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INTRODUCTION 
 

Depression or loss of facial tissue is a common problem 

in plastic surgery [1, 2]. Autologous fat grafting has 

become an important method for volume augmentation 

and tissue reconstruction, largely owing to several 

advantages of adipose tissue: abundance, ease of 

acquisition, and absence of a graft rejection reaction  

[3, 4]. However, the rigid support capacity of adipose 

tissue remains unsatisfactory for some clinical 

applications, grafting in the nasal base and chin [5, 6]. 
 

The stiffness of adipose tissue is 2–4 kPa [7], resulting 
in unsatisfactory rigid support capacity. The stiffness of 

adipose depends on the proportion of extracellular 

matrix (ECM) [8]. The ECM consists of various types 

of collagen, including collagen I, II, III, IV, and other 

small-fragment collagens [9, 10]. In particular, collagen 

I, the most prominent component of ECM distributed 

throughout the interstitium, constitutes up to 90% of the 

total connective tissue [11]. Thus, the low proportion of 

stable ECM and low percentage of collagen I are 

responsible for the low stiffness of adipose tissue. 

 

Current fat grafting techniques, including centrifugation, 

mesh filtering, and the Telfa technique do not focus on 

collagen in adipose tissue [12]. Collagen I can provide 

mechanical rigidity [13] and also increase stiffness. The 

higher the proportion of type I collagen, the higher  
the tissue rigidity [14]. In addition, a high-stiffness 

environment could stimulate mesenchymal stem cells to 

secrete more collagen I [15]. Hence, we hypothesized 
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that extraction of the collagen I-rich part of adipose 

tissue could increase the rigidity of a graft and maintain 

it for a long time after grafting. 

 

Collagen I is a macromolecular fragment, which 

fibrillary assemblies could be crowding-enhanced 

matrix assembly with other type of collagen [16]. 

Matrix assembly can be easily blocked [17]. 

Accordingly, the collagen I-rich fraction of adipose 

tissue could be collected by physical mechanical 

process.  

 

This study describes a practical strategy for 

transplantation of the collagen I-rich fraction, adipose 

matrix complex (AMC), which is obtained by 

mechanical preparation and purification of ECM from 

lipoaspirates. In comparison with Coleman fat, AMC 

contains a higher proportion of type I collagen; 

therefore, it has a higher stiffness. Consequently, it can 

be used for clinical filling of areas requiring rigid 

support (such as the nasal base and chin). We performed 

measurements to determine the stiffness of, and 

histological changes in, AMC before and after grafting 

and compared them with the corresponding properties 

of Coleman fat. 

 

RESULTS 
 

Physical properties of AMC 

 

General examination revealed that AMC had higher 

plasticity (Figure 1E, 1F) and higher stiffness than 

Coleman fat (6.1±0.83 kPa vs. 1.9±0.22 kPa, 

respectively; p<0.01) (Figure 1G), as well as a higher 

volume percentage of collagen 43±8.5% vs. 12±4.5%, 

respectively; p<0.01) (Figure 1H).  

 

Collagen and cell percentage of AMC 

 

HE and Masson analysis revealed that more ECM was 

present in AMC than in Coleman fat (Figure 2A–2D). 

SEM examination confirmed that more fibrous 

connective tissue was present in AMC (Figure 2E, 2F). 

Collagen percentage was higher in AMC than Coleman 

fat (45±3.2% vs. 15±3.5%, respectively; p<0.01) 

(Figure 3A), as was the total number of cells (p<0.01) 

(Figure 3B). Quantitative analysis revealed that the 

levels of collagen I (Figure 3D) (p<0.01), collagen II 

(Figure 3E) (p<0.01), collagen III (Figure 3F) (p<0.05), 

and collagen IV (Figure 3G) (p<0.05) were higher in 

AMC than in the Coleman fat. 

 

Almost all cell subsets associated with regeneration, 

including CD31+ cells (Figure 3H) (p<0.05), CD34+ 

cells (Figure 3I) (p<0.01), and CD90+ cells (Figure 3J) 

(p<0.05), were significantly less abundant in AMC than 

in Coleman fat. The ratio of CD45+ cells was also 

lower in AMC (p<0.05) (Figure 3K). 

 

Assessment of grafts 

 

AMC and Coleman fat (Control Group) were grafted 

onto different sides on the backs of nude mice  

(Figure 4A). On Day 90, the two types of grafts had a 

similar outward appearance (Figure 4B). The retention 

rate of AMC was always higher than that of Control 

(75±7.5% vs. 42±13.5%, respectively). Volume 

retention decreased slowly in AMC, but decreased 

rapidly in Control, from Day 7 to 14. Final retention on 

Day 90 was higher in AMC than in in the Control 

(Figure 4C). 

 

Histological structure analysis of grafts in two groups 

 

HE analysis revealed fewer adipocytes in AMC  

grafts (Figure 4D) than in Control grafts on Day 90 

(Figure 4E). Immunofluorescence staining revealed that 

more cells infiltrated into AMC than Control grafts on 

Days 7 and 14 (Figure 4F, 4G, 4K, 4L), although the 

number of infiltrating cells decreased rapidly on Day 30 

(Figure 4H, 4M). The area of mature adipocytes was 

smaller in AMC than Control grafts on Days 60 and 90 

(Figure 4I, 4J, 4N, 4O). 

 

Collagen analysis of grafts in two groups 

 

Masson analysis revealed much more ECM in AMC 

(Figure 5A) than in Control grafts (Figure 5B) on Day 

90. Immunohistochemistry revealed that in the AMC 

group, mouse collagen I increased from the outermost 

to the innermost of the organization (red line) from Day 

7 to Day 90 (Figure 5C–5G). By contrast, in Control 

grafts, mouse collagen I increased steadily (Figure 5H–

5L). Mouse collagen I was much more abundant in 

AMC than Control grafts on Day 90 (Figure 5G, 5L). 

Accordingly, the stiffness of AMC grafts was higher 

than that of Control grafts. Additionally, the stiffness of 

grafts in AMC was maintained at a high level after 

grafting, similar to the level before grafting (Figure 

5M). Quantitative analysis revealed AMC grafts 

maintained a higher collagen percentage than Control 

grafts (Figure 5N). In addition, expression of mouse 

collagen I increased faster and remained at a higher 

level in AMC than in Control grafts (Figure 5O). 

 

DISCUSSION 
 

In this study, we investigated a new mechanical strategy 

for optimizing the components of lipoaspirates for rigid 

support grafting. We used a filtering device consisting 

of a sleeve and three internal sieves to collect AMC 

from adipose tissue. The role of the three internal sieves 
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was to prevent collagen tissue from passing through the 

sleeve, allowing it to be stored. The role of the filter bag 

(100 mesh) was to dehydrate collagen tissue. We 

defined the collagen tissue as AMC. The yield of AMC 

was about 10%. Using our mechanical process, AMC 

containing high levels of ECM and collagen I could be 

collected from Coleman fat. Moreover, AMC had 

sufficient rigid support capacity. This novel strategy for 

transplantation of AMC can maintain stable rigid 

support and improve retention rates. 

 

Traditionally, clinicians use a prosthesis or cartilage to 

solve the problem of insufficient support [18]. 

However, for prostheses, immune rejection reaction and

 

 
 

Figure 1. Preparation and physical properties of AMC. (A) Filter sleeve used to separate and collect AMC. (B) Three sieves inside the 
filter sleeve. (C) Filter bag (100 mesh) for dehydrating AMC. (D) The entire filter device used to prepare AMC. (E, F) Appearance of AMC and 
Coleman fat (control) before grafting. (G) Stiffness analysis of AMC and Coleman fat (control) before grafting. (H) Collagen volume percentage 
of AMC and Coleman fat (control) before grafting. Results are presented as the mean ± SD (n = 7 per group). ** control vs. AMC; P < 0.01. 
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absorption have always been problems [19], whereas for 

cartilage, trauma to the donor site and surgical 

complications are inevitable [20]. Currently, in the field 

of tissue engineering, implantation of biodegradable 

scaffolds in conjunction with fat grafts can be used to 

improve the rigid support capacity of fat grafting. 

However, this method has been limited largely to 

animal experiments due to the need for open surgical 

incisions, as well as the antigenicity of exogenous 

scaffold materials [21]. 

 

 
 

Figure 2. Histological structure analysis of AMC and Coleman fat. (A, B) Hematoxylin/eosin staining of AMC and Coleman fat (control) 

before grafting. (C, D) Masson’s trichrome staining of AMC and Coleman fat (control) before grafting. (E, F) Microstructure of AMC and 
Coleman fat (control) before grafting, as determined by electron microscopy. 
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Figure 3. Collagen and cell percentage in AMC and Coleman fat. (A) Collagen percentage in AMC and Coleman fat (control) before 

grafting, as calculated by quantification of the positive area in Masson stained sections. (B) Total number of cells in AMC and Coleman fat 
(control) before grafting. (C) Expression of Collagen I, II, III, and IV in AMC and Coleman fat (control) before grafting. (D) Quantification of 
collagen I expression in AMC and Coleman fat (control) before grafting. (E) Quantification of collagen II expression in AMC and Coleman fat 
(control) before grafting. (F) Quantification of collagen III expression in AMC and Coleman fat (control group) before grafting. (G) 
Quantification of collagen IV expression in AMC and Coleman fat (control group) before grafting. (H) Ratio of CD31+ cells in AMC and 
Coleman fat (control group) before grafting, calculated by flow cytometry. (I) Ratio of CD31+ cells in AMC and Coleman fat (control group) 
before grafting, calculated by flow cytometry. (J) Ratio of CD90+ cells in AMC and Coleman fat (control group) before grafting, calculated by 
flow cytometry. (K) Ratio of CD45+ cells in AMC and Coleman fat (control group) before grafting, calculated by flow cytometry. Results are 
presented as the mean ± SD (n = 7 per group). * control vs. AMC; P < 0.05. * * control vs. AMC; P < 0.01. 
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By contrast, AMC can be collected from adipose tissue, 

which has a high retention rate and causes less trauma 

and complications. Importantly, AMC also provides 

sufficient rigid support.  

 

The stable stiffness of tissue depends on the ECM 

percentage [22]. In this study, we found that the ECM 

percentage of AMC was greater than 45% before 

grafting, and that stiffness was about 6 kPa; these values 

were preserved after grafting. Thus, our results suggest 

that when the percentage of ECM is greater than 45%, 

the tissue can provide stable stiffness. Indeed, AMC 

prepared by our mechanical strategy maintained an 

ECM percentage above 45%.  

 

 
 

Figure 4. Retention and tissue structure of AMC and Coleman fat after grafting. (A) Transplantation of AMC and Coleman fat 
(control group) into nude mice. (B) Outward appearance of grafts in AMC and Coleman fat (control group) on Day 90. (C) Retention rates of 
grafts in AMC and Coleman fat (control group) on Days 7, 14, 30, 60, and 90 after grafting. (D, E) Hematoxylin/eosin staining of grafts in AMC 
and Coleman fat (control group) on Day 90 after grafting. (F–O) Immunofluorescence staining of grafts in AMC and Coleman fat (control 
group) on Days 7, 14, 30, 60, and 90. PERILIPIN+ (green) indicates adipose cells. DAPI+ (blue) indicates cell nuclei. Results are presented as the 
mean ± SD (n = 7 per group). * P < 0.05, control vs. AMC; ** P < 0.01, control vs. AMC. 
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AMC contained about 45% collagen by volume, which 

was much higher than that of Coleman fat (10%). 

Moreover, expression of collagen I, II, III and IV was 

higher in AMC. Collagen I, which is the most 

prominent component of ECM molecules distributed 

throughout the interstitium, constitutes up to 90% of 

total connective tissue [11]. In addition, we found that 

collagen I was the major component in ECM. As we

 

 
 

Figure 5. Changes in collagen in AMC and Coleman fat after grafting. (A, B) Masson’s trichrome staining of grafts in AMC and 

Coleman fat (control) on Day 90 after grafting. (C–L) Immunohistochemical staining of mouse type I collagen in grafts of AMC and Coleman 
fat (control) on Days 7, 14, 30, 60 and 90. Red line: type I collagen thickness, from the outermost to the innermost of grafts. (M) Stiffness 
analysis of grafts of AMC and Coleman fat (control) on Days 7, 14, 30, 60, and 90 after grafting. (N) Collagen percentage in grafts of AMC and 
Coleman fat (control) on Days 7, 14, 30, 60, and 90, calculated by quantification of positive area in Masson stained sections. (O) 
Quantification of the area positive for mouse collagen I immunohistochemical staining in grafts of AMC and Coleman fat (control) on Days 7, 
14, 30, 60 and 90. Results are presented as the mean ± SD (n = 7 per group). * P < 0.05, control vs. AMC; **, control vs. AMC; P < 0.01. 
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describe, collagen I is macromolecular fragment, which 

fibrillary assemblies could be crowding-enhanced 

matrix assembly with other type of collagen [16]. 

Tissue stiffness increases with the level of collagen I 

[13, 14]. Thus, the stiffness of AMC, which was 

capable of providing sufficient rigid support, was much 

higher than that of Coleman fat.  

 

Additionally, we compared the CD31, CD34, CD90, and 

CD45 cell ratios between AMC and Coleman fat. CD31 is 

a marker of vascular endothelial cells [23, 24], which are 

less abundant in AMC, implying that the angiogenesis 

capability of AMC might be lower than that of Coleman 

fat. CD34 is a marker of adipose-derived stem cells 

(ASCs) [25, 26], and CD45 is considered a marker of 

immune cells [27, 28], which were also less abundant in 

AMC, implying that the tissue reorganization capability of 

AMC might also be lower than that of Coleman fat. More 

interesting were CD90+ cells, a marker of fibroblasts [29, 

30], which were less abundant in AMC than in Coleman 

fat. Collagen is secreted by various cells [31, 32], 

including fibroblasts, macrophages, and stem cells [33–

35], although fibroblasts are the main cells responsible for 

collagen secretion [36, 37]. Thus, the collagen 

regeneration capacity should be lower in AMC than 

Coleman fat. However, we found that mouse collagen I 

was increased from the outermost to the innermost of the 

organization. However, the ECM percentage did not differ 

among time points after grafting. Together, these 

observations indicate that the collagen retention 

mechanism in AMC might involve host-derived collagen 

regeneration. 

 

The collagen regeneration mechanism appeared to differ 

between AMC and Coleman fat. After grafting, we 

observed that more cells infiltrated AMC grafts during 

the early stage, after which the level of mouse collagen 

increased. This process deserves our attention. In fact, 

most cells, including stem cells and endothelial cells, 

actively migrate from a low-stiffness area to a high-

stiffness area [38–40]. Thus, after grafting, the higher 

stiffness of AMC could result in recruitment of more 

stromal cells [7, 41], which could explain the faster cell 

infiltration in the early stage after grafting. In addition, 

a high level of collagen I can stimulate stem cells to 

secrete more collagen [42, 43]. This process could 

maintain a high level of collagen I in tissue after 

grafting. Also, we found that the collagen percent did 

not differ among time points after grafting. That is to 

say, AMC could provide sufficient stiffness, and could 

maintain stable stiffness after grafting, due to the high 

level of collagen I in the tissue. We plan to investigate 

the underlying mechanism in future research. 
 

In the clinic, AMC is collected from adipose tissue after 

liposuction. Indeed, the mechanical strategy had almost 

no influence to the adipose tissue. After separation of 

AMC, adipose tissue could be used for filling, allowing 

even more smooth injection. Further randomized 

controlled trials will be required to evaluate the clinical 

use of AMC for chin and alar base filling, and the 

efficacy of this strategy should be compared with those 

of conventional methods. 

 

MATERIALS AND METHODS 
 

Fat harvesting and AMC preparation 

 

Human abdominal lipoaspirates were obtained from 

eight healthy women with no systemic diseases. 

Liposuction at -0.75 atm of suction pressure was 

performed with a 3 mm multiport cannula containing 

several sharp side holes 1 mm in diameter (Tulip 

Medical Products, San Diego, CA, USA). The fat 

passed through a filtering device before being collected. 

The filter device consisted of a sleeve and three internal 

sieves (Figure 1A, 1B). After filtering, the sieves were 

removed and the attached tissue was collected. A filter 

bag (100 mesh) was used for dehydration (Figure 1C, 

1D). The resultant tissue was defined as AMC. Finally, 

the AMC was cut into pieces to ensure that it could pass 

through the injection needle. [Supplementary Video 1, 

which shows the whole process of preparing AMC].  

 

For quantification of collagen volume, AMC and 

Coleman fat were homogenized at 12,000 rpm for 2 min 

at room temperature using a tissue crushing 

homogenizer (JJ-2 FK-A, Puyun International Trade 

Co., Ltd., Shanghai, China). The tissue suspension was 

centrifuged at 2300 × g for 5 min and the upper oil layer 

was discarded. The isolated collagen at the bottom of 

the tube was collected and measured. 

 

Animals 

 

Animals were cared for in accordance with our 

institutional guidelines. Seventy nude mice of Health 

SPF level (provided by the experimental animal 

center, Nanfang Medical University), weighing 15–18 

g at age 4–6 weeks (irrespective of sex), were housed 

in individual cages with a 12 hr light/dark cycle, 

Animals were provided with standard food and water 

ad libitum. 

 

Animal model 

 

Mice were anesthetized by intraperitoneal injection of 

pentobarbital sodium (50 mg/kg). To prepare for 

grafting, 0.3 ml of prepared AMC or adipose tissue was 
injected into subcutaneous tissues; this served as the fat 

graft baseline for each mouse. On Days 7, 14, 30, 60 or 

90 post-grafting, the grafts were harvested, carefully 
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separated from surrounding tissue, and their volumes 

measured. The retention rate of grafts was defined as 

follows: retention rate (%)=the graft volume at harvest 

time/injection fat volume (i.e., 0.3 ml)×100%. 

 

Histological analysis 

 

Samples were fixed in 4% paraformaldehyde, 

dehydrated, embedded in paraffin, and stained with 

hematoxylin–eosin and Masson’s trichrome. The 

samples were then sectioned and examined under an 

Olympus BX51 microscope. Images were acquired 

using an Olympus DP71 digital camera. 

 

Scanning electron microscopy 

 

Fractions were fixed with 2% glutaraldehyde and 1% 

osmium tetroxide for 1 h. Fat was then dehydrated in 

acetone, sputtered with gold using an MED 010 coater, 

and examined under an S-3000N scanning electron 

microscope (SEM) (Hitachi, Ltd., Tokyo, Japan).  

 

Stiffness testing 

 

A BOSE ElectroForce load testing device was used to 

analyze stiffness. The load cell used to measure forces 

ranged from 0 N to 225 N. The device's electro-

magnetic actuator allows axial travel of 6 mm. 

Therefore, a preload was applied to remove slack 

from tissues and induce elongation. Each tissue 

sample was clamped, and then a preload (25–30 N) 

was applied followed by ramp loading. The preload 

was selected based on preliminary testing. The ramp 

loading was set to 8 mm/s, and samples were expected 

to rupture during the application of this loading. The 

highest force achieved before the sutures tore was 

electronically recorded for each sample. Finally, the 

device calculated the tissue stiffness. 

 

Immunohistochemistry and immunofluorescence 

 

Full-thickness biopsies of the grafts were obtained 

before and after grafting. Tissue sections were 

incubated overnight at 4° C with the primary antibody 

(rabbit anti-mouse type I collagen; 1:200; Sigma) [44]. 

Tissue sections were washed three times with PBS and 

then incubated at 37° C for 1 h with biotin-labeled rat 

anti-rabbit IgG (1:200; Invitrogen) [45]. Signals were 

observed using the avidin–biotin–horseradish peroxi-

dase detection system. Slides were examined under an 

Olympus BX51 microscope.  

 

Immunofluorescence staining was performed at 4° C 
overnight with guinea pig anti-mouse perilipin (1:400; 

Progen, Heidelberg, Germany) [46]. Tissue sections 

were washed three times with PBS and then incubated 

at 37° C for 1 h with rhodamine-conjugated goat anti-

guinea pig Alexa Fluor 647 IgG (Abcam, Cambridge, 

MA, USA) [45]. Nuclei were stained with DAPI 

(1:200; Sigma). Images were acquired and analyzed 

under a C1Si confocal laser scanning microscope 

(Nikon, Tokyo, Japan). 

 

Western blotting 

 

Total cell lysates were prepared using M-PER 

Mammalian Protein Extraction Reagent (Thermo Fisher 

Scientific, Waltham, MA, USA). A BCA protein assay 

(Thermo Fisher Scientific) was used to estimate the 

concentration of the protein. 

 

After separation by SDS-PAGE on a NuPAGE 

electrophoresis system, protein extracts were 

transferred to immobilon poly-vinylidene difluoride 

membranes (Millipore, Billerica, MA, USA). 

Membranes were blocked in 5% milk and 

immunoblotted with the following primary antibodies: 

anti-Col I (1:1000; Cell Signaling Technology, 

Danvers, MA, USA), anti-Col II (1:1000; Cell 

Signaling Technology), anti-Col III (1:1000; Cell 

Signaling Technology), and anti-Col IV (1:1000; Cell 

Signaling Technology). Subsequently, membranes 

were incubated with the appropriate secondary 

antibodies. The WesternBreeze Chemiluminescent 

Detection Kit (ThermoFisher Scientific) was used to 

detect signals. GAPDH served as an internal control. 

 

Flow cytometry 

 

Cells were isolated from AMC and Coleman fat at the 

indicated time points. Briefly, the fat was digested (30 

minutes on a shaker at 37° C) in PBS containing 

0.075% collagenase. Mature adipocytes and 

connective tissue were removed by centrifugation at 

800 × g for 5 minutes. The cell pellets were 

resuspended and filtered through a 100 μm mesh and 

a 70 μm mesh. Total cells were then counted. Then, 

the cells were stimulated for 4 h with 20 ng/ml 

phorbol myristate acetate (Sigma-Aldrich) and 1 

μg/ml ionomycin (Sigma-Aldrich) prior to addition of 

10 μg/ml brefeldin A (BFA) (eBiosciences). For the 

detection of surface markers, cells were stained with 

CD31 (eBiosciences), CD34 (eBiosciences), CD90 

(eBiosciences), and CD45 (eBiosciences) and then 

incubated for 15 min at 4° C in the dark. After 

washing, cells were fixed and permeabilized using 

fixation buffer and permeabilization buffer (BD 

Biosciences). Acquisition was performed on a Coulter 

Epics-XL flow cytometer using the System II 
software (Coulter Corporation, Brea, CA, USA). Data 

analysis was performed using FCS express software 

(De Novo Software, Los Angeles, CA, USA). 
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Statistical analysis 

 

Mice were grouped according to random numbers 

generated using SAS 9.4 software (SAS Institute, Inc., 

Cary, NC, USA). All data were analyzed with IBM 

SPSS Version 20.0 software (IBM Corp., Armonk, NY, 

USA). Results are presented as the mean ± standard 

deviation. Comparisons between multiple time points 

were assessed by two-way analysis of variance. 

Comparisons between two groups at a single time point 

were assessed using an independent Student’s t-test. A 

two-tailed p-value > 0.05 was considered statistically 

significant. 
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SUPPLEMENTARY MATERIALS 

 

 

Please browse Full Text version to see the data of Supplementary Video 1. 

 

Supplementary Video 1. AMC preparing process. 

Adipose aspirates pass through the special designed 

filter then fibrous tissue was removed, collected and 

concentrated. The resultant tissue was defined as AMC. 

 


