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INTRODUCTION 
 

Alzheimer disease (AD) is the most common cause of 

dementia characterized by the presence of aberrant senile 

plaques in patients’ brain [1]. Senile plaques are 

composed of β amyloid peptide (Aβ), a proteolytic 

fragment of the amyloid beta precursor protein (APP) [2–

4]. Aβ displays a neurotrophic support on differentiating 
neurons, but at the high concentration in mature neurons, 

as in AD, is neurotoxic [5]. Aβ oligomers or other high-

order structures cause rapid influx of external calcium, 

oxidative stress and neuroinflammatory response, leading 

to apoptotic cell death [6, 7]. Treatment of AD is currently 

symptomatic, although trials aiming to reduce the 

production and burden of Aβ aggregation within the brain 

are underway [8, 9]. 

 

Inflammation has emerged as a central mechanism in 

AD and a potential therapeutic target for treatment [10]. 

Studies have demonstrated that Aβ aggregation-linked 

neuroinflammation causes neuronal damage and clinical 

deterioration. Microglia, a group of highly motile 
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ABSTRACT 
 

Amyloid β (Aβ) plays a major role in the neurodegeneration of Alzheimer’s disease (AD). The accumulation of 
misfolded Aβ causes oxidative stress and inflammatory damage leading to apoptotic cell death. Traditional 
Chinese herbal medicine (CHM) has been widely used in treating neurodegenerative diseases by reducing 
oxidative stress and neuroinflammation. We examined the neuroprotective effect of formulated CHM Shaoyao 
Gancao Tang (SG-Tang, made of Paeonia lactiflora and Glycyrrhiza uralensis at 1:1 ratio) in AD cell and mouse 
models. In Aβ-GFP SH-SY5Y cells, SG-Tang reduced Aβ aggregation and reactive oxygen species (ROS) 
production, as well as improved neurite outgrowth. When the Aβ-GFP-expressing cells were stimulated with 
conditioned medium from interferon (IFN)-γ-activated HMC3 microglia, SG-Tang suppressed expressions of 
inducible nitric oxide synthase (iNOS), NLR family pyrin domain containing 1 (NLRP1) and 3 (NLRP3), tumor 
necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, attenuated caspase-1 activity and ROS production, and 
promoted neurite outgrowth. In streptozocin-induced hyperglycemic APP/PS1/Tau triple transgenic (3×Tg-AD) 
mice, SG-Tang also reduced expressions of NLRP1, NLRP3, Aβ and Tau in hippocampus and cortex, as well as 
improved working and spatial memories in Y maze and Morris water maze. Collectively, our results 
demonstrate the potential of SG-Tang in treating AD by moderating neuroinflammation. 
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phagocytes in central nervous system and frequently 

found in close proximity to Aβ aggregates in AD 

patients [11, 12], could be activated by Aβ [13]. Aβ 

binds to several innate immune receptors present on 

microglia, such as Toll-like receptor 2 (TLR2), TLR4 

and TLR6 [14, 15], all of which can activate microglia. 

Microglial activation increases the production of pro-

inflammatory factors, such as tumor necrosis factor 

(TNF)-α, interleukin (IL)-1β, IL-6, nitric oxide (NO) 

produced by inducible nitric oxide synthase (iNOS), and 

reactive oxygen species (ROS) [16, 17]. Furthermore, 

inflammasomes, such as NLR family pyrin domain 

containing 1 (NLRP1) and 3 (NLRP3), are also 

activated in brains of patients with AD [18]. These 

observations strongly suggest that neuroinflammation 

plays a crucial role in the pathogenesis of AD.  

 

Lines of evidence suggest that herb medicine can reduce 

neuroinflammation, and thus could be a treatment for AD. 

For example, Oenanthe javanica has various pharma-

cological and biological activities such as anti-

inflammatory [19] and anti-oxidative [20] activities. 

Extract of Flemingia philippinensis contains various 

isoflavones, which exhibit anti-oxidative and anti-

inflammatory activities [21, 22]. Shaoyao Gancao Tang 

(SG-Tang), a formulated Chinese herbal medicine (CHM) 

made of Paeonia lactiflora (P. lactiflora) and Glycyrrhiza 
uralensis (G. uralensis), displays anti-oxidative and anti-

inflammatory activities for neuroprotection in 

neurodegenerative cell models [23]. The integrative 

pharmacology approach also discloses the therapeutic 

mechanisms of Danggui-Shaoyao-san decoction, which  

is a formulation of BaiShao, DangGui, BaiZhu, 

ChuanXiong, ZeXie and FuLing, against AD [24]. In 

addition, SG-Tang can reduce neuronal TBP aggregation 

and exert neuronal protection in spinocerebellar ataxia cell 

and mouse models [25]. A network pharmacology-based 

study further discloses the active compounds and 

therapeutic targets of SG-Tang in Parkinson’s disease 

(PD) [26]. As Aβ is a validated target for developing 

therapeutic agents, we evaluated the potential of SG-Tang 

against Aβ-aggregation and neuroinflammation by our 

established Aβ-GFP-expressing SH-SY5Y cell model 

[27], and triple-transgenic AD mouse model harboring 

APPSwe, PS1M146V, and TauP301L [28]. The results showed 

the potential of SG-Tang to mitigate Aβ-mediated 

neurotoxicity and neuroinflammation, providing a new 

drug candidate in treating AD. 

 

RESULTS 
 

Aβ aggregation inhibition and neurite outgrowth 

promotion of SG-Tang 

 

In order to evaluate how effective SG-Tang can be in its 

use against Aβ aggregation, we treated retinoic acid-

differentiated Aβ-GFP-expressing SH-SY5Y cells with 

different concentrations of SG-Tang (Figure 1A). In this 

cell model, the level of Aβ misfolding was negatively 

correlated with GFP fluorescence intensity [29]. The 

1.2–5 µM curcumin treatment increased the green 

fluorescence intensity (109–144%, P = 0.043–0.005; 

cell viability: 102−87%). Treatments with SG-Tang at 

1–100 μg/ml also increased the green fluorescence 

intensity (117–156%, P = 0.048–0.006; cell viability: 

104−96%) (Figure 1B). In the analysis of oxidative 

stress, overexpression of Aβ also elevated the ROS 

level (181%, P < 0.001), while treatment with curcumin 

(1.2–5 μM) or SG-Tang (1–100 μg/ml) effectively 

mitigated the increased ROS (from 181% to 151–117%, 

P = 0.012–<0.001) (Figure 1C). Meanwhile, treatment 

of curcumin at 5 µM or SG-Tang at 100 μg/ml did not 

affect Aβ-GFP RNA level (P > 0.05) (Figure 1D), 

suggesting that SG-Tang may improve Aβ-GFP protein 

misfolding without affecting gene expression. 

 

The neuroprotective effect of SG-Tang was then 

evaluated by Tet-On Aβ-GFP SH-SY5Y cells. 

Overexpression of Aβ decreased neurite outgrowth 

(from 54 μm to 47 μm, P = 0.004). The pre-treatment 

with curcumin (5 µM) or SG-Tang (100 μg/ml) 

effectively rescued this impairment of neurite outgrowth 

(from 47 μm to 56 μm, P < 0.001) (Figure 1E). During 

the 7-day incubation of SG-Tang, there wasn’t any toxic 

effect on cell survival (101% for 100 μg/ml treatment). 

However, the cytotoxicity increased slightly for 

curcumin at 5 μM concentration (cell viability 86%,  

P = 0.007) in Aβ-GFP SH-SY5Y cells.  

 

IFN-γ-induced activation of human HMC3 microglia 

 

To activate microglia, 100 ng/ml IFN-γ was applied to 

human HMC3 microglial cells for 24 h [30] (Figure 

2A). IFN-γ treatment increased expression of markers 

for microglial activation, such as CD68 and MHCII 

(Figure 2B). The production of NO in the culture 

medium was significantly increased by IFN-γ treatment 

(from 1.2 µM to 10.4 µM, P = 0.007), accompanying 

with increased levels of TNF-α (from 196.1 pg/ml to 

408.6 pg/ml, P < 0.001), IL-1β (from 62.7 pg/ml to 

112.3 pg/ml, P < 0.001) and IL-6 (from 203.9 pg/ml to 

732.1 pg/ml, P = 0.002) (Figure 2C). In the following 

experiment, in order to trigger the neuroinflammation in 

Aβ-GFP SH-SY5Y cells, we used the HMC3 

conditioned medium activated by IFN-γ (CM/+IFN-γ). 

 

Effects of SG-Tang on conditioned medium-

stimulated Aβ-GFP SH-SY5Y cells 

 
In AD brains, neurons are exposed to high levels of pro-

inflammatory cytokines, for example, TNF-α, IL-1β and 

IL-6 [31]. To model this neuroinflammatory niche, we 
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Figure 1. Effects of SG-Tang on Aβ aggregation, ROS, and neurite outgrowth in Aβ-GFP-expressing cells. (A) Experimental flow 

chart of Aβ-GFP SH-SY5Y cells. On day 1, cells were plated with retinoic acid (RA, 10 µM) added to the culture medium. On day 2, curcumin or 
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SG-Tang was added to the cells for 8 h, followed by inducing Aβ-GFP expression with doxycycline (Dox, 5 µg/ml) for 6 days. On day 8, GFP 
fluorescence, cell number, ROS, Aβ-GFP RNA and neurite outgrowth were measured. (B) Assessment of GFP fluorescence and cell number 
with curcumin (1.2–5 µM) or SG-Tang (1–100 µg/ml) treatment (n = 3). The relative GFP fluorescence/cell number of untreated cells (Untr.) 
was normalized as 100%. (C) ROS assay with curcumin (1.2–5 µM) or SG-Tang (1–100 µg/ml) treatment (n = 3). The relative ROS of uninduced 
cells (Dox-) was normalized (100%). (D) Measurement of Aβ-GFP RNA levels in cells treated with 5 µM curcumin and 100 µg/ml SG-Tang by 
real-time PCR (n = 3). (E) Fluorescence microscopy images of differentiated Aβ-GFP SH-SY5Y cells uninduced (Dox-), untreated (Dox+) or 
treated with curcumin (5 µM) or SG-Tang (100 µg/ml). Neurite outgrowth and cell number were measured after TUBB3 (yellow) staining  
(n = 3). Nuclei were counterstained with DAPI (blue). The relative cell number of uninduced cells was normalized as 100%. P values: 
comparisons between induced (Dox+) vs. uninduced (Dox-) cells (###: P < 0.001), or treated (Dox+/curcumin or SG-Tang) vs. untreated (Dox+) 
cells (*: P < 0.05, **: P < 0.01, ***: P < 0.001). (B: GFP fluorescence and cell number: two-tailed Student’s t test; C–E: ROS, Aβ-GFP RNA and 
neurite outgrowth: one-way ANOVA with a post hoc Tukey test). 

applied CM/±IFN-γ to neuronal cells differentiated from 

Aβ-GFP SH-SY5Y cells for two days (Figure 3A). As 

shown in Figure 3B, the Aβ overexpression in SH-SY5Y 

cells increased the expressions of iNOS (181%, P = 

0.006), NLRP1 (132%, P = 0.005), NLRP3 (145%, P = 

0.004), TNF-α (142%, P = 0.007), IL-1β (137%, P = 

0.004) and IL-6 (205%, P < 0.001). These up-regulations 

were further exaggerated after treating cells with 

CM/+IFN-γ (iNOS: 242%, NLRP1: 153%, NLRP3: 

195%, TNF-α: 193%, IL-1β: 163%, IL-6: 286%; P = 

0.049–0.001), whereas treatment with SG-Tang at 100 

μg/ml normalized the levels of these markers for 

inflammasome and neuroinflammation pathways (iNOS: 

95%, NLRP1: 66%, NLRP3: 59%, TNF-α: 106%, IL-1β: 

51%, IL-6: 121%; P < 0.001) (Figure 3B). Furthermore, 

application of CM/+IFN-γ reduced GFP fluorescence 

(85%, P = 0.031), whereas SG-Tang treatment increased 

GFP fluorescence (109%, P = 0.004), reflecting the 

improvement of Aβ-GFP folding. Consistently, the 

increased ROS and caspase-1 activity in CM/+IFN-γ-

treated Aβ-GFP SH-SY5Y cells were reduced by the 

treatment with SG-Tang (ROS level: from 212% to 105%, 

P < 0.001; caspase-1 activity: from 18 µM to 14 µM, P = 

0.010) (Figure 3C). Moreover, the neurite total length 

(from 42 μm to 30 μm, P < 0.001), process (primary 

neurite, a projection from the cell body of a neuron; from 

3.9 to 2.8, P = 0.003) and branch (an extension from 

primary neurite; from 2.6 to 1.4, P = 0.002) of the 

differentiated neuronal cells were also reduced by 

overexpression of Aβ and CM/+IFN-γ treatment, whereas 

SG-Tang rescued these impairments (neurite length: from 

30 μm to 36 μm, P = 0.009; process: from 2.8 to 3.4, P = 

0.049; branch: from 1.4 to 2.1, P = 0.047) (Figure 3D). 

These results show that SG-Tang could down-regulate 

inflammasome and neuroinflammation pathways. More-

over, it could reduce ROS production and caspase-1 

activity, as well as improve neurite outgrowth in Aβ-GFP-

expressing SH-SY5Y cells inflamed with CM/+IFN-γ. 

 

Effects of SG-Tang on spatial learning and memory 

impairments in 3×Tg-AD mice 
 

We then used 3×Tg-AD mice to further explore the 

neuroprotective potential of SG-Tang in vivo. The 

homozygous 3×Tg-AD mice display diffuse amyloid 

plaques in the neocortex and Aβ aggregation in 

pyramidal neurons of the hippocampus, cortex and 

amygdale, and demonstrate trivial deficits in Morris 

water maze at 6 months of age [28, 32], while STZ-

induced hyperglycemia greatly exacerbates the 

development of AD phenotypes [33]. Therefore, we 

injected STZ intraperitoneally into 6-month-old 3×Tg-

AD mice (Figure 4A). As shown in Figure 4B, the 

injection of STZ increased blood glucose significantly, 

from 113 mg/dl (day 1) to 220–314 mg/dl (days 15–29, 

P < 0.001) in STZ group. Repeated measures of two-

way ANOVA displayed a significant effect of day (F = 

83.44, P < 0.001) and treatment (F = 212.4, P < 0.001) 

on blood glucose. A significant treatment × day 

interaction (F = 18.56, P < 0.001) was also found. Even 

though SG-Tang treatment reduced blood glucose on 

days 22–29 (from 284–314 mg/dl to 230–193 mg/dl, P 

= 0.040–0.002), the blood glucose levels in STZ/SG-

Tang group remained significantly increased (191–230 

mg/dl) in comparison to the normoglycemic group (– 

STZ, 105–112 mg/dl) (P < 0.001) on days 15–29. There 

wasn’t any significant change of body weight was 

observed among groups. Open field test performed on 

day 24 did not show any significant changes in travelled 

distance and inactive time of mice with STZ/SG-Tang 

treatment (Figure 4C). Y-maze alternation rate, which 

evaluated the working memory, was reduced in STZ 

group compared to control group (– STZ) (54% vs. 

62%, P = 0.039), while SG-Tang treatment improved 

the alternation rates (from 54% to 67%, P = 0.001) 

(Figure 4D). 

 

In order to evaluate the effect of SG-Tang on spatial 

learning and memory, we performed Morris water maze 

task in different phases: training (day 30–33), testing 

(day 34) and probe (day 36) trials. As shown in Figure 

4E, the latency to locate the hidden platform was 

relatively longer in STZ group in comparison to the 

control group (– STZ) on training day 3 (43 s vs. 31 s, P 

= 0.014) and day 4 (39 s vs. 26 s, P = 0.007), whereas 

SG-Tang treatment reduced the latency on STZ-treated 

mice on training day 4 (from 39 s to 29 s, P = 0.011). 

Repeated measures of ANOVA disclosed a significant 

effect of day (F = 92.24, P < 0.001) and treatment  

(F = 7.098, P = 0.0096) on the latency without 
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significant treatment × day interaction (F = 1.231,  

P = 0.3161). Testing trial also showed longer latency in 

STZ treated mice compared to normal control (– STZ) 

(39 s vs. 24 s, P = 0.002), whereas SG-Tang treatment 

consistently reduced the latency (from 39 s to 25 s,  

P = 0.004). In probe trial, the STZ-treated mice spent 

less time in the target quadrant than normal control  

(– STZ) (17 s vs. 26 s, P = 0.002). SG-Tang treatment 

increased the time spent in the target quadrant (from  

17 s to 23 s, P = 0.022). These results show that  

SG-Tang has a positive impact on the working and 

spatial memories for the STZ-treated 3×Tg-AD mice. 

 

SG-Tang reduced Aβ and Tau levels in STZ-treated 

3×Tg-AD mice 

 

Besides cognitive function, we examined NeuN (RNA 

binding protein, fox-1 homolog (C. elegans) 3), Aβ and 

Tau levels in 3×Tg-AD mice with STZ/SG-Tang 

treatment. In immunohistochemical analysis, STZ 

treatment reduced NeuN level in dentate gyrus (DG; 

92%, P = 0.028) and Cornu Ammonis areas 1 (CA1; 

90%, P = 0.003) and 3 (CA3; 93%, P = 0.043) of  

the hippocampus of 3×Tg-AD mice (STZ group). 

Meanwhile, SG-Tang treatment could mitigate this 

decrease to 96–98%, although not significantly (P > 

0.05) (Figure 5A). However, STZ treatment increased 

expression of Aβ (intensity: 108–112%, P = 0.032–

<0.001; area: 134–194%, P = 0.071–<0.001) in the 

hippocampus and cerebral cortex, whereas SG-Tang 

treatment reduced the levels of Aβ (intensity: 88–110%, 

P = 0.038–<0.001; area: 88–172%, P = 0.012) 

(STZ/SG-Tang group) (Figure 5B). Consistently, STZ 

treatment increased expression of Tau (intensity: 117%, 

P < 0.001; area: 202–214%, P < 0.001) in the 

hippocampus and cerebral cortex, whereas SG-Tang 

treatment normalized the levels of Tau (intensity: 101–

112%, P = 0.011–<0.001; area: 146–106%, P = 0.023–

<0.001) (Figure 5C). These results demonstrated the 

abnormal accumulations of Aβ and Tau in the

 

 
 

Figure 2. IFN-γ-induced HMC3 activation. (A) Experimental flow chart. After seeding HMC3 for 24 h, IFN-γ (100 ng/ml) was added to 

cells to induce inflammation. After 24 h, CD68 and HMCII expression in cells as well as NO, TNF-α, IL-1β and IL-6 release in culture medium 
were assessed. (B) Immunofluorescence examination of IFN-γ-induced HMC3 activation using antibodies against CD68 and HMCII (red). Cell 
nuclei were counterstained with DAPI (blue). (C) Levels of NO (measured by Griess reagent), TNF-α, IL-1β and IL-6 (assessed by ELISA) in 
culture medium (n = 3). P values: comparisons between IFN-γ-activated vs. inactive cells (**: P < 0.01, ***: P < 0.001). (two-tailed Student’s t 
test). 
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Figure 3. Neuroprotective effect of SG-Tang in Aβ-GFP-expressing SH-SY5Y cells inflamed with HMC3 conditioned medium. 
(A) Experimental flow chart. Aβ-GFP SH-SY5Y cells were plated in medium with retinoic acid (RA, 10 µM) on day 1, and treated with SG-Tang (100 



 

www.aging-us.com 15626 AGING 

µg/ml) next day for 8 h, followed by doxycycline (Dox, 5 µg/ml) addition to induce Aβ-GFP expression. On day 6, DMEM-F12 medium without 
retinoic acid addition (− RA) was mixed with HMC3 conditioned medium (CM/±IFN-γ, 1:1 ratio) and added to the cells for 2 days. (B) iNOS, NLRP1, 
NLRP3, TNF-α, IL-1β and IL-6 levels, (C) ROS production, GFP fluorescence and caspase-1 activity, (D) neurite length, process and branch were 
assessed on day 8 (n = 3). For normalization, the relative iNOS, NLRP1, NLRP3, TNF-α, IL-1β, IL-6 and ROS levels in uninduced and CM/-IFN-γ 
stimulated cells were set as 100%. P values: comparisons between induced (Dox+, + CM/-IFN-γ) vs. uninduced (Dox-,+ CM/-IFN-γ) cells (#: P < 
0.05, ##: P < 0.01, ###: P < 0.001), induced and inflamed (Dox+, + CM/+IFN-γ) vs. induced (Dox+, + CM/-IFN-γ) cells (&: P < 0.05, &&: P < 0.01), 
induced and inflamed (Dox+, + CM/+IFN-γ) vs. uninduced (Dox-, + CM/-IFN-γ) cells ($$: P < 0.01, $$$: P < 0.001), or SG-Tang treated  
(+ CM/+IFN-γ, +SG-Tang) vs. untreated (+ CM/+IFN-γ) cells (*: P < 0.05, **: P < 0.01, ***: P < 0.001). (One-way ANOVA with a post hoc Tukey test). 

 

 
 

Figure 4. Cognitive improvement of SG-Tang in STZ-treated 3×Tg-AD mice. (A) Experimental flow chart. Mice received vehicle or  

SG-Tang (0.4% in drinking water) from day -60 to day 38. Blood glucose (BG) and body weight (BW) and were measured on days 1, 8, 15, 22 
and 29. Mice were i.p. injected by streptozocin (STZ, 100 mg/kg) or vehicle (0.1 M sodium citrate pH4.5) at days 2, 3, 9 and 10. Open field,  
Y-maze and Morris water maze tasks were performed on days 24, 26 and 29–36, respectively. Mice in – STZ, STZ and STZ/SG-Tang groups  
(B–E) received vehicle, STZ and STZ+SG-Tang, respectively during the course of the experiment. (B) Body weight and blood glucose of the 
mice. (C) Open field measurement of motor activities (distance traveled) and anxious mood (time inactive) in 10 min of testing period.  
(D) Y-maze measurement of spontaneous alternation rate in 8 min of testing period. (E) Morris water maze testing of latency to find the 
hidden platform (latency) in training and testing and duration in target quadrant in probe trials. P values: comparisons between STZ vs. – STZ 
mice (#: P < 0.05, ##: P < 0.01, ###: P < 0.001), STZ/SG-Tang vs. STZ mice (*: P < 0.05, **: P < 0.01), or STZ/SG-Tang vs. – STZ mice  
(&&&: P < 0.001). (One-way or two-way ANOVA with a post hoc Tukey test). 
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Figure 5. Reduction of Aβ and Tau immunoreactivity of SG-Tang in STZ-treated 3×Tg-AD mice. Mice in – STZ, STZ and STZ/SG-
Tang groups received vehicle, STZ and STZ+SG-Tang, respectively during the course of the experiment. (A) Representative IHC images  
for NeuN and intensity quantification in the hippocampus of mice. DG, dentate gyrus; CA1 and CA3, Cornu Ammonis areas 1 and 3.  
(B, C) Representative IHC images for Aβ and Tau and intensity and area quantification in the hippocampus and cortex of mice. P values: 
comparisons between STZ vs. – STZ mice (#: P < 0.05, ##: P < 0.01, ###: P < 0.001), or STZ/SG-Tang vs. STZ mice (*: P < 0.05, ***: P < 0.001). 
(One-way ANOVA with a post hoc Tukey test). 
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hippocampus and cerebral cortex of STZ-treated 3×Tg-

AD mice, and what is more SG-Tang treatment could 

reduce these important AD phenotypes. 

 

SG-Tang mitigated NLRP1 and NLRP3 expression 

in STZ-treated 3×Tg-AD mice 

 

We further examined the changes in inflammasome 

pathway in STZ-treated 3×Tg-AD mice (Figure 6). 

STZ application raised NLRP1 (179–155%, P < 

0.001) and NLRP3 (177–189%, P < 0.001) levels in 

the hippocampus and cerebral cortex of 3×Tg-AD 

mice (STZ group), whereas SG-Tang treatment 

normalized these abnormal up-regulations to 106–

95% in NLRP1 (P < 0.001) and 122–110% in NLRP3 

(P = 0.001–<0.001). These results demonstrated the 

potential of SG-Tang to reduce neuroinflammation  

in vivo.  

DISCUSSION 
 

Accumulated evidence has shown misfolded proteins 

aggregates as a trigger for chronic inflammation and 

neurodegeneration [34]. Aβ can bind to several innate 

immune receptors present on microglia [14, 15, 35], 

leading to generation of pro-inflammatory mediators 

[16, 17]. The paracrine effects of these mediators 

further affect neurite outgrowth by activating 

inflammasome [36]. P. lactiflora and G. uralensis, the 

components of SG-Tang, have been used traditionally to 

alleviate oxidation, inflammation and strengthen 

cytoprotection. P. lactiflora or its active compound 

paeoniflorin has exerted the beneficial effects in rodent 

models relevant to AD [37–39], as well as a cell model 

for the spinocerebellar ataxia 3 (SCA3) [40]. G. 

uralensis has anti-inflammatory and anti-oxidative 

activities in macrophages and hepatocytes [41, 42]. 

 

 
 

Figure 6. Mitigation of NLRP1 and NLRP3 expression of SG-Tang in STZ-treated 3×Tg-AD mice. Expression levels of NLRP1 and 

NLRP3 in hippocampus were analyzed by Western blot using β-Actin as a loading control. To normalize, the relative NLRP1 and NLRP3  
of – STZ mice was set as 100%. P values: comparisons between STZ vs. – STZ mice (###: P < 0.001), or STZ/LSG-Tang vs. STZ mice (**: P < 0.01, 
***: P < 0.001). (One-way ANOVA with a post hoc Tukey test). 



 

www.aging-us.com 15629 AGING 

SG-Tang has been used to inhibit chemokine activity in 

keratinocytes [43]. Here we find that SG-Tang 

demonstrates neuroprotection against Aβ aggregation 

and neuroinflammation, particularly targeting inflam-

masome, in cell and animal models of AD. 

 

Inflammasomes are cytosolic protein complexes that 

promote the maturation and the secretion of pro-

inflammatory mediators [44]. Reports have indicated 

the priming and activation of inflammasome receptors, 

such as NLRP1 and NLRP3, in neurons. 

NLRP1 inflammasome complex is up-regulated in rat 

cortical neurons after traumatic brain injury, stroke and 

hippocampal aging [45–49]. Up-regulation of NLRP1 in 

cortical neurons further activates caspase 1, enhances 

Aβ production and axonal degeneration [36]. In the 

APP/PS1 mouse model of AD, the activation of NLRP3 

induces the production of IL-1β and IL-6 [50, 51]. 

Knockout of NLRP3 on APP/PS1 mice reduces 

impairment of spatial memory and enhances Aβ 

clearance [52]. Our results also demonstrated that pro-

inflammatory cytokines in CM/+IFN-γ potentiated the 

up-regulation of iNOS, NLRP1, NLRP3, TNF-α, IL-1β, 

IL-6 and caspase-1 activity, as well as impairment of 

neurite outgrowth by Aβ overexpression, while SG-

Tang treatment normalized the expressions of 

NLRP1/NLRP3 pathways and improved the neurite 

outgrowth (Figure 3). In STZ-treated 3×Tg-AD, SG-

Tang treatment further improved working and spatial 

memories (Figure 4), reduced abnormal accumulations 

of Aβ and Tau (Figure 5), as well as down-regulated 

NLRP1/NLRP3 (Figure 6). These findings further 

support the potentials of SG-Tang as NLRP1/NLRP3 

inhibitors for treating AD. 

 

The NLRP3 inflammasome is activated by ATP and 

certain bacterial toxins [53]. The activation of NLRP3 

pathway can be a two-step process. In priming, the 

expression of NLRP3, caspase-1 and pro-IL-1β are 

increased. This transcriptional up-regulation can be 

induced through engaging TLRs [54], or through pro-

inflammatory cytokines [55]. Upon activation, NLRP3 

causes proteolytic production of active caspase-1, which 

leads to conversion of IL-1β and IL-18 inactive 

precursors into their mature, active forms [56, 57]. It 

has been shown that Aβ could directly interact with 

NLRP3, leading to the activation of the NLRP3 [58]. 

Our results further demonstrated that Aβ also up-

regulated the expression of NLRP3 in the neuronal cells 

differentiated from SH-SY5Y, indicating its priming 

effect on inflammasome, and SG-Tang could normalize 

the priming and activation of NLRP3 in neurons.  

 
Our results also showed that Aβ and CM/+IFN-γ up-

regulated the expression of NLRP1 (Figure 3). 

Inflammasome complex consisting of NLRP1 and the 

apoptosis-associated speck-like protein (ASC) can also 

recruit and activate caspase-1 [56]. NLRP1 can be 

activated by anthrax lethal toxin [59–61]. Interestingly, 

cerebral NLRP1 levels in APP/PS1 AD mice are up-

regulated, while knockdown of NLRP1 can improve 

cognitive functions [62]. Our results suggested that Aβ 

and CM/+IFN-γ could upregulate the expression of 

NLRP1, while SG-Tang normalized the up-regulation 

of NLRP1. Further study will be warranted to identify 

the activators of NLRP1 in CM/+IFN-γ, as well as the 

regulatory mechanisms of inflammasome by SG-Tang. 

 

IFN-γ, a cytokine critical for innate and adaptive immune 

responses against viral and protozoal infections, activates 

HMC3 to release pro-inflammatory cytokines, including 

TNF-α, IL-1β and IL-6 (Figure 2), all of them are 

important transcriptional regulator of inflammasome 

pathways. In murine macrophages, TNF-α induces 

NLRP3 expression and thus priming the NLRP3 

inflammasome for subsequent activation [63]. Over-

expression of TNF-α in 3×Tg-AD mice enhances 

intracellular levels of Aβ and Tau, as well as learning and 

memory deficits [64]. Inhibition of TNF-α can reduce 

cognitive deficits induced by Aβ [65]. Therefore, the high 

concentration of TNF-α in CM/+IFN-γ could activate 

NLRP3 in our neuronal cells differentiated from SH-

SY5Y cells (Figure 3B). IFN-γ also regulates the 

secretion of IL-1β [66], which further induces expression 

of TNF-α [67], iNOS and release of NO [68]. On the 

other hand, the maturation of IL-1β is tightly controlled 

by NLRP3 [56]. IL-6, a pleiotropic cytokine, regulates 

inflammation in inflammasome-independent manner [51]. 

However, blockage of IL-6 signaling blunts the activation 

of NLRP3 in diabetic C57BL/KsJ-db/db mice [69]. 

Therefore, the high level of IL-6 in CM/+IFN-γ could also 

contribute to the up-regulation of NLRP3 inflammasome 

pathway in neuronal cells differentiated from SH-SY5Y 

cells (Figure 3B). 

 

Two main active components, paeoniflorin and ammonia 

glycyrrizinate, have been identified in SG-Tang [23]. 

Paeoniflorin is known to exhibit a beneficial therapeutic 

effect via reducing neuroinflammation in APP/PS1 and 

PS2 AD mice [38, 39]. It also exerts anti-aggregation 

effect on SCA3 model [40]. Glycyrrizinate can reduce 

activation of microglia by Aβ [70]. In SCA3 cell model, it 

further demonstrates neuroprotective potentials against 

aggregation formation and upregulates anti-oxidative 

pathway [71]. Both paeoniflorin and glycyrrizinate are 

capable of crossing the blood–brain barrier (BBB) [72], 

suggesting that these two constituents of SG-Tang may 

employ potentials against aggregation and neuro-

inflammation by crossing BBB of 3×Tg-AD mice. 
 

The transgenic expressions of APP/Tau and 

hyperglycemia in 3×Tg-AD mice last the depositions of 
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Aβ/Tau, neuroinflammation and neurodegeneration. 

Therefore, it is possible that sustained SG-Tang 

treatment is necessary to attenuate the neuro-

degeneration, whereas short-term exposure of SG-Tang 

is not likely to demonstrate neuroprotective effects in 

this AD model. Future study will be warranted to 

confirm the temporal therapeutic window of SG-Tang 

treatment in AD. 

 

CONCLUSION 
 

In this study, we have provided evidence that 

NLRP1/NLRP3 inflammasome pathways can be up-

regulated by microglia-derived pro-inflammatory 

factors and Aβ overexpression. SG-Tang could serve 

as a neuroprotective strategy against Aβ aggregation 

and neuroinflammation via down-regulating the 

NLRP1/NLRP3 pathways. Our results consolidate the 

role of microglia-mediated neuroinflammation in AD 

pathogenesis, impacting the treatment for AD 

targeting inflammasome. Future work with large 

sample sizes will be warranted to strengthen the 

conclusions and uncover the main constituents and 

more mechanisms of the neuroprotective effects of 

SG-Tang. 

 

MATERIALS AND METHODS 
 

Test compound and formulated Chinese herbal 

medicine 
 

The formulated CHM SG-Tang (Code: 0703H, Sun 

Ten Pharmaceutical, New Taipei City, Taiwan) was 

made of P. lactiflora and G. uralensis at 1:1 (w/w) 

ratio [23]. The ingredients P. lactiflora and G. 

uralensis are collected from An Hui and Inner 

Mongolia, China, respectively [25] and the chemical 

identities of these plant materials have been 

characterized [73]. SG-Tang stock solution was 

prepared by dissolving 5 g powder in 10 ml ddH2O. 

The supernatant was collected following 

centrifugation at 4000 rpm at room temperature for 10 

min.  
 

Cell culture 
 

The Dulbecco’s modified Eagle medium/Ham’s 

nutrient mixture F12 (DMEM/F12) containing 10% 

fetal bovine serum (FBS) (Thermo Fisher Scientific, 

Waltham, MA, USA) was used to culture human 

HMC3 microglial cell line (ATCC CRL-3304) and 

human Aβ-GFP neuroblastoma SH-SY5Y cell line 

[27]. Blasticidin (5 µg/ml, InvivoGen, San Diego, CA, 
USA) and hygromycin (100 µg/ml, InvivoGen) were 

added to the medium to select cells with Aβ-GFP 

transgene, while doxycycline (5 µg/ml, Sigma-

Aldrich, St. Louis, MO, USA) was added to induce 

expression of Aβ-GFP. 

 

High content analysis of Aβ-GFP fluorescence and 

oxidative stress 

 

Aβ-GFP SH-SY5Y cells (2.5 × 104) were seeded into a 

96-well plate with retinoic acid (10 µM; Sigma-Aldrich) 

on day 1 [74]. On the next day, curcumin (1.2–5 µM; 

Sigma-Aldrich), a potent inhibitor against Aβ 

aggregations as a positive control [75], or SG-Tang  

(1–100 µg/ml) were added for 8 h. Doxycycline  

(5 μg/ml) were added to induce Aβ-GFP expression for 

another 7 days. Then cells stained with Hoechst 33342 

(0.1 µg/ml, Sigma-Aldrich) were captured by Micro 

Confocal High-Content Imaging System (Molecular 

Devices, Synnyvale, CA, USA) at excitation/emission 

wavelengths of 482/436 nm, and analyzed by 

ImageXpress (Molecular Devices). To measure ROS, 

cells were incubated with the reddish fluorogenic 

CellROX reagent (5 μM; Molecular Probes) and 

Hoechst 33342 at 37° C for 30 min. Micro Confocal 

High-Content Imaging System at excitation/emission 

wavelengths of 640/665 nm and ImageXpress were 

used for the acquisition and analysis of cell images. 

 

Real-time PCR analysis of Aβ-GFP RNA 

 

Total RNA was reverse transcribed by SuperScript III 

reverse transcriptase (Invitrogen, Waltham, MA, USA). 

One hundred ng cDNA and the gene-specific TaqMan 

fluorogenic probes PN4331348 (EGFP) and 4326321E 

(HPRT1) were used for real-time PCR by StepOnePlus 

Real-time PCR system (Applied Biosystems, Foster City, 

CA, USA). Fold change of Aβ-GFP expression was 

evaluated by calculate 2ΔCt, in which CT indicates the 

cycle threshold and ΔCT = CT (HPRT1) − CT (EGFP). 
 

High content analysis of neurite outgrowth  
 

Cells were fixed by 4% paraformaldehyde (Sigma 

Aldrich) for 15 min, permeabilized by 0.1% Triton X-

100 (Sigma-Aldrich) for 10 min, blocked by 3% bovine 

serum albumin (BSA, Sigma-Aldrich) for 20 min, and 

stained by anti-TUBB3 (neuronal class III β-tubulin) 

(1:1000; Covance, Princeton, NJ, USA) antibody at  

4° C overnight. The cells were washed by phosphate-

buffered saline (PBS) for twice and stained with the 

secondary Alexa Fluor ®555 goat anti-rabbit antibody 

(1:1000; Molecular probes) at room temperature for 3 h, 

and with 4’-6-diamidino-2-phenylindole (DAPI, 0.1 

µg/ml, Sigma-Aldrich) for 30 min. Images of neurites 

were captured by Micro Confocal High-Content 

Imaging System (Molecular Devices), and analyzed by 

MetaXpress Neurite Ougrowth Application Module 

(Molecular Devices). 
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Activation of HMC3 microglia and detection of 

inflammatory mediators 

 

HMC3 cells (2 × 105) were seeded into a well of 6-well 

dishes for 24 h. IFN-γ (100 ng/ml) (PeproTech, Rocky 

Hill, NJ, USA) were added for 24 h to activate 

microglia. The level of NO in fresh cell culture medium 

was evaluated by Griess assay (Thermo Fisher 

Scientific). Human Instant enzyme-linked immuno-

sorbent assay (ELISA)™ Kit (Invitrogn) was used to 

determine the levels of IL-1β, IL-6 and TNF-α, in 

medium. The culture medium with or without 

inflammatory factors (CM/±IFN-γ, conditioned medium 

activated by IFN-γ or not) was centrifuged and stored at 

-80° C. 

 

After treatment with IFN-γ, HMC3 cells were also 

fixed, permeabilized, and stained with anti-CD68 

(CD68 molecule, 1:1000; Cell Signaling, Danvers, MA, 

USA) or anti-MHCII (major histocompatibility complex 

class II, 1:1000; Invitrogen) antibodies at 4° C 

overnight. Cells were washed twice by PBS, and stained 

with Alexa Fluor 555-donkey anti-rabbit or CyTM5-goat 

anti-mouse secondary antibody (1:1000; Invitrogen) for 

2 h at room temperature, and DAPI (0.1 µg/ml) for 30 

min. Zeiss LSM 880 confocal laser scanning 

microscope (Zeiss, Oberkochen, Germany) was used to 

capture the fluorescent cell images. 

 

Neuroinflammation induction in Aβ-GFP SH-SY5Y 

cells 

 

To induce neuroinflammation in Aβ-GFP SH-SY5Y 

cells, retinoic acid was removed and CM/+IFN-γ was 

added at a 1:1 ratio in the last two days. The collected 

CM/-IFN-γ was also added to uninduced and untreated 

cells for comparison. On day 8, cells were fixed, 

permeabilized, stained with primary/secondary anti-

bodies for neurite outgrowth analysis as described. ROS 

was also assayed. 

 

Caspase-1 activity assay  

 

Caspase-1 activity in cells was examined by ICE 

fluorometric assay kit (BioVision, Milpitas, CA, USA), 

with FLx800 fluorescence microplate reader (Bio-Tek) 

at 400/505 nm for excitation/emission.  

 

Western blot  

 

Total proteins were prepared using lysis buffer 

containing 50 mM Tris-HCl pH8.0, 1% Triton X-100, 

0.1% SDS, 1 mM EDTA pH8.0, 1 mM EGTA pH8.0, 
150 mM NaCl, 0.5% sodium deoxycholate, and 

protease inhibitor cocktail (Sigma-Aldrich). Proteins 

(20 µg) were separated on 10% SDS-PAGE and blotted 

to polyvinylidene difluoride (PVDF) membranes 

(Sigma-Aldrich). The membrane was blocked by 3% 

BSA for 20 min, probed with anti-iNOS (1:500; Cell 

Signaling, Danvers, MA, USA), anti-NLRP1 (1:500; 

Novus Biologicals, Centennial, CO, USA), anti-NLRP3 

(1:500; Cell Signaling), anti-TNF-α (1:1000; Abcam, 

Cambridge, MA, USA), anti-IL-1β (1:1000; Abcam), 

anti-IL-6 (1:1000; Abcam), or anti-GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase) (1:1000; 

MDBio Inc., Taipei, Taiwan) antibodies. After washed 

twice with PBS, the membrane was treated with 

horseradish peroxidase-conjugated goat anti-mouse or 

anti-rabbit IgG antibody (1:5000; GeneTex, Irvive, CA, 

USA) and the chemiluminescent substrate (Millipore).  

 

Animal studies 

 

Mice harboring APPSwe, presenilin 1 (PS1)M146V and 

microtubule associated protein tau (Tau)P30IL 

transgenes (3×Tg-AD, 004807) [28], were purchased 

from the Jackson Laboratory (Bar Harbor, ME, USA). 

Mice were maintained at 20–25° C and 60% relative 

humidity under a daily light/dark (12 h/12 h) cycle in 

the Animal House Facility of National Taiwan Normal 

University (NTNU), Taipei, Taiwan. Four-month-old 

mice were randomly assigned to 3 groups: no 

treatment, treatment with STZ, and treatment with 

STZ/SG-Tang (n = 10 in each group). To accelerate 

the development of AD phenotypes [33], the mice 

fasted for 12 h were intraperitoneally (i.p.) injected 

with STZ (100 mg/kg; Sigma-Aldrich) or vehicle (0.1 

M sodium citrate pH4.5) as previously described [76]. 

SG-Tang (0.4%) was added to drinking water for 14 

weeks (from day -60 to day 38) in STZ/SG-Tang 

group. Mouse body weight and blood glucose level 

were measured every week. All animal procedures, 

followed the ARRIVE (Animal Research: Reporting In 
Vivo Experiments) guidelines, were approved by the 

Institutional Animal Care and Use Committee of 

NTNU (Permit Number: 103002).  
 

Behavioral analyses 
 

To conduct the open field test, the mouse was placed in 

the center of an open-field box (30 cm long, 30 cm 

high, and 30 cm wide) to freely explore the box for 10 

min. The routes were recorded by a video camera 

mounting on the ceiling above the box, and analyzed by 

PhenoTracker (TSE system, Thuringia, Germany). 
 

For the Y-maze, the mouse was placed in one of the arm 

compartments (40 cm long, 30 cm high, and 15 cm 

wide) for 8 min. The spontaneous alternation behavior, 

used to assess spatial working memory in mice [77], 

was defined as the percentage of actual to possible 

alternations. 
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The water maze apparatus was composed of a white-

opaque painted circular pool (diameter 100 cm and 

height 76 cm) with a submerged platform (1 cm below 

the water surface) and 4 cues providing landmarks in 

the testing room. The pool was filled up with water (24–

26° C, 35 cm high). For pretraining, the mouse was 

placed in the pool for 60 sec. After three trials of 

pretraining, the mouse was placed on the platform in the 

center of the pool for 20 sec. For training, the platform 

was placed in a quadrant with a cue. The mouse was 

placed in the pool semi-randomly. The trial ended either 

when the mouse climbed onto the platform or when 60 

seconds had elapsed, and then the mouse was placed on 

the platform and faced the cue for 20 sec. Four training 

trials were applied for 4 days. Three testing trials were 

given to the mouse to assess the time to climb onto the 

platform. The probe trials, by putting the mouse to the 

pool with no the platform for one min, were given 48 h 

later to record the time spent in the target quadrant of 

previous platform. The data were collected by a video 

camera suspended 250 cm above the center of the pool, 

and analyzed by PhenoTracker. 

 

Immunohistochemistry and image analysis 

 

Mouse brains were fixed in 4% paraformaldehyde 

overnight, and cryoprotected in 30% sucrose at 4° C. 

Brain sections (30 µm) were coronally cut by Leica 

RM2125 RTS cryostat (Leica, Wetzlar, Germany). 

Heat-induced antigen retrieval for immuno-

histochemistry (IHC) was performed using antigen 

retrieval buffer (Thermo Fisher Scientific). Brain 

sections were pretreated with 1% H2O2 for 15 min, 

and then incubated with anti-NeuN, anti-Aβ, or anti-

Tau antibodies (1:100; Bioss Inc., Woburn, MA, 

USA) overnight at 4° C. The sections were washed 

twice by PBS. The bindings of antibodies were 

detected by UltraVision™ Quanto detection system 

(Thermo Fisher Scientific). The sections were also 

stained with hematoxylin (Thermo Fisher Scientific), 

dehydrated by ethanol and xylene (Sigma-Aldrich), 

and mounted by Micromount (Leica Biosystems, 

Wetzlar, Germany). All image analysis were per-

formed using IHC toolbox plugin of  

ImageJ [78].  
 

Statistical analysis 

 

All quantitative data were presented as the mean ± 

standard deviation. Three independent tests in two or 

three biological replicates were performed in each 

experiment. Differences between groups were 

compared by two-tailed Student’s t test or one-way or 
two-way analysis of variance (ANOVA) with a post 

hoc Tukey test. P values < 0.05 were statistically 

significant. 
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