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INTRODUCTION 
 

Prostate cancer is a common malignant tumor and the 

leading cause of cancer-related mortality in men [1]. 

Prostate adenocarcinoma (PRAD) is the most common 

type of prostate cancer, whereas other types of prostate 

cancer are relatively rare [2]. The duration  

between surgery and prostate-specific antigen-defined 

biochemical recurrence (BCR) (≤ 3 vs. > 3 years) after 

definitive local therapy is a significant risk factor for 

defining specific mortality of prostate cancer [3]. 

Approximately 35% of men who undergo radical 

prostatectomy have been reported to experience  

BCR within 10 years [3, 4]. Hence, exploration of  

new mechanisms of BCR using integrated  

bioinformatics analysis could be applied to stratify  

patients at risk and guide the decision-making for 

treatment. 
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ABSTRACT 
 

Prostate adenocarcinoma is one of the leading adult malignancies. Identification of multiple causative 
biomarkers is necessary and helpful for determining the occurrence and prognosis of prostate adenocarcinoma. 
We aimed to identify the potential prognostic genes in the prostate adenocarcinoma microenvironment and to 
estimate the causal effects simultaneously. We obtained the gene expression data of prostate adenocarcinoma 
from TCGA project and identified the differentially expressed genes based on immune-stromal components. 
Among these genes, 68 were associated with biochemical recurrence at 3 years after prostatectomy in prostate 
adenocarcinoma. After adjusting for the minimal sets of confounding covariates, 14 genes (TNFRSF4, ZAP70, 
ERMN, CXCL5, SPINK6, SLC6A18, CHRM2, TG, CLLU1OS, POSTN, CTSG, NETO1, CEACAM7, and IGLV3-22) related 
to the microenvironment were identified as prognostic biomarkers using the targeted maximum likelihood 
estimation. Both the average and individual causal effects were obtained to measure the magnitude of the 
effect. CIBERSORT and gene set enrichment analyses showed that these prognostic genes were mainly 
associated with immune responses. POSTN and NETO1 were correlated with androgen receptor expression, a 
main driver of prostate adenocarcinoma progression. Finally, five genes were validated in another prostate 
adenocarcinoma cohort (GEO: GSE70770). These findings might lead to the improved prognosis of prostate 
adenocarcinoma. 
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Many studies have shown that the tumor 

microenvironment (TME) is implicated in the 

development and sustained growth, invasion, and 

metastasis of cancer [5–8]. Infiltrating immune and 

stromal cells are important components of the TME and 

have been shown to significantly influence the 

progression of malignancy [5, 6]. Evidence has 

suggested that interactions between tumor cells and 

stroma mediate the development of cancer and tissue 

preferences for metastasis [9]. In PRAD, the stromal 

cells express the androgen receptor (AR), which is the 

main driver of prostate cancer pathogenesis and 

progression [10, 11]. However, it is still a challenging 

undertaking to explore the causal effects of gene 

expressions on the prognosis of patients with PRAD in 

the TME. In this study, we focused on exploring the 

prognostic genes in the TME based on the immune and 

stromal scores, and then detected their causal effects on 

the PRAD BCR. 

 

Using observational data such as the online databases, 

the Cancer Genome Atlas (TCGA), to detect causative 

biomarkers and estimate causal effects is difficult 

because of the unbalanced distribution of pretreatment 

variables between treatment groups, henceforth 

covariates [12, 13]. Several methods have been 

proposed to overcome these problems, including 

previously applied propensity scores, inverse 

probability weighting, and g-computation [14, 15]. 

These methods rely on the consistent estimations of the 

exposure or outcome mechanism. In this study, we used 

targeted maximum likelihood estimation (TMLE), a 

doubly robust method to detect the prognostic genes and 

estimate both the average and individual causal effects 

[16–18]. TMLE is a semi-parametric method that 

flexibly establishes the causal models using multiple 

machine learning methods, which requires weaker 

assumptions than other common models. 

 

When estimating the causal effect of the prognostic 

gene on the BCR status, controlling too many covariates 

might result in the poor performance of the estimator 

[19–21]. Luna et al. proposed the algorithm CovSel for 

covariate selection, which reduced the dimension of the 

covariate set for estimation of the causal effect [20, 22]. 

Furthermore, Loh et al. compared CovSel with other 

covariate selection methods, such as collaborative-

TMLE and augmented backward elimination, to 

evaluate their ability to correctly select confounders and 

control the type I error rate after data-driven covariate 

selection. They found that CovSel selected at least one 

confounder each time and had an approximate 70% 

probability to select the sufficient confounders exactly. 
Additionally, CovSel approximately controlled the type 

I error empirically at the significance level [23]. Thus, 

we applied the algorithm CovSel to select the minimal 

conditioning set that was sufficient for unbiased effect 

estimations of the target gene on the BCR. 

 

We accordingly obtained an adult PRAD patient dataset 

from TCGA project to identify the potential prognostic 

genes that were related to the TME and caused BCR at 

3 years after prostatectomy. Moreover, the causal 

effects of these genes were estimated for individual 

therapies. We verified these prognostic genes using the 

Gene Expression Omnibus (GEO) database. We drew a 

workflow schematic to illustrate the entire study design 

for the identification of the prognostic biomarkers in 

PRAD (Figure 1). 

 

RESULTS 
 

Clinical and pathological characteristics of men with 

PRAD from TCGA 

 

We obtained the gene expression profiles and clinical 

information of the PRAD patients with an initial 

pathologic diagnosis made between 2000 and 2013 from 

TCGA. A total of 209 patients were included after the 

exclusion of the subjects according to the exclusion 

criteria in Methods. Among them, 112 patients (53.6%) 

had BCR within 3 years after definitive local therapy, 

whereas 97 patients (46.4%) had no BCR within 3 years 

(Table 1). Based on the Estimation of STromal and 

Immune cells in MAlignant Tumour tissues using 

Expression data (ESTIMATE) algorithm [24], the 

stromal scores were obtained and distributed between -

1,867.0 and 1,789.3, and the immune scores ranged from 

-1,796.65 to 2962.96. Patients with BCR within 3 years 

had lower immune and ESTIMATE scores than patients 

without BCR (P < 0.05). We identified radiation therapy, 

pathological Gleason score and tumor-node-metastasis 

(TNM) stage as significant risk factors for BCR (P < 

0.05), which were selected as candidate covariates. 

 

Comparison of gene expression profiles in PRAD 

according to the immune and stromal scores 

 

To identify the differentially expressed genes (DEGs), 

we divided the 209 PRAD patients to high and low 

score groups according to their immune and stromal 

scores. A total of 112 patients (53.59%) had high 

stromal scores, and 115 (55.02%) had high immune 

scores. Based on immune scores, 515 gene expression 

levels were demonstrated to be increased and 49 genes 

were decreased in the high score group as compared to 

the low score group (Figure 2A). Similarly, for the high 

and low groups based on stromal scores, 882 genes 

were increased and 43 genes were decreased (Figure 

2B). log2|fold change| > 1 and False discovery rate 

(FDR) < 0.05 were used as the criteria for screening 

DEGs. Moreover, the Venn diagrams (Figure 2C, 2D) 
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showed that 716 genes had high expressions in both 

high immune and stromal score groups, and 17 genes 

had low expressions. These overlapped DEGs (733 

genes in total) might be the determinants of TME status. 

Thus, we decided to focus on these DEGs for all 

subsequent analyses. 

 

Correlation between the expression of differentially 

expressed genes and biochemical recurrence 

 

Results of the univariate logistic regression models 

showed that 68 DEGs were associated with BCR in 

PRAD (P < 0.05), and thus we selected them as 

candidate causative genes involved in immune and 

stromal cells (Figure 3). 

 

Selection of confounding covariates for the minimal 

sets of confounding covariates 

 

We considered the 68 associated genes along with 3 

significant clinical covariates (radiation therapy, 

pathological Gleason score, and TNM stage) as the 

candidate confounding covariates. To reduce the 

dimension of confounding covariates for improved 

causal effect estimations, we selected the minimal sets 

of confounders between each candidate causative gene 

and BCR status using the R package, CovSel. WG is a 

subset of the candidate confounding covariates that 

leads to other covariates after removing WG 

conditionally independent of the outcome Y given WG. 

WG is illustrated in Supplementary material 

(Supplementary Figure 1). VG is a subset of WG after 

removing variables conditionally independent of the 

target gene G given VG. Figure 4 shows the Pearson 

correlation coefficients (displayed in color from dark 

blue to red as correlations from -1 to 1) of the 68 

candidate genes and the corresponding 70 candidate 

confounding covariates of each gene, as well as the 

selected confounding covariates VG for each candidate 

gene (the dark dot of each column). 

 

Selection of prognostic genes and causal effect 

estimations using targeted maximum likelihood 

estimation 

 

To explore the prognostic genes of BCR, we estimated 

the causal effects (the average causal effect (ACE), the 

marginal odds ratio (MOR), and the individual causal 

effect (ICE)) of the 68 candidate genes on early-onset 

BCR using TMLE. Considering the complex network 

 

 
 

Figure 1. The workflow schematic for identifying prognostic biomarkers in PRAD. 
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Table 1. Clinical and pathological characteristics of 209 PARD patients from TCGA. 

Clinic pathologic variable BCR (n=112) BCR-free (n=97) Total (n=209) P value 

Age (years) 60.74 (6.84) 61.51 (6.09) 61.1 (6.50) 0.397 

Stromal scores -533.82 (459.27) -402.32 (607.96) -472.79 (536.16) 0.076 

Immune scores -471.57 (587.37) -263.78 (789.91) -375.14 (694.90) 0.03 

ESTIMATE scores -1,005.4 (930.04) -666.11 (1,296.03) -847.93 (1,124.99) 0.028 

Weight 197.5 (181.27) 316.25 (430.36) 267.11 (353.25) 0.072 

Radiation therapy     

Yes 11 (9.82) 22 (22.68) 33 (15.79) 
0.019 

No 101 (90.18) 75 (77.32) 176 (84.21) 

Gleason score     

6 6 (5.36) 1 (1.03) 7 (3.35) 

< 0.001 7 67 (59.82) 25 (25.77) 92 (44.02) 

8~9 39 (34.82) 71 (73.20) 110 (52.63) 

TNM stage     

I 5 (4.46) 1 (1.03) 6 (2.87) 

< 0.001 
II 37 (33.04) 9 (9.28) 46 (22.01) 

III 54 (48.21) 59 (60.82) 113 (54.07) 

IV 16 (14.29) 28 (28.87) 44 (21.05) 

*Data are mean ± SD and frequency (percent) for numeric and category variables, respectively. 

and interactions among these genes, we collaborated the 

Super Learner with TMLE and obtained a weighted 

causal effect of these models. Accordingly, we 

identified 14 prognostic genes (TNFRSF4, ZAP70, 

ERMN, CXCL5, SPINK6, SLC6A18, CHRM2, TG, 
CLLU1OS, POSTN, CTSG, NETO1, CEACAM7, and 

IGLV3-22) on 12 chromosomes with P-ACE < 0.05 

(Table 2). 7 out of these genes (ZAP70, SPINK6,  

 

 
 

Figure 2. Comparison of gene expression profiles with immune and stromal scores. (A) A heat map of DEGs between the high and 

low immune score groups; (B) A heat map of DEGs between the high and low stromal score groups; (C) Venn diagrams showing the number 
of high expression and (D) low expression of DEGs in both immune and stromal score groups. 
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Figure 3. Results of association analysis. The dashed black line is the bound of P = 0.05. 68 DEGs are associated with the PRAD BCR (P < 
0.05). The top genes with the minimum P value on each chromosome are annotated. Chromosome 23 is denoted Chromosome X. 

 

 
 

Figure 4. The Pearson correlation coefficients (the corresponding color) of the 68 candidate genes (horizontal axis) and the 
70 candidate confounding covariates (vertical axis), as well as the minimal confounding covariate set of each candidate gene 
(the dark dot of each column). 
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Table 2. The prognostic genes of PRAD BCR and their corresponded causal effects. 

Gene Chromosome ACE (95% CI) P-ACE MOR (95% CI) P-MOR 

TNFRSF4 1 0.092 (0.022, 0.163) 0.011 1.454 (1.089, 1.940) 0.011 

ZAP70 2 0.116 (0.044, 0.188) 0.002 1.597 (1.191, 2.143) 0.002 

ERMN 2 0.135 (0.05, 0.219) 0.002 1.728 (1.222, 2.444) 0.002 

CXCL5 4 -0.142 (-0.226, -0.059) 0.001 0.562 (0.399, 0.792) 0.001 

SPINK6 5 0.153 (0.047, 0.26) 0.005 1.865 (1.201, 2.897) 0.005 

SLC6A18 5 0.165 (0.017, 0.313) 0.029 1.944 (1.056, 3.578) 0.033 

CHRM2 7 -0.173 (-0.266, -0.079) <0.001 0.496 (0.337, 0.731) <0.001 

TG 8 -0.127 (-0.243, -0.012) 0.031 0.598 (0.372, 0.960) 0.033 

CLLU1OS 12 0.13 (0.053, 0.207) 0.001 1.689 (1.233, 2.312) 0.001 

POSTN 13 0.083 (0.009, 0.156) 0.027 1.398 (1.037, 1.885) 0.028 

CTSG 14 -0.133 (-0.229, -0.038) 0.006 0.584 (0.395, 0.863) 0.007 

NETO1 18 0.137 (0.023, 0.252) 0.019 1.740 (1.090, 2.778) 0.020 

CEACAM7 19 -0.165 (-0.289, -0.042) 0.009 0.511 (0.307, 0.851) 0.010 

IGLV3-22 22 0.166 (0.004, 0.328) 0.044 1.956 (1.001, 3.823) 0.050 

*CI: confidence interval. 

CHRM2, TG, CLLU1OS, POSTN, and NETO1) were 

the top associated genes on 7 chromosomes. Among 

these prognostic genes, 9 genes (TNFRSF4, ZAP70, 

ERMN, SPINK6, SLC6A18, CLLU1OS, POSTN, 

NETO1, and IGLV3-22) were unfavorable prognostic 

genes, and 5 favorable prognostic genes (CXCL5, 

CHRM2, TG, CTSG, and CEACAM7). 

 

Figure 5 shows the individual treatment effects of each 

prognostic gene on BCR. The unfavorable genes were a 

 

 
 

Figure 5. The individual causal effects of the 14 prognostic genes on PRAD BCR. 
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risk for all patients, but with a range of positive causal 

effects. Similar results were obtained for the favorable 

genes. 

 

Functional analysis of the prognostic genes 

 

Figure 6 illustrates the estimated proportion of tumor-

infiltrating immune components in the PRAD samples 

using the Cell-type Identification By Estimating 

Relative Subsets Of RNA Transcripts (CIBERSORT) 

analysis [25]. Among these immune cell profiles, CD4 

memory resting T cells occupied the largest proportion 

in the PRAD samples. The Wilcoxon rank-sum test 

showed that only two types of tumor-infiltrating 

immune cells (plasma cells and follicular helper T cells) 

were not associated with the expression levels of the 14 

prognostic genes. 

 

Among the 14 identified prognostic genes, 6 genes 

(TNFRSF4, ZAP70, CXCL5, CHRM2, CTSG, and 

IGLV3-22) were reported to be associated with 

promoting antitumor immunity in previously 

published papers, 4 genes (SPINK6, POSTN, 

CLLU1OS, and CEACAM7) were associated with the 

metastasis of tumor cells, and 4 genes (ERMN, 

SLC6A18, TG, and NETO1) were associated with 

other diseases. 

 

Gene ontology term and Kyoto encyclopedia of genes 

and genomes pathway analysis of the prognostic 

genes 

 

To outline the potential functions of the prognostic 

genes, we performed a functional enrichment analysis 

of the 14 prognostic genes. The results of gene ontology 

(GO) term enrichment analysis suggested strong 

correlations of these genes with immune responses 

(Figure 7). Kyoto encyclopedia of genes and genomes 

(KEGG) pathway analysis revealed the significant 

enrichment of four pathways. In particular, we detected 

that ZAP70 was enriched in primary immunodeficiency, 

TNFRSF4, and CXCL5 were enriched in cytokine-

cytokine receptor interaction, CTSG was enriched in the 

renin-angiotensin system, and the CHRM2 and CTSG 

were enriched in neuroactive ligand-receptor interaction 

(Figure 8). These results further illustrated that the two 

 

 
 

Figure 6. Bar plot showing the proportion of 22 kinds of TIC profiles in PRAD tumor samples. Rows and columns represent 

immune cell compositions and samples, respectively. 



 

www.aging-us.com 16031 AGING 

pathways derived from the KEGG analysis were 

associated with immune responses. 

 

Analysis of the correlations between prognostic 

genes and androgen receptor in stromal cells 

 

To explore the correlations between AR and the 

identified genes, we compared the expression of genes in 

the AR- and non-AR-driven groups using the GEO 

dataset (GSE101607). Our results showed that POSTN 

was significantly overexpressed in non-AR compared 

with AR-driven samples (Figure 9A), consistent with the 

findings of Cattrini et al. [26]. NETO1 was overexpressed 

in AR-driven samples (Figure 9B). Although we did not 

detect any association between the expression of CXCL5 

and AR (Figure 9C), AR signaling has been reported to 

promote PRAD progression via modulation the AKT-

NF-κB-CXCL5 signaling [10]. 

 

Validation in the GEO database 

 

We further verified the 14 prognostic genes in an 

additional PRAD cohort obtained from the GEO 

database. We downloaded and analyzed the gene 

expression data of 203 PRAD cases in the GSE70770 

dataset. A total of five genes (ZAP70, CXCL5, SPINK6, 
CHRM2, and TG) were significantly associated with 

early-onset BCR in PRAD (Table 3). The results of 

individual causal effects indicated that CHRM2 and 

SPINK6 might have different functions in different 

individuals with different features (Supplementary 

Figure 2). 

 

DISCUSSION 
 

The aim of this study was to identify TME-related 

biomarkers, implicated in the development of BCR after 

prostatectomy, using the semi-parametric targeted 

approach, TMLE. TME is known to be comprised of a 

complex mixture of tumor-associated fibroblasts, 

infiltrating immune cells, endothelial cells, extracellular 

matrix proteins, and signaling molecules, such as 

cytokines [27–29]. Both immune and stromal cells have 

been proposed to be valuable for tumor diagnosis and 

prognosis evaluation. Similar to many other solid tumor 

types, prostate cancer is characterized by a rich tumor- 

 

 
 

Figure 7. GO term enrichment analyses of the prognostic genes. The main GO terms (P values < 0.05) are shown for Biological 

process (BP), Cellular component (CC) and Molecular function (MF) respectively. 
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stroma interaction network that forms the TME [27–29]. 

Our results also revealed that the TME (immune and 

stromal scores) was associated with early-onset BCR of 

patients with PRAD. 

In addition, BCR serves as an indicator of the early 

stages of relapse, as local recurrence and distant 

metastasis might occur after BCR [30]. Furthermore, as 

BCR within 3 years of surgery is a critical node for 

 

 
 

Figure 8. KEGG pathway analyses of the prognostic genes. 

 

 
 

Figure 9. The expressions of (A) POSTN, (B) NETO1 and (C) CXCL5 in AR- and non-AR-driven groups using GSE101607. T-test was used to 

measure the difference between the two groups. 
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Table 3. The validated genes in GEO database and their corresponded causal effects. 

Gene Chromosome ACE (95% CI) P-ACE MOR (95% CI) P-MOR 

ZAP70 2 0.288 (0.226, 0.35) <0.001 4.099 (2.895, 5.805) <0.001 

CXCL5 4 -0.14 (-0.256, -0.023) 0.018 0.425 (0.226, 0.798) 0.008 

SPINK6 5 0.364 (0.294, 0.434) <0.001 5.797 (3.881, 8.658) <0.001 

CHRM2 7 -0.211 (-0.271, -0.151) <0.001 0.34 (0.247, 0.469) <0.001 

TG 8 -0.221 (-0.325, -0.116) <0.001 0.199 (0.094, 0.423) <0.001 

 

prostate-specific mortality [3], it is necessary to identify 

the risk factors for 3-year BCR in the TME. 

 

Using the traditional approaches, such as linear or 

logistic regression models, confounding factors and 

complex associations among covariates might bias the 

results and lead to fallacious conclusions. Whereas, 

robust TMLE was demonstrated to help reduce the risk 

of spurious findings [17]. Although TMLE optimizes 

the bias-variance tradeoff for the estimated causal 

effects, a rough trend could still be observed for the 

individual effects of patients. Based on this strategy, we 

identified 14 genes involved in the prognosis of PRAD. 

 

TNFRSF4 (also known as OX40 or CD134) is a member 

of the tumor necrosis factor receptor superfamily, 

subserving co-stimulatory functions of T-cells during 

infection [31–33]. It is predominantly and transiently 

expressed by both human CD4+ and CD8+ T cells [32]. 

Studies have shown that regulatory T cells express more 

TNFRSF4 than conventional CD4+ T cells in multiple 

human tumors [34]. Several anti-TNFRSF4 agonistic 

monoclonal antibodies are currently being tested in 

early-phase cancer clinical trials [31]. The expression of 

TNFRSF4 on tumor-infiltrating lymphocytes (TILs) has 

been studied in different tumor types, such as breast 

cancer, melanoma, B-cell lymphoma and head and neck 

cancers [35–40]. In colon cancer, the high expression of 

TNFRSF4 in TILs, mesenteric lymph nodes, or invasive 

margin lymphoid aggregates was reported to correlate 

with better overall survival [40]. In our study, TNFRSF4 

was expressed at high levels in the BCR group, 

indicating that TNFRSF4 could be a marker of BCR 

status in PRAD. 

 

ZAP70, a 70 kDa tyrosine kinase of the Syk family, has 

been reported to significantly promote tumor 

angiogenesis and immunosuppression in cancer cell 

lines or samples [41–43]. Richardson et al. reported that 

ZAP70 was activated in response to migratory and 

survival signals in B-cell chronic lymphocytic leukemia 

[44]. Fu et al. found that ZAP70 was overexpressed in 
prostate cancer cell lines and tissues, facilitating 

prostate cancer cell migration and invasion [45]. MiR-

631 was shown to target the 3′-UTR of ZAP70 mRNA 

and inhibit the expression of ZAP70, thereby inhibiting 

prostate cancer cell migration and invasion [45]. Our 

results showed that ZAP70 was mapped to the primary 

immunodeficiency pathway in KEGG and expressed at 

high levels in patients with BCR. Combined with 

previous studies, we speculated that ZAP70 might not 

only be an important regulator of cancer metastasis but 

also useful in predicting the BCR in patients with 

prostate cancer. 

 

CXCL5 is a proangiogenic CXC-type chemokine known 

to act as an inflammatory mediator and a powerful 

attractant for granulocytic immune cells. It is secreted 

by both immune (neutrophils, monocytes, and 

macrophages) and nonimmune (epithelial, endothelial, 

and fibroblastic) cell types [46]. Wang et al. pointed  

out that CXCL5 was a cancer-secreted chemokine  

that attracted CXCR2-expressing myeloid-derived 

suppressor cells (MDSCs) and, correspondingly, 

pharmacological inhibition of CXCR2 impeded tumor 

progression [47]. Biological, molecular and pharma-

cological analyses established that a Yap1-mediated 

CXCL5-CXCR2 signaling axis recruits MDSCs into the 

TME [47]. Moreover, AR signaling was shown to 

promote the progression of PRAD via modulation of the 

AKT-NF-κB-CXCL5 signaling. Our results showed that 

CXCL5 was a prognostic gene, suggesting that the 

inflammatory mediator, CXCL5, might be a potentially 

protective prognostic factor for prostate cancer. 

 

CHRM2, which mediates various cellular responses, has 

been demonstrated to be a significant marker of 

cognitive flexibility [48] and a potential therapeutic 

target for gastric cancer [49]. We found that CHRM2 

was a significant gene of the 3-year PRAD BCR. 

Validation using the GEO dataset confirmed our 

findings. We speculated that CHRM2 might be a 

prognostic factor for prostate cancer. 

 

IGLV3-22, which is a membrane-bound or secreted 

glycoprotein produced by B lymphocytes, belongs to 

the immunoglobulin lambda variable 3 (IGLV3) family. 

B lymphocytes are important cell types involved in the 
immune response of mammals [50]. Reports have 

shown that 40% of tumor-infiltrating lymphocytes in 

some patients with breast cancer were B cells [51, 52], 

suggesting the critical roles of these cells in modulating 
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tumor responses [50]. Likewise, IGLV3-21, an 

important paralog of IGLV3-22, was confirmed to be a 

risk factor for chronic lymphocytic leukemia [53–55]. 

Our results showed that IGLV3-22 was a causative gene 

of PRAD and indicated that patients with higher 

expression of IGLV3-22 might have a worse prognosis. 

 

CTSG is a serine protease of the chymotrypsin family 

that is stored in the primary (azurophil) granules of 

polymorphonuclear neutrophils [56]. Proteases are 

known to increase peripheral and central inflammation 

by regulating the chemotaxis of immune cells and the 

production of cytokines and chemokines. Previous 

studies have suggested CTSG as a potential marker of 

chronic pain after surgery [57], granulopoiesis or 

leukemogenesis [58]. In this study, we found that CTSG 

was a protective causative gene of BCR in patients with 

PRAD. Targeting and suppression of CTSG was shown 

to potentially inhibit the antitumor immunity. 

 

POSTN is a 90-kDa extracellular matrix protein that 

interacts with multiple integrins to coordinate a variety 

of cellular processes, including epithelial-to-

mesenchymal transition and cell migration [59, 60]. 

Stromal POSTN has been shown to participate in the 

regulation of cancer stem cell maintenance and 

expansion during metastatic colonization [61]. 

Researchers have reported that POSTN functions as a 

progression-associated and prognostic biomarker in 

glioma via the induction of invasive and proliferative 

phenotypes [62]. In our study, we found that POSTN 

was an unfavorable biomarker of PRAD BCR. 

 

CLLU1OS is located on chromosome 12q22. The 

12q21.33-12q22 region is dense with the expressed 

sequence tags derived from the germinal center B cells 

and CLL cells and is highly accessible for transcription 

in the B cells [63]. Accordingly, we detected a high 

expression of CLLU1OS in the BCR group, indicating 

that CLLU1OS was a risk factor for prostate cancer. 

 

SPINK6, which is overexpressed in tumors and highly 

metastatic nasopharyngeal carcinoma cells, has been 

reported as an independent unfavorable prognostic 

factor [64]. It has been reported to act as a functional 

regulator of nasopharyngeal carcinoma metastasis via 

the EGFR signaling. Our results showed that SPINK6 

was a risk gene for 3-year BCR in patients with 

PRAD. 

 

CEACAM7 is a human cellular adhesion protein that 

belongs to the immunoglobulin superfamily. It has been 

reported to have low expression in colorectal cancers 
[65]. Our results showed low expression of CEACAM7 

in the BCR group, suggesting a putative role in the 

initiation and progression of prostate cancer. 

ERMN is an essential gene involved in cytoskeletal 

rearrangements during myelinogenesis [66], and acts 

as a primary target of the disrupted folate metabolism 

[67]. SLC6A18 is a specific transporter for 

neurotransmitters, amino acids, and osmolytes such as 

betaine, taurine, and creatine [68]. TG expresses the 

protein precursor of thyroid hormones, which are 

essential for the growth, development, and control of 

metabolism in vertebrates [69, 70]. NETO1 has been 

found to be abnormally expressed in human 

carcinomas [71]. Higher expression of NETO1 in 

epithelial ovarian cancer tissue samples has been 

reported to lead to worse overall survival and a higher 

probability of bowel metastases [71, 72]. The 

associations between these four genes and prostate 

cancer warrant further investigations. 

 

The interaction between PRAD and TME might have 

serious effects on tumor evolution, further influencing 

tumor resistance, recurrence, and overall prognosis. 

Wang et al. provided a detailed description of the 

mechanism by which the activation of tumor-inherent 

genes altered TME [62]. The present study focused on 

the genetic characteristics of the TME, stimulating the 

development of PRAD. Our results might provide a 

basis for further studies on the role of TME in PRAD. 

However, the underlying mechanism remains unclear. 

Eventually, the putative role of these genes in the 

prognosis of prostate cancer would require further 

evaluation in future studies. 

 

In summary, we used TCGA dataset to identify the 

potential prognostic genes in PRAD. Using the 

associations between the immune/stromal scores and 

the prognosis of PRAD, we revealed a set of genes 

related to the TME and the BCR of PRAD. These 

findings might facilitate the prognosis of PRAD. 

Based on our study, previously neglected genes could 

be used as biomarkers for PRAD. Finally, further 

studies of these genes could provide a more 

comprehensive understanding of the potential 

relationship between the prognosis of PRAD and the 

TME. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The transcriptome RNA sequence read count data of 

550 patients with PRAD and their corresponding 

clinical profiles were obtained from TCGA 

(https://portal.gdc.cancer.gov). We collected data from 

patients with primary prostate tumors and defined the 

outcome by BCR-free survival time from surgery (≤3 as 

case vs. >3 years as control). Patients who died within 3 

years after surgery without BCR were excluded. 

https://portal.gdc.cancer.gov/
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Clinical characteristics of the patients including data of 

age at initial pathologic diagnosis, pathological Gleason 

score, clinical TNM stage, and radiation therapy were 

also collected. TNM stage for each individual was 

classified according to the eighth edition of the 

American Joint Committee on Cancer TNM staging 

manual. Samples with missing clinical information were 

excluded from this study. 

 

For validation, an additional PRAD cohort of 293 

patients was obtained with the accession number 

GSE70770 from the GEO database (https://www.ncbi. 

nlm.nih.gov/gds). Gene expression data and clinical 

data were also downloaded. The same exclusion criteria 

as those used in TCGA were applied to this cohort. 

 

Construction of tumor microenvironment 

 

The immune and stromal components in TME were 

calculated based on the ESTIMATE algorithm [24] 

using the R package estimate. Immune, stromal, and 

ESTIMATE scores, corresponding to the levels of 

immune cells, stromal cells, and the sum of both, 

respectively, were obtained. These three scores were 

applied to assess the infiltration level of immune and 

stromal cells and tumor purity in tumor tissues. 

 

Identification of differentially expressed genes based 

on immune scores and stromal scores 

 

All patients were classified into two groups based on 

the mediation of immune and stromal scores to explore 

the correlation between gene expression profiles and 

immune or stromal scores. We used the R package 

DESeq2 to perform differentiation analysis of gene 

expression, and DEGs were generated by comparing the 

high and low score groups. DEGs with log2|fold 

change| > 1 and adjusted P value < 0.05, after 

Benjamini–Hochberg false discovery rate [73], were 

considered significant. 

 

Statistical analysis of associated genes and clinical 

covariates 

 

The univariate logistic regression models were used to 

determine the DEGs to be considered as candidate 

causative genes of BCR involved in the immune and 

stromal cells. According to its median expression 

level, each gene in tumor samples was grouped into 

high- or low-expression groups. Significant clinical 

covariates for BCR status, which were selected as 

candidate covariates in subsequent analysis, were 

examined using t-tests (age at initial pathologic 
diagnosis and weight) and χ2tests (radiation therapy of 

patients, pathological Gleason score and clinical TNM 

stage). 

Selection of the minimal sets of confounding 

covariates 

 

To select the minimal sets of confounding covariates 

between candidate causative genes and the BCR status, 

the R package CovSel was used to screen all candidate 

causative genes and clinical covariates. G = {g1, g2, …, 

gn} denoted the binary candidate causative genes, X = 

{x1, x2, …, xm} the selected clinical covariates, and Y the 

outcome 3-year BCR in patients with PRAD. In 

addition, {(G\gi) + X} denoted the complete covariate 

vector of the target gene gi and Y. We assumed that WG 

was the subset of confounding covariates {(G\gi) + X}, 

which satisfied Y ┴{(G\gi) + X}\WG|WG. VG was the 

minimal set of confounding covariates WG satisfying 

G┴WG\VG|VG, and the final confounding set of the target 

gene gi and Y. 

 

Estimation of the causal effects of genes on 

biochemical recurrence 
 

Causal effects are commonly defined in potential 

outcomes [74], that is, the average causal effect (ACE), 

defined as E[Y(1) − Y(0)], the marginal odds ratio 

(MOR), defined as {E[Y(1)] × E[1 − Y(0)]} /{E[1 − 

Y(1)] × E[Y(0)]}, and the individual causal effect (ICE), 

defined as Y(1) − Y(0), where Y(1) is the outcome under 

exposure (G =1) and Y(0) is the outcome when 

unexposed (G = 0). 
 

To causally interpret the causal effects, we put forward 

the following assumptions. i) Stable-unit-treatment-

value assumption: the potential outcomes of a given 

individual will not be affected by their exposure status. 

ii) No unmeasured confounders: all the covariates 

altering the exposure and outcome are measured, 

formulated as (Y(1), Y(0))┴G|VG. iii) Positivity: every 

individual has a non-zero probability conditioning on 

the covariates within strata of G, which could be 

formulated as 0 < P(G = 1|VG) < 1. Thus, the ACE could 

be defined as EV [E (Y |G = 1, VG) − E (Y |G = 0, VG)] 

with the observed dataset. 
 

In this study, TMLE was used to detect the causative 

genes and estimate the causal effects, including ACE, 

MOR, and ICE. TMLE used two steps to target the 

optimal bias-variance tradeoff and obtain the target 

parameters. First, we conditionally estimated the 

expectation of the outcome with both exposures and 

confounders, E(Y | G, VG), which was used to predict 

the potential outcomes. Second, we evaluated the 

exposure mechanism P(G = 1| VG) to update the 

estimation of E(Y | G, VG). We eventually used the final 

updated estimation of E(Y | G, VG) to predict a pair of 

potential outcomes for each individual, and calculate 

both ACE and ICE. The ICE was calculated as the 

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
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difference between these pairs of each individual, 

whereas ACE was the average difference of ICE. Then, 

we calculated MOR as the ratio of the two odds of BCR 

occurring in the high- and low-expression groups. 

Combining TMLE with Super Learner, we selected five 

models (logistic regression model with or without 

interaction, elastic net regression, BART, and random 

forest, using the R functions glm, glm interaction, 

glmnet, bartMachine, and randomforest, respectively) 

to build both outcome and propensity score models to 

improve the robustness and precision of our estimates. 

 

Functional annotation and analysis 
 

To elucidate the biological functions of the prognostic 

genes with the immune microenvironment, we 

performed CIBERSORT analyses to estimate the 

proportion of tumor-infiltrating immune components in 

PRAD samples. The Wilcoxon rank-sum test was used 

to determine the association between the expression 

level of the prognostic genes and 22 types of immune 

cell profiles. Statistical significance was set at P < 0.05. 
 

We performed GO and KEGG pathway enrichment 

analyses to investigate the shared biological functions 

among the identified genes that were common among 

the high and low immune/stromal score groups. The 

enrichment analyses were performed using the R 

packages clusterProfiler, enrichplot, and ggplot2. Only 

terms with adjusted P < 0.05 by FDR were considered 

as significantly enriched. To explore the correlations 

between AR and the identified genes, we compared the 

expression of genes in AR- and non-AR-driven groups 

using the GEO dataset (GSE101607). 

 

All statistical analyses were performed using the 

software R 3.6.2 from CRAN (http://cran.r-

project.org/). P values were corrected using the 

Benjamini–Hochberg method to control the FDR for 

multiple testing when appropriate [73]. 
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Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The Pearson correlation coefficients (the corresponding color) of the 68 candidate genes 
(horizontal axis) and the 70 candidate confounding covariates (vertical axis), as well as the covariate set WG that the 
candidate confounding covariates after removing variables WG would be conditionally independent of outcome Y given WG 
(the dark dot of each column). 
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Supplementary Figure 2. The individual causal effects of the validated genes in the GEO dataset. 


