiform gyrus, 0.955; left supplementary motor area, 0.992; left inferior 
temporal gyrus, 1.000). 
Conclusions: Abnormal functional connectivity in brain regions of patients with MCI may reflect the 
pathological process of Alzheimer’s disease development and could prove useful in clinical diagnosis and 
treatment. 
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treatment is available for AD and late interventions 

often result in treatment failure. Early detection and 

diagnosis of AD require efficient humoral and imaging 

markers, which are still in the developing stage. 

Medical imaging, including diffusion tensor imaging, 

fluorodeoxyglucose positron emission tomography, 

magnetic resonance imaging (MRI), and other methods 

can detect brain lesions in patients with AD. Monitoring 

of neurodegenerative changes in the central nervous 

system can provide direct information on disease 

progression [3]. The early stage of AD involves damage 

to the hippocampus and entorhinal cortex, whereas 

diffuse brain atrophy is associated with the late stage of 

AD [4].  

 

Mild cognitive impairment (MCI) refers to a minor  

but noticeable decline in cognitive abilities. It is a 

heterogeneous clinical entity with multiple causes. The 

European Consortium on Alzheimer’s Disease Working 

Group on MCI describes a neuroimaging- and biomarker-

based three-step process to identify MCI patients with 

incipient or prodromal AD [5, 6]: 1) decline in cognitive 

functions during the past year, 2) although patients’ 

clinical assessment shows cognitive impairment, they do 

not suffer from dementia and no major impact on daily 

life, and 3) identification of MCI subtypes responsible  

for AD.  

 

In addition, amyloid (Aβ) accumulation in the brain of 

early-stage AD patients with MCI and no other clinical 

symptoms assist in the identification. 

 

Although functional magnetic resonance imaging 

(fMRI) is an expensive and time-consuming brain-

imaging method, it objectively assesses brain functions. 

For instance, voxel-wise degree centrality (DC), an 

fMRI-based method, provides major insights into the 

functional connectivity of the whole brain and has been 

widely used to assess the pathophysiological 

mechanism of several diseases [7]. In contrast with 

other methods, such as amplitude of low-frequency 

fluctuations (ALFF) [8] and regional homogeneity 

(ReHo) [9], DC does not involve defining regions of 

interest (ROI) and evaluate the connection strength of 

the whole human brain at the voxel level [10]. We used 

DC to evaluate changes in brain functional connectivity 

in patients with MCI and any relationship between these 

changes and clinical symptoms. 

 

MATERIALS AND METHODS 
 

Patients 

 

We recruited 24 age-, gender-, and lifestyle-matched 

subjects into our study. These included 12 patients (6 

males and 6 females) and 12 healthy controls (6 males 

and 6 females) from the First Affiliated Hospital of 

Nanchang University, China. All participants underwent 

resting-state fMRI. Voxel-wise DC was used to evaluate 

alterations in the strength of brain network connectivity. 

 

Methods 

 

The eye fundus was examined using ophthalmic fundus 

photography, indocyanine green angiography (ICGA), 

and fundus fluorescein angiography (FFA) (Figure 1). 

The inclusion criteria were (1) age ≥ 45 years, (2) 

complaints of memory loss confirmed by the informant, 

and Mini-Mental State Examination (MMSE) score < 

27, (3) activities of daily living scale (Barthel Index) ≥

 

 
 

Figure 1. An example of MCI. (A) fundus photography; (B) fundus fluorescein angiography; (C) indocyanine green angiography. 
Abbreviations: MCI, mild cognitive impairment. 
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90, and (4) cranial MRI performed in the past 6 months 

not revealing parenchymal brain lesions.  

 

The inclusion criteria of healthy controls (matched with 

the MCI group for gender and activities of daily living) 

were: (1) age ≥ 45 years, (2) routine brain MRI showing 

no significant abnormalities, (3) normal memory with 

an MMSE score ≥ 27, (4) no neurological diseases, 

mental illnesses, or cardiovascular diseases, (5) no drug 

or alcohol addiction, and (6) able to undergo MRI 

examination. 

 

In addition, patients with other types of dementia, such 

as vascular dementia, Parkinson’s disease dementia 

(PDD), frontotemporal lobar degeneration, as well as 

cognitive impairment caused by other causes (such as 

drugs, alcohol dependence, tumors, epilepsy, and 

hydrocephalus), acute cerebral hemorrhage, cerebral 

infarction or intracranial space-occupying lesions, were 

excluded from the study. Patients with other mental 

illnesses, such as severe affective disorders or current 

evidence of depression, and those with vision, hearing 

impairment, or severe dementia were also excluded. 

 

The research methods were consistent with the 

principles of the Declaration of Helsinki. All subjects 

volunteered to participate and were informed in advance 

about the aims, methods, and potential risks of the 

study. This study was approved by the Ophthalmic 

Medical Ethics Committee of the First Affiliated 

Hospital of Nanchang University. 

 

MRI data collection 

 

All MRI data were recorded using a SiemensTrio 3.0 T 

scanner by implementing an 8-channel phased-array 

head coil in the First Affiliated Hospital of Nanchang 

University, China. All subjects underwent MRI 

scanning using parameters reported previously [11]. 

 

Resting-state fMRI data preprocessing 

 

All functional data were pre-filtered using the MRIcro 

program (https://www.MRIcro.com). The data were 

processed using SPM8 (http://www.fil.ion.ucl.ac. 

uk/spm), DPARSFA (http://rfmri.org/DPARSF), and a 

resting-state data analysis toolkit (http://restfmri.net/ 

forum/index.php). The remaining 230 volumes collected 

from each patient were corrected for differences in slice 

acquisition time. The resultant images were subsequently 

realigned to correct for small movements between the 

scans. Patients with a maximum displacement of more 

than 3 mm in any direction (x, y, or z) or an angular 
rotation of more than 3 degrees in any of the 230 

volumes were excluded from the study based on recorded 

kinematic error correction estimates (one patient). 

Differences in DC values between MCI and healthy 

control (HC) patients were compared (P < 0.05, Gaussian 

random field theory). More details of data-processing 

methods used have been described previously [8]. 

 

Degree centrality 

 

DC values were calculated based on the functional 

network of individual voxels by calculating the binarized 

adjacency matrix degree or threshold correlation between 

the participants as follows [7]: 

 

Zi = DCi–mean (DC of all cortical voxels)/standard 

deviation (DC of all cortical voxels) 

 

Brain–behavior correlation analysis 

 

All subjects’ clinical data were collected to study any 

relationship between these and mean DC values of 

different brain areas. 

 

Statistical analysis 

 

GraphPad Prism Version 9.0 was used for statistical 

analysis. An independent samples t-test was performed 

to evaluate different clinical manifestations between 

MCI and HC groups. Correlation analysis (using 

unpaired Student’s t-tests) was used to analyze the 

relationship between mean DC value and performance 

data collected from subjects’ records. P-values less than 

0.05 were considered significant. Receiver operating 

characteristic (ROC) curves were used to assess DC 

values as a diagnostic marker in specific brain areas. 

Diagnostic accuracy was indicated by the area under the 

curve (AUC), with values between 0.5 and 0.7, 0.7 and 

0.9, and >0.9 having low, moderate, and high accuracy, 

respectively. 

 

RESULTS 
 

Demographics 

 

The two groups did not show any differences in age (P 

= 0.595) and gender (P > 0.99). The mean duration of 

MCI was 12.00 ± 15.42 months, which was different 

between HC and MCI groups (P < 0.001). In addition, 

S100β showed a remarkable difference (P < 0.001) 

(more details are provided in Table 1).  

 

DC comparison between groups 

 

The DC value was higher in MCI patients than in HC 

patients in the right fusiform gyrus and left 
supplementary motor area (SMA), whereas it was lower 

than that in HC patients in the left inferior temporal 

gyrus (ITG) (Figure 2 and Table 2). In the MCI group,  

https://www.mricro.com/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://rfmri.org/DPARSF
http://restfmri.net/forum/index.php
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Table 1. Demographic characteristic of the enrolled subjects. 

Condition MCI HC t P 

Subject 12 12 NA >0.99 

Age (y) 64.33±7.01 64.00±6.18 0.124 0.595 

Gender (M:F) 6:6 6:6 NA >0.99 

Duration (month) 12.00±15.42 NA 4.766 <0.001 

SBP 128.92±12.00 130.5±10.83 -0.339 0.593 

DBP 76.08±12.15 76.17±10.57 -0.018 0.593 

HR 70.01±9.16 70.42±8.36 -0.091 0.922 

Barthel Index 99.58±1.44 100 / / 

MMSE 21.42±4.56 27.83±2.52 -4.266 0.125 

Best-corrected VA-left eye 0.29±0.10 0.23±0.06 1.967 0.164 

Best-corrected VA-right eye 0.28±0.12 0.21±0.08 1.591 0.078 

S100β 0.18±0.09 2.71±1.05 -8.327 <0.001 

*P <0.05 Independent t-tests comparing two groups. 
Abbreviations: MCI, mild cognitive impairment; HC, Healthy control; NA, 
not applicable; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
HR, heart rate; MMSE, Mini-Mental State Examination; VA, visual acuity. 

 

 
 

Figure 2. Comparison of DC values in MCI and HC groups. (A) Differences in DC were found in left ITG, right fusiform gyrus, and left 
SMA. (B) The stereoscopic form of the cerebrum. The red area indicates an increase in DC value; the blue indicates a decrease in DC value. 
(GRF correction, the cluster-level: P<0.05; two-tailed, with voxel level P<0.005). (C) The Mean DC value between MCIs and control group. 
Abbreviations: DC, Degree centrality; MCI, mild cognitive impairment; HC, healthy controls; ITG, inferior temporal gyrus; SMA, supplementary 
motor area. 
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Table 2. Brain areas with different DC values between MCIs and HCs. 

Brain areas 

MNI 

coordinates BA 
Number of 

voxels 
T value 

X Y Z 

HCs>MCIs       

Left ITG -42 -48 -18 55 110 -5.1646 

HCs<MCIs       

Right fusiform 33 -18 -36 - 260 4.6357 

Left SMA 3 42 57 - 119 4.8734 

Statistical thresholds were set at voxel (P < 0.01) and multiple comparisons 
were performed using GRF theory (z > 2.3, cluster P < 0.05 corrected). 
Abbreviations: DC, degree centrality; MCI, mild cognitive impairment; HC, 
healthy control; MNI, Montreal Neurological Institute; BA, Brodmann area; 
SMA, supplementary motor area; ITG,  inferior temporal gyrus. 

 

the DC value in the left ITG was negatively correlated 

with disease duration (r2 = 0.968, P < 0.001, Figure 3A) 

and positively with MMSE score (r2 = 0.953, P < 0.001, 

Figure 3B). 

 

ROC curve  

 

The ROC curve was used to analyze the mean DC values 

of patients with MCI and HC. The larger the area under 

the curve (AUC), the higher was the diagnostic value. 

AUC values were right fusiform gyrus, 0.955; left SMA, 

0.992; and left ITG, 1.000 (Figure 4A, MCIs > HCs; 

Figure 4B, MCIs < HCs). 

 

DISCUSSION 
 

DC is a reliable, resting-state fMRI method to measure 

brain activity and connectivity. It has been successfully 

applied to study several neurogenic and ophthalmological 

diseases (Table 3). While assessing the brain activity in 

patients with MCI, we found the DC values to be lower 

than those in controls in the left ITG but relatively high in 

the left SMA and right fusiform gyrus. Furthermore, this 

alteration occurred earlier than the changes in the eyes 

(Figure 5). In addition, the left ITG showed a positive 

correlation with MMSE in MCI patients and a negative 

correlation with disease duration (Figure 6). 

 

The temporal lobe is located below the lateral fissure 

and processes vision, olfaction, sensation, and memory. 

The relatively low DC values in the left ITG in MCI 

patients suggest impaired MCI. We used the available 

data to study the association between MMSE and 

disease duration. The DC values in the left ITG 

decreased with duration (Figure 3A) but were positively 

correlated with MMSE scores (Figure 3B). These results

 

 
 

Figure 3. The correlation between the mean DC value of left ITG and the duration (A) and MMSE (B). In the Alzheimer's disease group, the 

mean DC value of left ITG showed a negative correlation with duration (r2=0.968, P<0.001). The mean DC value of the left ITG was positively 
correlated with MMSE (r2=0.953, P<0.001). Abbreviations: DC, Degree centrality; MCI, mild cognitive impairment; ITG, inferior temporal 
gyrus; L, left; MMSE, Mini-Mental State Examination. 
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show that MCI develops over time and affects the 

cognitive process. 

 

In addition, the data revealed higher Sβ100 in the MCI 

group than in the HC group. Previous studies have 

reported this phenomenon in AD [12] but not in MCI. 

Thus, high S1β00 is related to the development of AD 

and could be a potential biomarker to identify MCI 

subtypes leading to AD.  

 

Abnormal phosphorylation of tau protein hinders cell–

cell connections, disrupts the axons of neurons, and 

causes pathological damage to the body. Accumulation 

of Aβ greatly accelerates the normal spread of tau with 

aging through neuronal communication pathways [13]. 

This phenomenon is observed in patients with AD and 

manifested as plaques formed by β-amyloid and tangles 

of neurofibrils within nerves, severely impairing brain 

function. In addition, it is speculated that plaque 

accumulation initiates during MCI development, 

causing low DC values of left ITG. The temporal lobe, 

from which these lesions emanate [14–17], coordinates 

social, emotional, language functions, and long-term 

episodic memory and is associated with autism and 

language deficits [18]. Dehaene et al. [19] proposed the 

concept of a “local combined detector” and suggested 

the function of ITG in information transmission and 

language learning [20].  

In addition, ITG is involved in common object 

perception. A study [21] found reduced ITG and 

fusiform gyrus function in autistic patients during face 

recognition, a finding consistent with that of our study. 

However, the present results are inconsistent with those 

reported previously [22]. We attribute these 

inconsistencies to differences in age between patients in 

different studies. 

 

Aβ accumulates in the retinas of patients with MCI, 

probably before accumulating in the brain [23]. In 

addition, cataract patients are 1.43 times more likely to 

have AD than normal individuals [24]. Although we did 

not study whether the vision was impaired in patients 

with MCI, AD can be complicated by ocular diseases, 

causing visual impairment [25]. Thus, Aβ in the eyes 

can serve as an early clinical indicator for AD prior to 

clinical symptoms.  

 

Fusiform gyrus, a region in the occipitotemporal lobe, 

participates in advanced visual processing, especially 

target recognition and categorization of complex stimuli 

(such as human faces). People with autism have 

cognitive defects associated with the fusiform gyrus, 

including impaired facial processing and abnormalities 

in the fusiform gyrus. Patients with MCI are at an 

increased risk of depression and anxiety [26, 27]. 

Although the enhanced activity of the right fusiform

 

 
 

Figure 4. ROC curve analysis of the mean DC values for altered brain regions. (A) The AUC were 0.955, (p<0.0001; 95% CI: 0.877-

1.000) for right fusiform, and left SMA 0.992, (p<0.0001; 95% CI: 0.968-1.000). (B) The AUC of left ITG were 1.000, (p<0.0001; 95% CI: 1.000-
1.000). Abbreviations: ROC, receiver operating characteristic; AUC, area under the curve; ITG, inferior temporal gyrus; SMA, supplementary 
motor area. 
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Table 3. Brain areas alteration and its potential impact. 

Brain areas Experimental result Function 

Inferior temporal gyrus HCs>MCIs 
Related to cognitive learning and object 

memory, emotional processing 

Fusiform gyrus HCs<MCIs 

Face recognition, 

Secondary classification and recognition of 

objects 

Supplementary 

motor area 
HCs<MCIs 

Language expression, movement; transforming 

emotional experiences into movement 

Abbreviations: HC, healthy control; MCI, mild cognitive impairment. 

 

gyrus has been found in patients with depression, a 

study showed it not be associated with these symptoms 

[28]. We suspect that increased DC values observed in 

the right fusiform gyrus in MCI patients compared to 

HC patients could be potentially associated with the 

occurrence of depressive symptoms. 

SMA is located on the medial side of the primary motor 

cortex and the medial part of the premotor cortex, 

roughly equivalent to Brodmann’s area 6 (BA6). It is 

composed of two regions, pre-SMA (rostral side) and 

SMA proper (caudal part). Although SMA is more 

active than the cerebral cortex during simple

 

 
 

Figure 5. The mean DC values of altered brain regions. Compared with the HCs, the DC values of the following regions were decreased 

to various extents: 1- left ITG (BA 55, t = -5.1646). Compared with the HCs, the DC values of the following regions were increased to various 
extents: 2- left SMA (t = 4.68734), 3- right fusiform (t = 4.6357). Abbreviations: DC, Degree centrality; HCs, healthy controls; BA, Brodmann's 
area; ITG, inferior temporal gyrus; SMA, supplementary motor area. 
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movements such as limb movements, it is associated 

with complex motor memory as well. It coordinates the 

temporal organization of movements, especially the 

execution sequence of multiple movements [29]. In 

addition, SMA proper is implicated in the planning of 

complex movements of learning (believed to be 

internally driven than by visual cues) and the 

coordination of movements involving both hands. Pre-

SMA participates in the learning of new motion 

sequences. A previous study reported increased 

interhemispheric functional connectivity with Aβ 

accumulation in SMA. In addition, we reported a higher 

DC value of SMA in the MCI group than in the HC 

group. These findings suggest a compensatory 

enhancement through the recruitment of other networks 

for non–amyloid-dominant dementia [12]. 

 

This study has certain limitations. First, the number of 

patients was limited, resulting in low reproducibility of 

results and overestimation of effects. Second, inevitable 

individual differences could have impacted the 

experimental results. Finally, patients’ daily lifestyles 

will inevitably affect the development of MCI. 

 

CONCLUSIONS 
 

MCI can lead to anomalies in specific regions in the 

patient’s brain and induce a variety of symptoms, such 

as affective expression disorders and retinopathy. These 

findings preliminary validate the relevant theories, such 

as brain abnormalities due to Aβ accumulation in AD, 

and provide a basis to further investigate neural changes 

in MCI and AD. We believe these findings will assist in 

the early diagnosis of MCI and predict the development 

of MCI into AD. 

 

Ethical Statement 

 

All research methods were approved by the committee 

of the medical ethics of the First Affiliated Hospital of

 

 
 

Figure 6. Relationship between MRI images and clinical manifestations in MCI. Abbreviations: MRI, magnetic resonance; MCI, mild 
cognitive impairment. 
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