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ABSTRACT 
 

This investigation attempted to discern whether formononetin restrained progression of triple-negative 
breast cancer (TNBC) by blocking lncRNA AFAP1-AS1-miR-195/miR-545 axis. We prepared TNBC cell lines  
(i.e. MDA-MB-231 and BT-549) and normal human mammary epithelial cell line (i.e. MCF-10A) in advance, 
and the TNBC cell lines were, respectively, transfected by pcDNA3.1-lncRNA AFAP1-AS1, si-lncRNA  
AFAP1-AS1, pcDNA6.2/GW/EmGFP-miR-545 or pcDNA6.2/GW/EmGFP-miR-195. Resistance of TNBC cells in 
response to 5-Fu, adriamycin, paclitaxel and cisplatin was evaluated through MTT assay, while potentials of 
TNBC cells in proliferation, migration and invasion were assessed via CCK8 assay and Transwell assay. 
Consequently, silencing of lncRNA AFAP1-AS1 impaired chemo-resistance, proliferation, migration and 
invasion of TNBC cells (P<0.05), and over-expression of miR-195 and miR-545, which were sponged and 
down-regulated by lncRNA AFAP1-AS1 (P<0.05), significantly reversed the promoting effect of pcDNA3.1-
lncRNA AFAP1-AS1 on proliferation, migration, invasion and chemo-resistance of TNBC cells (P<0.05). 
Furthermore, CDK4 and Raf-1, essential biomarkers of TNBC progression, were, respectively, subjected to 
target and down-regulation of miR-545 and miR-195 (P<0.05), and they were promoted by pcDNA3.1-lncRNA 
AFAP1-AS1 at protein and mRNA levels (P<0.05). Additionally, formononetin significantly decreased 
expressions of lncRNA AFAP1-AS1, CDK4 and Raf-1, while raised miR-195 and miR-545 expressions in TNBC 
cells (P<0.05), and exposure to it dramatically contained malignant behaviors of TNBC cells (P<0.05). In 
conclusion, formononetin alleviated TNBC malignancy by suppressing lncRNA AFAP1-AS1-miR-195/miR-545 
axis, suggesting that molecular targets combined with traditional Chinese medicine could yield significant 
clinical benefits in TNBC. 
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INTRODUCTION 
 

Triple-negative breast cancer (TNBC), responsible for 

around 15% of global breast cancer (BC) cases, is 

histopathologically featured by shortages of estrogen 

receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor (HER)-2 [1]. Given its 

insensitivity responding to HER2-targeted therapy and 

endocrine therapy, TNBC was principally tackled by 

chemotherapies founded upon anthracycline and taxane 

[2], whose clinical efficacy, nonetheless, turned less 

encouraging than desired owing to development of  

drug resistance [3, 4]. As a consequence, profound 

comprehension of drug-resistance is indispensable to 

perfect strategies for TNBC treatment. 

 

It was documented that organisms at high evolutionary 

levels usually possessed a large proportion of non-

coding (nc) RNAs in their genome [5]. For example, the 

ratio of ncRNAs in human genome, which was in 

excess of 70%, far surpassed 5% in nematode genome 

and 25% in zebrafish genome [6, 7], implying that 

ncRNAs were vital players in the pathophysiology of 

highly-evolved human beings. Long-chain non-coding 

RNAs (lncRNAs), implicated in carcinogenesis at 

transcriptional and post-transcriptional levels [8], have 

been massively reported to behave well in signifying 

BC onset and exacerbation [9–11]. For instance, up-

regulation of lncRNA NF-kB interacting lncRNA 

(NKILA) was predictive of favorable survival among 

BC patients, and it undermined metastatic potential of 

BC cells through weakening transcriptional activity of 

NF-κB [12]. Moreover, forced expression of lncRNA 

actin filament-associated protein 1-antisense RNA1 

(AFAP1-AS1), the antisense product of AFAP1, 

considerably deteriorated BC prognosis [13, 14] 

through mobilizing Wnt/β-catenin signaling [15], 

controlling miR-145/MTH1 axis [16], or promoting 

AUF1-mediated ERBB2 translation [17]. Beyond that, 

our previous microarray analysis (Supplementary Table 

1) identified that lncRNA AFAP1-AS1 expression in 

cisplatin-resistant MDA-MB-231 (MDA-MB-231/DDP) 

cell line was around 8.22 folds of that in MDA-MB-231 

cell line, hinting that lncRNA AFAP1-AS1 might 

empower drug-resistance in TNBC. However, detailed 

signaling networks controlled by lncRNA AFAP1-AS1 

in manipulating TNBC chemo-resistance remained 

ambiguous. 

 

In addition, the prominent role of traditional Chinese 

medicines (TCMs) in suppressing tumorigenesis has 

also been increasingly recognized at home and abroad. 

For instance, formononetin, an isoflavonoid isolated 

from astragalus membranaceus and spatholobus 

suberectus, was found to impair capabilities of BC cells 

in proliferating, migrating and invading via blockade of 

PI3K/Akt signaling [18, 19]. Synergy of formononetin 

with metformin or everolimus also pronouncedly 

antagonized growth of BC cells by depressing ERK1/2 

signaling [20] and mTOR signaling [21]. Notably, 

exposure to formononetin could significantly alter 

miRNA profiling in human umbilical vein endothelial 

cells (HUVECs), such as elevating expressions of miR-

375 and miR-200b [22], both of which were crucial 

protectors against BC progression [23, 24]. Despite 

these discoveries, lncRNAs, which were likely to act 

upon miRNAs through classical competing endogenous 

(ce) RNA manner [25], were barely explored regarding 

their implication in formononetin-involved BC 

inhibition, let alone lncRNA/miRNA axes. 

 

To bridge this gap, this investigation was designed to 

unveil lncRNAs (e.g. lncRNA AFAP1-AS1) and 

associated miRNA networks that were involved in the 

protective impact of formononetin against TNBC 

development, which might be conducive to clinical 

treatment of TNBC. 

 

RESULTS 
 

Clinical implication of lncRNA AFAP1-AS1 in 

TNBC 

 

LncRNA AFAP1-AS1 expression in TNBC tissues and 

non-TNBC tissues was significantly promoted as 

opposed to adjacent non-cancerous tissues (P<0.05), 

and lncRNA AFAP1-AS1 expression in TNBC tissues 

was around 3 folds of that in non-TNBC tissues 

(P<0.05) (Supplementary Figure 1A). According to 

Supplementary Table 2, TNBC patients were 

categorized into high-level (≥6.45) lncRNA AFAP1-

AS1 group (n=51) and low-level (<6.45) lncRNA 

AFAP1-AS1 group (n=43), with mean lncRNA 

AFAP1-AS1 expression as the cut-off point. 

Analogously, the non-TNBC population was divided 

into high-level (≥1.78) lncRNA AFAP1-AS1 (n=78) 

group and low-level (<1.78) lncRNA AFAP1-AS1 

(n=77) group, also utilizing their mean lncRNA 

AFAP1-AS1 expression as the demarcation point. It 

was indicated that high lncRNA AFAP1-AS1 level was 

associated with advanced histological grade (III vs. I+II: 

OR=3.37, 95%CI: 1.436-7.908), large tumor size (T3 

vs. T1+T2: OR=2.462, 95%CI: 1.036-5.847), lymph-

node metastasis (yes vs. no: OR=2.591, 95%CI: 1.126-

5.963) and high proportion of Ki-67 (>14% vs. ≤14%: 

OR=2.516, 95% CI: 1.082-5.849) of TNBC patients in 

comparison to low lncRNA AFAP-AS1 level (all 

P<0.05), however, these associations were hardly 

discerned in the non-TNBC cohort (Supplementary 

Table 2). Moreover, Kaplan-Meier curve of TNBC 

population suggested that survival of patients in the 

low-level lncRNA AFAP1-AS1 group was prolonged 
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when compared with patients of high-level lncRNA 

AFAP1-AS1 group (P<0.05) (Supplementary Figure 

1B). The multivariate regression analyses further 

exposed that large tumor size (HR=1.785, 95%CI: 

1.063-2.996), advanced clinical stage (HR=2.985, 

95%CI: 1.772-5.028), lymph-node metastasis 

(HR=2.354, 95%CI: 1.408-3.933) and high lncRNA 

AFAP1-AS1 level (HR=2.6, 95%CI: 1.526-4.431) were 

independently symbolic of TNBC patients’ unfavorable 

3-year survival in this Chinese cohort (Supplementary 

Table 3). 

 

Impact of lncRNA AFAP1-AS1 on chemo-sensitivity, 

proliferation, migration and invasion of TNBC cell 

lines 

 

LncRNA AFAP1-AS1 expression in TNBC cell lines 

(i.e. MDA-MB-231 and BT-549) was obviously 

heightened as compared with normal breast epithelial 

cell line (i.e. MCF-10A) (P<0.05) (Figure 1A). 

Silencing of lncRNA AFAP1-AS1 (i.e. si-lncRNA 

AFAP1-AS1 group), which significantly decreased 

lncRNA AFAP1-AS1 expression in MDA-MB-231 and 

BT-549 cell lines (P<0.05) (Figure 1B), enhanced the 

toxic effect of 5-Fu (Figure 1C), adriamycin (Figure 

1D), paclitaxel (Figure 1E) and cisplatin (Figure 1F) on 

MDA-MB-231 and BT-549 cell lines, leading to smaller 

IC50 values than si-NC group (all P<0.05). 

Furthermore, viability (Figure 1G), migration (Figure 

1H) and invasion (Figure 1I) of MDA-MB-231 and BT-

549 cell lines were notably suppressed after transfection 

of si-lncRNA AFAP1-AS1, when compared with si-NC 

group (all P<0.05). 

 

LncRNA AFAP1-AS1 sponged miR-545-3p/miR-195 

and reduced their expression in TNBC cell lines 
 

MiRNAs expected to be sponged by lncRNA AFAP1-

AS1, drawn from ENCORI online database 

(http://starbase.sysu.edu.cn/agoClipRNA.php?source=l

ncRNA&flag=target&clade=mammal&genome=huma

n&assembly=hg19&miRNA=all&clipNum=1&deNum

=0&panNum=0&target=AFAP1-AS1) (Supplementary 

Figure 2) [26], were determined in MCF-10A, MDA-

MB-231 and BT-549 cell lines (Supplementary Figure 

3A and Figure 2A, 2B), which revealed that miR-545-

3p, miR-195, miR-424-5p, miR-497-5p, miR-216a-5p, 

miR-190a-5p and miR-655-3p were dramatically 

under-expressed in MDA-MB-231 and BT-549 cell 

lines as relative to MCF-10A cell line (all P<0.05). 

Furthermore, expressions of miRNAs, including  

miR-545-3p (Figure 2C) and miR-195 (Figure 2D), 

were remarkably elevated in MDA-MB-231 and  

BT-549 cell lines after transfection of their respective 

pcDNA6.2/GW/EmGFP forms (all P<0.05) (data not 

shown for other miRNAs). Relationships between 

lncRNA AFAP1-AS1 and miRNAs were evaluated 

based on luciferase reporter gene assay (Supplementary 

Figure 3B), which demonstrated that miR-545-3p  

and miR-195 were probably sponged by lncRNA 

AFAP1-AS1 in both MDA-MB-231 and BT-549  

cell lines, since that the luciferase activity of MDA-

MB-231 and BT-549 cell lines became weak in  

the pmirGLO-WT-lncRNA AFAP1-AS1+pcDNA6.2/ 

GW/EmGFP-miR-545/miR-195 group as compared 

with pmirGLO-MUT-lncRNA AFAP1-AS1+pcDNA6.2/ 

GW/EmGFP-miR-545/miR-195 group and pmirGLO-

WT-lncRNA AFAP1-AS1+miR-NC group (P<0.05) 

(Figure 2E, 2F). 

 

Furthermore, miRNAs were monitored in MDA-MB-

231 and BT-549 cell lines transfected by si-lncRNA 

AFAP1-AS1, and the results insinuated that miR-545-

3p and miR-195 were both markedly up-regulated in 

MDA-MB-231 and BT-549 cell lines of si-lncRNA 

AFAP1-AS1 group as relative to si-NC group (P<0.05) 

(Supplementary Figure 4). To emphasize the influence 

of lncRNA AFAP1-AS1 on miR-545-3p and miR-195, 

pcDNA3.1-lncRNA AFAP1-AS1 was transfected so as 

to raise lncRNA AFAP1-AS1 expression in TNBC cell 

lines (P<0.05) (Figure 2G), through which we 

discovered that expressions of miR-545 and miR-195 

were significantly inhibited in case lncRNA AFAP1-

AS1 was over-expressed (P<0.05) (Figure 2H, 2I). Not 

only that, it was speculated by miRPathDB database 

(https://mpd.bioinf.uni-sb.de/overview.html) that genes 

subjected to target of miR-195 and miR-545 were 

enriched in tumorigenesis-related KEGG pathways 

(Supplementary Figure 5), further stressing that miR-

195 and miR-545 were vital targets of lncRNA AFAP1-

AS1 in TNBC. 

 

MiR-545-3p hindered lncRNA AFAP1-AS1-reinforced 

chemo-resistance, proliferation, migration and 

invasion of TNBC cells 
 

MDA-MB-231 and BT-549 cell lines transfected by 

pcDNA3.1-lncRNA AFAP1-AS1 demonstrated stronger 

resistance against 5-Fu (Figure 3A), adriamycin (Figure 

3B), paclitaxel (Figure 3C) and cisplatin (Figure 3D) 

than TNBC cell lines transfected by none (all P<0.05), 

and pcDNA3.1-lncRNA AFAP1-AS1 combined  

with pcDNA6.2/GW/EmGFP-miR-545-3p markedly 

enhanced chemo-resistance of MDA-MB-231 and BT-

549 cells in comparison to pcDNA3.1-lncRNA AFAP1-

AS1 transfection alone (all P<0.05) (Figures 3A–3D). 

Moreover, proliferation (Figure 3E), migration (Figure 

3F) and invasion (Figure 3G) of MDA-MB-231 and 

BT-549 cells were reinforced in the pcDNA3.1-lncRNA 

AFAP1-AS1 group as compared with NC group (all 

P<0.05), however, these malignant behaviors were 

undermined in the pcDNA3.1-lncRNA AFAP1-AS1+ 

http://starbase.sysu.edu.cn/agoClipRNA.php?source=lncRNA&flag=target&clade=mammal&genome=human&assembly=hg19&miRNA=all&clipNum=1&deNum=0&panNum=0&target=AFAP1-AS1
http://starbase.sysu.edu.cn/agoClipRNA.php?source=lncRNA&flag=target&clade=mammal&genome=human&assembly=hg19&miRNA=all&clipNum=1&deNum=0&panNum=0&target=AFAP1-AS1
http://starbase.sysu.edu.cn/agoClipRNA.php?source=lncRNA&flag=target&clade=mammal&genome=human&assembly=hg19&miRNA=all&clipNum=1&deNum=0&panNum=0&target=AFAP1-AS1
http://starbase.sysu.edu.cn/agoClipRNA.php?source=lncRNA&flag=target&clade=mammal&genome=human&assembly=hg19&miRNA=all&clipNum=1&deNum=0&panNum=0&target=AFAP1-AS1
https://mpd.bioinf.uni-sb.de/overview.html
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pcDNA6.2/GW/EmGFP-miR-545 group as opposed to 

pcDNA3.1-lncRNA AFAP1-AS1 group (all P<0.05) 

(Figure 3E–3G). 

 

CDK4, an indicator of TNBC progression [27],  

was targeted by miR-545 in MDA-MB-231 and BT-549 

cell lines (Figure 4A), and luciferase activity of  

MDA-MB-231 and BT-549 cells was decreased in  

the pmirGLO-WT-CDK4+pcDNA6.2/GW/EmGFP-

miR-545 group as relative to pmirGLO-MUT-

CDK4+pcDNA6.2/GW/EmGFP-miR-545 group and 

pmirGLO-WT-CDK4+miR-NC group (P<0.05). 

Furthermore, mRNA and protein levels of CDK4 was 

down-regulated in TNBC cell lines after transfection of 

pcDNA6.2/GW/EmGFP-miR-545, when compared with 

NC group and miR-NC group (P<0.05) (Figure 4B). 

 

 
 

Figure 1. LncRNA AFAP1-AS1 regulated chemo-sensitivity and activity of triple-negative breast cancer (TNBC) cell lines.  
(A) LncRNA AFAP1-AS1 expression was up-regulated in TNBC cell lines (i.e. MDA-MB-231 and BT-549) as compared with normal breast 
epithelial cell line (i.e. MCF-10A). *: P<0.05. (B) LncRNA AFAP1-AS1 expression was decreased in MDA-MB-231 and BT-549 cell lines after 
transfection of si-lncRNA AFAP1-AS1. *: P<0.05. (C–F) Sensitivity of MDA-MB-231 and BT-549 cell lines responding to 5-Fu (C), adriamycin (D), 
paclitaxel (E) and cisplatin (F) was enhanced after transfection of si-lncRNA AFAP1-AS1. *: P<0.05. (G–I) Proliferation (G), migration (H) and 
invasion (I) of MDA-MB-231 and BT-549 cell lines were assessed after silencing of lncRNA AFAP1-AS1. *: P<0.05. 
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Silencing of lncRNA AFAP1-AS1 also observably 

reduced mRNA and protein levels of CDK4 in 

comparison to si-NC group (P<0.05), while mRNA and 

protein levels of CDK4 were boosted in pcDNA3.1-

lncRNA AFAP1-AS1 group as relative to pcDNA3.1 

group (P<0.05) (Figure 4C). Together, miR-545/CDK4 

axis was critical for lncRNA AFAP1-AS1-involved 

TNBC pathogenesis. 

 

 
 

Figure 2. MiR-545-3p and miR-195 were sponged and modified by lncRNA AFAP1-AS1 in triple-negative breast cancer (TNBC) 
cells. (A, B) Expressions of miR-545-3p (A) and miR-195 (B) were lower in MDA-MB-231 and BT-549 cell lines than in MCF-10A cell line. *: 
P<0.05. (C, D) Expressions of miR-545-3p (C) and miR-195 (D) were boosted in MDA-MB-231 and BT-549 cell lines after respective 
transfections of pcDNA6.2/GW/EmGFP-miR-545 and pcDNA6.2/GW/EmGFP-miR-195. *: P<0.05. (E, F) MiR-545-3p (E) and miR-195 (F) were 
sponged by lncRNA AFAP1-AS1 in certain targets, and MDA-MB-231 and BT-549 cell lines of pmirGLO-WT-lncRNA AFAP1-
AS1+pcDNA6.2/GW/EmGFP-miR-545/miR-195 group were associated with weaker luciferase activity than TNBC cell lines of pmirGLO-MUT-
lncRNA AFAP1-AS1+pcDNA6.2/GW/EmGFP-miR-545/miR-195 group. *: P<0.05. (G) LncRNA AFAP1-AS1 expression in MDA-MB-231 and BT-
549 cell lines was determined when pcDNA3.1-lncRNA AFAP1-AS1 was transfected. *: P<0.05. (H, I) Expressions of miR-545 (H) and miR-195 
(I) were detected among MDA-MB-231 and BT-549 cell lines transfected by pcDNA3.1, pcDNA3.1-lncRNA AFAP1-AS1, si-NC and si-lncRNA 
AFAP1-AS1. *: P<0.05. 
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MiR-195 reversed contribution of lncRNA AFAP1-

AS1 to chemo-resistance, proliferation, migration 

and invasion of TNBC cells 
 

MDA-MB-231 and BT-549 cells in the pcDNA3.1-

lncRNA AFAP1-AS1+pcDNA6.2/GW/EmGFP-miR-

195 group became less resistant to docetaxel (Figure 

5A), adriamycin (Figure 5B), paclitaxel (Figure 5C) and 

cisplatin (Figure 5D) than TNBC cells in the 

pcDNA3.1-lncRNA AFAP1-AS1 group (all P<0.05). 

Likewise, TNBC cells in the pcDNA3.1-lncRNA 

AFAP1-AS1+pcDNA6.2/GW/EmGFP-miR-195 group 

were restrained from proliferating (Figure 5E), 

migrating (Figure 5F) and invading (Figure 5G), as 

opposed to cells in the pcDNA3.1-lncRNA AFAP1-

AS1 group (all P<0.05). 

 

When compared with pmirGLO-MUT-Raf-

1+pcDNA6.2/GW/EmGFP-miR-195 group and 

pmirGLO-MUT-Raf-1+miR-NC group, co-transfection 

of pmirGLO-WT-Raf-1 and pcDNA6.2/GW/EmGFP-

miR-195 engendered a dramatic reduction of luciferase 

activity in MDA-MB-231 and BT-549 cells (P<0.05), 

implying that miR-195 targeted Raf-1, a TNBC-specific 

biomarker [28], in specific sites (Figure 6A). What’s 

more, mRNA and protein levels of Raf-1 were lowered 

in MDA-MB-231 and BT-549 cells transfected by 

pcDNA6.2/GW/EmGFP-miR-195, as compared with 

NC group and miR-NC group (P<0.05) (Figure 6B). 

And Raf-1 expression ascended markedly in the 

pcDNA3.1-lncRNA AFAP1-AS1 group as relative to 

pcDNA3.1 group (P<0.05), yet declined notably in the 

si-lncRNA AFAP1-AS1 group in comparison to si-NC 

group (P<0.05) (Figure 6C). Taken together, miR-

195/Raf-1 axis participated in lncRNA AFAP1-AS1-

mediated TNBC etiology. 

 

Formononetin held back proliferation, migration 

and invasion of TNBC cells by disturbing lncRNA 

AFAP1-AS1-miR-545/miR-195 axis 

 

After exposure to formononetin, proliferation of MDA-

MB-231 and BT-549 cell lines was undermined dose- 

dependently (P<0.05), and this inhibition reached a 

 

 
 

Figure 3. MiR-545-3p disturbed the influence of lncRNA AFAP1-AS1 on chemo-resistance (A–D), proliferation (E), migration (F) and invasion 
(G) of triple-negative breast cancer (TNBC) cells. *: P<0.05. 
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maximum when formononetin concentration was 

designated as 40 μmol/L and 80 μmol/L (Figure 7A). 

Formononetin treatment at the concentration of 40 

μmol/L also potently retarded migration (Figure 7B) 

and invasion (Figure 7C) of MDA-MB-231 and BT-549 

cell lines (P<0.05). 

 

Additionally, lncRNAs that were differentially 

expressed between MDA-MB-231 cell line and MDA-

MB-231/DDP cell line (Supplementary Table 1), as 

well as lncRNAs documented to involve in TNBC 

chemo-resistance, including lncRNA H19 [29], 

Linc00152 [30], lncRNA SPRY4-IT1 [31], lncRNA 

FTH1P3 [32], linc ROR [33], lncRNA XIST [34], 

lncRNA CASC2 [35], lncRNA DLX6-AS1 [36] and 

lncRNA SNHG15 [37], were measured in 

formononetin-treated MDA-MB-231 and BT-549 cells 

(Supplementary Figure 6). We noticed that lncRNA 

AFAP1-AS1 expression in MDA-MB-231 and BT-549 

cell lines was prominently decreased under the 

influence of 40 μmol/L formononetin (P<0.05) (Figure 

7D and Supplementary Figure 6). LncRNA AFAP1-

AS1-sponged miRNAs, conjectured from ENCORI 

online database [26], were also detected 

(Supplementary Figure 7), which revealed that 

expressions of miR-545-3p and miR-195 were 

significantly enhanced in formononetin-treated MDA-

MB-231 and BT-549 cells as relative to NC group 

(P<0.05) (Figure 7D). More than that, exposure to 40 

μmol/L formononetin gave rise to prominent decreases 

 

 
 

Figure 4. CDK4 was regulated by lncRNA AFAP1-AS1 and miR-545 in triple-negative breast cancer (TNBC) cells. (A) CDK4 was 
targeted by miR-545 in certain sites, and luciferase activity of MDA-MB-231 and BT-549 cell lines in the pmirGLO-WT-CDK4+pcDNA6.2/ 
GW/EmGFP-miR-545 group was decreased as relative to pmirGLO-MUT-CDK4+pcDNA6.2/GW/EmGFP-miR-545 group. *: P<0.05. (B, C) Both 
mRNA and protein levels of CDK4 in MDA-MB-231 and BT-549 cell lines were modulated by pcDNA6.2/GW/EmGFP-miR-545 (B) and 
pcDNA3.1-lncRNA AFAP1-AS1/si-lncRNA AFAP1-AS1 (C). *: P<0.05. 
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of CDK4 and Raf-1 at both mRNA (Figure 7E) and 

protein (Figure 7F) levels, whether in MDA-MB-231 

cell line or in BT-549 cell line (P<0.05). 

 

DISCUSSION 
 

Early recurrence, swift progression and poor prognosis 

constitute major obstacles to successful treatment of 

TNBC [38, 39], so in-depth understanding of TNBC 

etiology is required, and formulating treatment 

strategies that work for TNBC has become a necessity. 

 

Multitudes of researchers have gradually realized how 

closely lncRNAs, including oncogenic lncRNA 

HOTAIR [40], lncRNA MALAT1 [41], lncRNA 

LSINCT5 [42], lncRNA H19 [43] and lncRNA BC200 

[44], as well as protective lncRNA XIST [45] and 

lncRNA GAS5 [46], were intertwined with BC onset 

and deterioration. It was also corroborated that 

doxorubicin-sensitivity of MCF-7 cell line was rescued 

in the presence of high-level lncRNA Adriamycin 

Resistance Associated (ARA) [47], while lncRNA 

Breast Cancer Anti-Estrogen Resistance 4 (BCAR4) 

functioned to strengthen tamoxifen-resistance of MCF-7 

cell line and ZR-75-1 cell line [48]. Partly aligning with 

the speculation of Zhang et al. [15], we concluded that 

tracking expressional trend of lncRNA AFAP1-AS1 

might help to determine TNBC onset and to predict 

TNBC prognosis of a Chinese population 

(Supplementary Figure 1), which, however, failed to go 

for patients of other BC subtypes (Supplementary 

Tables 2, 3). In spite of this, whether lncRNA AFAP1-

AS1 maintained this specificity in populations of other 

ethnicities and scales awaited validations. Of note, 

silencing of lncRNA AFAP1-AS1 tended to dampen 

malignant behaviors of TNBC cells (Figure 1B, 1G–1I), 

 

 
 

Figure 5. MiR-195 interfered with the influence of lncRNA AFAP1-AS1 on drug-resistance (A–D), proliferation (E), migration (F) and invasion 
(G) of triple-negative breast cancer (TNBC) cells. *: P<0.05. 
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which, from the molecular standpoint, accounted for 

why lncRNA AFAP1-AS1 facilitated negative clinical 

outcomes in TNBC patients (Supplementary Figure 1). 

Virtually, besides TNBC, oncogenesis of lncRNA 

AFAP1-AS1 was also identifiable in neoplasms 

including esophageal adenocarcinoma, gallbladder 

cancer, gastric cancer, cholangiocarcinoma, colorectal 

cancer and pancreatic ductal adenocarcinoma [49–51]. 

It might be due to these tumor-promoting actions that 

lncRNA AFAP1-AS1 powerfully heightened cisplatin-

resistance of esophageal squamous cell carcinoma 

[52]/laryngeal carcinoma cells [53], paclitaxel-

resistance of prostate cancer cells [54], 5-Fu-/cisplatin-

resistance of non-small cell lung cancer cells [55], as 

well as 5-Fu/adriamycin/paclitaxel/cisplatin-resistance 

of TNBC cells manifested in this study (Figure 1C–1F). 

Nonetheless, this investigation hardly compared 

lncRNA AFAP1-AS1 expression between TNBC 

patients who accepted chemotherapy and people who 

refused drug treatments, so that the clinical linkage of 

lncRNA AFAP1-AS1 with TNBC chemo-resistance 

was unavailable. 

 

Inspired by the classical ceRNA hypothesis [56], 

scholars became increasingly aware of the strong 

connection of lncRNA AFAP1-AS1 with carcino-

genesis-deactivating miRNAs. For example, lncRNA 

AFAP1-AS1 urged metastasis of esophageal cancer 

cells by binding to miR-26a and then augmenting ATF2 

expression [57]. As far as esophageal squamous 

carcinoma was concerned, lncRNA AFAP1-AS1 

decreased suppressive influence of miR-498 on protein 

levels of VEGFA, thereby delaying apoptosis of the 

tumor cells [58]. Beyond these miRNAs, we 

 

 
 

Figure 6. Raf-1 was implicated in the impact of lncRNA AFAP1-AS1/miR-195 axis on triple-negative breast cancer (TNBC) 
cells. (A) miR-195 targeted Raf-1 in certain sites, and MDA-MB-231/BT-549 cell lines in the pmirGLO-WT-Raf-1+pcDNA6.2/GW/EmGFP-miR-
195 group showed decreased luciferase activity in comparison to pmirGLO-MUT-Raf-1+pcDNA6.2/GW/EmGFP-miR-195 group. *: P<0.05.  
(B, C) Raf-1 expression in MDA-MB-231 and BT-549 cell lines was affected by pcDNA6.2/GW/EmGFP-miR-195 (B) and pcDNA3.1-lncRNA 
AFAP1-AS1/si-lncRNA AFAP1-AS1 (C) at mRNA and protein levels. *: P<0.05. 
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discovered that miR-545 and miR-195 were crucial 

targets of lncRNA AFAP1-AS1 in TNBC 

(Supplementary Figures 2, 3B, 4 and Figure 2E–2I), and 

they attenuated lncRNA AFAP1-AS1-fortified 

proliferation, metastasis and drug resistance of TNBC 

cells (Figures 3, 5). Regarding miR-545-3p, apart from 

under-expression in TNBC cells (Figure 2A), it 

debilitated growth of lung cancer cells [59], pancreatic 

cancer cells [60], cervical cancer cells [61] and colon 

adenocarcinoma cells [62], nevertheless, Liu et al. 

found it paradoxical that proliferation of hepatocellular 

carcinoma cells was drastically motivated when in-vitro 

miR-545 level was intentionally heightened [63]. This 

contradiction might result from discrepant pathological 

attributes that miR-545 exhibited in entirely different 

neoplasms. More than that, we suspected that CDK4, a 

 

 
 

Figure 7. Formononetin undermined activities of triple-negative breast cancer (TNBC) cells via depression of lncRNA AFAP1-
AS1-miR-545/miR-195 axis. (A–C) Formononetin postponed proliferation (A), migration (B) and invasion (C) of MDA-MB-231 and BT-549 
cell lines. *: P<0.05. (D) Expressions of lncRNA AFAP1-AS1, miR-545 and miR-195 were detected in MDA-MB-231 and BT-549 cell line after 
formononetin exposure. *: P<0.05. (E, F) Both mRNA (E) and protein (F) levels of Raf-1 and CDK4 were measured in MDA-MB-231 and BT-549 
cell lines treated by formononetin. *: P<0.05. 
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component necessitated for cell-cycle progression by 

activating E2F and CyclinE [64–66], was of 

significance to elaborate lncRNA AFAP1-AS1/miR-

545-3p-involved TNBC development and chemo-

resistance (Figures 4, 5), and the miR-545/CDK4 axis 

has been underlined in explaining etiologies of 

colorectal cancer [67] and lung cancer [59]. For another, 

miR-195, whose expression was markedly down-

regulated in colon cancer [68], gastric cancer [69], 

bladder cancer [70], cervical cancer [71] and TNBC 

(Figure 2B), also conferred incremental chemo-

sensitivity in tumors, including glioblastoma [72], 

colorectal cancer [73] and TNBC herein (Figure 5). We 

further argued that Raf-1, whose phosphorylation of 

ERK remarkably stimulated growth and metastasis of 

TNBC cells [74], was core to lncRNA AFAP1-

AS1/miR-195-mediated TNBC progression, allowing 

for its level change in TNBC cell lines after stimulation 

by lncRNA AFAP1-AS1 and miR-195 (Figure 6). 

Collectively, this investigation newly uncovered that 

miR-545-3p/CDK4 axis and miR-195/Raf-1 axis 

participated in restoring contribution of lncRNA 

AFAP1-AS1 to TNBC development. 

 

Additionally, formononetin, a Chinese herb, was 

expected to diminish malignant activities of TNBC cells 

(Figure 7A–7C) [19] by repressing lncRNA AFAP1-

AS1-led miRNA axes (Supplementary Figures 6, 7 and 

Figure 7D, 7E), which widened current cognitions about 

how formononetin leveraged molecular networks, in 

addition to MAPK pathway [75] and JAK/STAT 

pathway [76], to mitigate TNBC exacerbation. 

Moreover, researches so far mostly highlighted that 

formononetin halted carcinogenesis, including laryngeal 

cancer [77], nasopharyngeal cancer [78], glioma [79] 

and multiple myeloma [80], by squinting tumor cells to 

apoptosis and by forbidding them from metastasizing 

[81]. However, formononetin also held potential in 

overcoming hyper-inflammation [82], which was 

relevant to unfavorable TNBC prognosis [83], but 

whether formononetin combatted TNBC development 

in an inflammation-dependent mode was unvalidated 

here. 

 

CONCLUSIONS 
 

Collectively, formononetin exerted anti-TNBC function 

by reducing the influence of lncRNA AFAP1-AS1 on 

miR-545-3p/CDK4 axis and miR-195/Raf-1 axis, which 

were associated with TNBC exacerbation and 

chemoresistance (Figure 8). There were, however, a 

couple of deficiencies in the experimental design. For 

 

 
 

Figure 8. The mechanism map illustrated that lncRNA AFAP1-AS1 promoted triple-negative breast cancer (TNBC) progression 
and chemo-resistance by disturbing the interaction of miR-195 with Raf-1 and that of miR-545 with CDK4. However, 
formononetin antagonized TNBC malignancy by lessening the effect of lncRNA AFAP1-AS1-guided miR-545/CDK4 axis and miR-195/Raf-1 axis 
on TNBC cells. 



 

www.aging-us.com 18202 AGING 

one thing, although tumor growth in TNBC-bearing 

mice models, was inhibited by formononetin at the 

concentration of 80 mg/kg (Supplementary Table 4), 

along with decreased lncRNA AFAP1-AS1 level and 

increased miR-545-3p/miR-195 level in the tumor 

tissues (Supplementary Figure 8), joint effects of 

formononetin, si-lncRNA AFAP1-AS1 and miR-545-

3p/miR-195 mimic on tumor growth in the mice models 

were not studied. For another, considering that single-

target therapy led to smaller objective response rates 

than multiple-target therapy in terms of treating solid 

tumors [84, 85], combined application of molecular 

targets and formononetin might be viable for TNBC 

treatment, but this point was not clinically supported. 

 

MATERIALS AND METHODS 
 

Cell culture 
 

TNBC cell lines (i.e. MDA-MB-231 and BT-549) and 

normal human mammary epithelial cell line (i.e. MCF-

10A), purchased from American Type Culture 

Collection (ATCC, USA), were cultured in RPMI-1640 

medium (Gibco, USA) which incorporated 10% (v/v) 

fetal bovine serum (FBS), 100 U/mL streptomycin and 

100 U/mL penicillin. After overnight cultivation in 5% 

CO2 at 37° C, MDA-MB-231 and BT-549 cell lines at 

the logarithmic growth phase were reserved. 

 

Cell transfection 
 

When confluency of MDA-MB-231 and BT-549 cells 

reached nearly 80%, pcDNA3.1-lncRNA AFAP1-AS1 

(Invitrogen, USA), lncRNA AFAP1-AS1-siRNA (5’-

CCTATCTGGTCAACACGTA-3’, Genepharma, 

China), si-negative control (NC) (sense: 5’-

GCGACGAUCUGCCUAAGA-3’, anti-sense: 5’-

AUCUUAGGCAGAUCGUCG-3’, Invitrogen, USA), 

pcDNA6.2/GW/EmGFP-miRNAs (Sangon, China) and 

pcDNA6.2/GW/EmGFP-miR-NC (named as miR-NC, 

Sangon, China) were, respectively, transfected into the 

TNBC cell lines for 48 h, aided by Lipofectamine 

2000
TM

 reagent (Invitrogen, USA). The experiments 

were implemented with more than 3 replicates. 

 

MTT assay to evaluate chemo-resistance of TNBC 

cells 
 

MDA-MB-231 and BT-549 cell lines, inoculated into 96-

well plates at the density of 2500/well, were disposed by 

gradient concentrations of 5-Fu (Beijing Zhongshan 

Jinqiao Biotechnology, China), adriamycin (Zhejiang 

HISUN Pharmaceuticals, China), paclitaxel (Sino-

American Shanghai Squibb Pharmaceuticals, China) and 

cisplatin (Beijing Zhongshan Jinqiao Biotechnology, 

China) separately for 48 h. Subsequently, TNBC cells in 

each well were managed by 15 μl MTT at the 

concentration of 5 mg/ml (Sinopharm Chemical Reagent 

Corporation, China) for 4 hours, and then 150 μl DMSO 

(BD, USA) was dropped into each well to mix with the 

TNBC cells for around 10 min. Absorbance at 490 nm 

(A490) of TNBC cells under each treatment was 

measured by virtue of full-wavelength microplate reader 

(model: 550, Forma Scientific, USA). Inhibitory rate (%) 

of chemo-drugs on growth of TNBC cells was assessed 

based on the formula of (1-A490drug group/A490control group) × 

100%, and half maximal inhibitory concentration (IC50) 

values were calculated. The experiments were conducted 

with ≥ 3 replicates. 

 

Cell treatment by formononetin 

 

MDA-MB-231 and BT-549 cells adjusted to the density 

of 5×10
4
/ml were seeded into 96-well culture plates, 

and they were starved in serum-free medium for 24 h. 

Afterwards, the TNBC cells were exposed to 10 

μmol/L, 20 μmol/L, 40 μmol/L, 80 μmol/L and 160 

μmol/L formononetin (batch number: 111703-200603, 

China National Institute for Food and Drug Control), 

respectively, for 24 h. The experiments were repeated 

for ≥ 3 times. 

 

Real-time quantitative PCR (RT-PCR) 
 

BC tissues frozen within liquid nitrogen, as well as BC 

cell lines, were lysed after addition of 1ml TRIzol 

reagent (Invitrogen, USA), through which total RNAs 

were isolated. Concentration and purity of the RNAs 

were assessed using an ultraviolet (UV) spectro-

photometer (model: NanoDropND-1000, NanoDrop 

Technologies, USA), and RNA samples whose 

A260/A280 ratio lied between 1.8 and 2.1 were 

reserved. Reverse transcription of the RNAs was 

implemented following procedures described in 

PrimeScript
TM

 RT Master Mix kit (Takara, Japan) or 

miScript II RT kit (Qiagen, Germany), and the obtained 

cDNAs were amplified by employing real-time PCR kit 

(Takara, Japan) or miScript SYBR® Green PCR kit 

(Qiagen, Germany). Primers for genes were ordered in 

Supplementary Table 5, and their relative expression 

was normalized by means of 2
-ΔΔCt

 method [86]. These 

experiments were repeated for at least 3 times. 

 

Western blotting 

 

After denaturation at 105° C for 5 min, total protein 

extracted from BC tissues and cell lines was separated by 

electrophoresis, successively experiencing 1) 80 V for 

2~3 h and 2) 100 V for 90 min. With usage of 

electrophoretic transfer apparatus (model: Mini Trans-

Blot, Bio-Rad, USA), proteins on the gel were transferred 

onto polyvinylidene fluoride (PVDF) membrane through 
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wet method. Afterwards, the membrane was placed within 

10 ml blocking buffer (i.e. 2% skim milk) for 1 h, and 

protein samples were incubated by primary antibodies 

(rabbit-anti-human, Abcam, USA) against CDK4 (1: 

2000, Catalog No: ab108357), Raf-1 (1: 2000, Catalog 

No: ab137435) and GAPDH (1: 10000, Catalog No: 

ab181602) at 4° C for overnight. Then the products were 

incubated by goat anti-rabbit IgG H&L labelled by 

horseradish peroxidase (HRP) (1:5000, Catalog No: 

ab205718, Abcam, USA) at room temperature for 2 h. 

Development of protein samples was carried out by 

adopting chemiluminescence (ECL) (Pierce, USA), and 

gray values of protein bands were determined through 

utilization of Image-Pro Plus software (Media 

Cybernetics, USA). The experiments were carried out for 

at least 3 times. 

 

CCK-8 assay 

 

MDA-MB-231 and BT-549 cells were seeded into 96-

well plates at the density of 3000 cells per well. After 

overnight culture, 10 μl CCK-8 reagent (Dojindo, 

Japan) was supplemented gently into each well at the 

time point of 0 h. After cultivation at 37° C for 24 h, 48 

h, 72 h and 96 h, absorbance (A) of TNBC cells in each 

well was monitored at 450 nm on the microplate reader 

(Bio-Rad, USA). These experiments were performed for 

at least 3 times. 

 

Transwell assay 
 

Cell migration 
MDA-MB-231 and BT-549 cells at the concentration of 

1×10
5
/ml were paved onto the upper Transwell chamber 

(Corning Costar, USA), and 600 μl DMEM medium that 

contained 10% FBS was poured into the lower transwell 

chamber (Corning Costar, USA). After routine culture for 

24 h, the TNBC cells were stained by 0.1% crystal violet 

(Solarbio Life Sciences, China), thereafter photographs 

were taken under optical microscope (Olympus, USA). 

The experiments were undertaken with ≥ 3 replicates. 

 

Cell invasion 
Procedures of cell invasion assay were mostly 

consistent with those of cell migration assay, except that 

Matrigel diluted by DMEM (ratio: 1/6) was added into 

the upper Transwell chamber (Corning Costar, USA), 

after which suspension of MDA-MB-231/BT-549 cells 

and DMEM medium were supplemented. 

 

Dual luciferase reporter gene assay 

 

LncRNA AFAPA-AS1 and RAF1 fragments that 

contained miR-195-binding sites, drawn from 

Encyclopedia of RNA Interactomes (ENCORI) online 

database (http://starbase.sysu.edu.cn/) [26], were 

amplified through conduction of PCR, in a bid to 

construct wide types of lncRNA AFAPA-AS1 (i.e. WT-

lncRNA AFAP1-AS1-1) and Raf-1 (i.e. WT-Raf-1). 

Simultaneously, mutant types of lncRNA AFAPA-AS1 

(i.e. MUT-lncRNA AFAP1-AS1-1) and Raf-1 (i.e. MUT-

Raf-1) were produced by mutating miR-545-binding sites 

in lncRNA AFAPA-AS1 and RAF1. After that, WT-

lncRNA AFAP1-AS1-1, WT-Raf-1, MUT-lncRNA 

AFAP1-AS1-1 and MUT-Raf-1 were, respectively, 

connected to pmirGLO vector (Promega, USA), in order 

to establish pmirGLO-WT-lncRNA AFAP1-AS1-1, 

pmirGLO-WT-Raf-1, pmirGLO-MUT-lncRNA AFAP1-

AS1-1 and pmirGLO-MUT-Raf-1. With respect to miR-

195, lncRNA AFAPA-AS1 and CDK4 fragments that 

possessed miR-195-targeting sites were reserved to 

construct pmirGLO-WT-lncRNA AFAP1-AS1-2 and 

pmirGLO-WT-CDK4, while pmirGLO-MUT-lncRNA 

AFAP1-AS1-2 and pmirGLO-MUT-CDK4 were 

established via mutation of their respective miR-195-

targeting sites. Subsequently, MDA-MB-231 and BT-

549 cells of logarithmic growing phase were inoculated 

into 96-well plates at the density of 4×10
3
/well,  

and they were transfected by 1) pcDNA6.2/GW/ 

EmGFP-miR-545+pmirGLO-WT-lncRNA AFAP1-

AS1-1/pmirGLO-WT-Raf-1, 2) pcDNA6.2/GW/EmGFP- 

miR-545+pmirGLO-MUT-lncRNA AFAP1-AS1-1/ 

pmirGLO-MUT-Raf-1, 3) miR-NC+pmirGLO-WT-

lncRNA AFAP1-AS1-1/pmirGLO-WT-Raf-1, 4) miR-

NC+pmirGLO-MUT-lncRNA AFAP1-AS1-1/pmirGLO- 

MUT-Raf-1, 5) pcDNA6.2/GW/EmGFP-miR-195+ 

pmirGLO-WT-lncRNA AFAP1-AS1-2/pmirGLO-WT-

CDK4, 6) pcDNA6.2/GW/EmGFP-miR-195+pmirGLO- 

MUT-lncRNA AFAP1-AS1-2/pmirGLO-MUT-CDK4, 

7) miR-NC+pmirGLO-WT-lncRNA AFAP1-AS1-

2/pmirGLO-WT-CDK4, or 8) miR-NC+pmirGLO-

MUT-lncRNA AFAP1-AS1-2/pmirGLO-MUT-CDK4. 

Luciferase activity of MDA-MB-231 and BT-549 cells 

under each treatment was tested as per instructions of 

Dual-Luciferase Reporter Assay System kit (Promega, 

USA), which were repeated for ≥ 3 times. 

 

Statistical analyses 
 

Data analyses in this investigation were fulfilled using 

SPSS ver.20 software (SPSS Inc. Chicago, IL, USA). 

Among them, quantitative data [mean ± standard 

deviation (SD)] were processed by student’s t-test or 

analysis of variance (ANOVA), and categorical data (n) 

were analyzed via chi-square test. Differences were 

statistically significant when two-sided P value was less 

than 0.05. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Clinical significance of lncRNA AFAP1-AS1 in triple-negative breast cancer (TNBC). (A) LncRNA AFAP-
AS1 expression was compared among adjacent normal tissues, TNBC tissues and non-TNBC tissues. *: P<0.05. (B) TNBC patients carrying low-
level lncRNA AFAP-AS1 were more likely to enjoy favorable prognosis than patients with high lncRNA AFAP1-AS1 level. 
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Supplementary Figure 2. Potential sponging sites between lncRNA AFAP1-AS1 and miRNAs in accordance with the 
Encyclopedia of RNA Interactomes (ENCORI) online database (http://starbase.sysu.edu.cn/). 

http://starbase.sysu.edu.cn/
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Supplementary Figure 3. MiRNAs potentially sponged by lncRNA AFAP1-AS1 were determined in MCF-10A, MDA-MB-231 and BT-549 cell 
lines (A), and luciferase activity of MDA-MB-231 and BT-549 cell lines were compared between pmirGLO-WT-AFAP1-
AS1+pcDNA6.2/GW/EmGFP-miRNA group and pmirGLO-MUT-AFAP1-AS1+pcDNA6.2/GW/EmGFP-miRNA group (B). *: P<0.05 in comparison 
to pmirGLO-MUT-lncRNA AFAP1-AS1+pcDNA6.2/GW/EmGFP-miRNA group. Note: LncRNA AFAPA-AS1 fragments that contained binding sites 
of each miRNA were conserved and mutated, respectively, to construct WT-lncRNA AFAP1-AS1 and MUT-lncRNA AFAP1-AS1-1 for each 
miRNA. For each miRNA, the luciferase activity of MDA-MB-231/BT-549 cell line was compared between pmirGLO-WT-lncRNA AFAP1-
AS1+pcDNA6.2/GW/EmGFP-miRNA group and pmirGLO-MUT-lncRNA AFAP1-AS1+pcDNA6.2/GW/EmGFP-miRNA group, both of which have 
been normalized to pmirGLO-WT-lncRNA AFAP1-AS1+pcDNA6.2/GW/EmGFP group. 
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Supplementary Figure 4. MiRNAs potentially sponged by lncRNA AFAP1-AS1 were monitored in MDA-MB-231 (A) and BT-549 (B) cell lines 
after silencing of lncRNA AFAP1-AS1. *: P<0.05 in comparison to si-negative control (NC) group. 
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Supplementary Figure 5. KEGG pathways enriched by genes targeted by lncRNA AFAP1-AS1-sponged miRNAs, in the light of 
miRPathDB online database (https://mpd.bioinf.uni-sb.de/overview.html). 

https://mpd.bioinf.uni-sb.de/overview.html
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Supplementary Figure 6. Expressions of lncRNAs were measured in 40 μmol/L formononetin-exposed MDA-MB-231 (A) and BT-549 (B) 
cell lines. *: P<0.05 in comparison to negative control (NC) group. 
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Supplementary Figure 7. Expressions of miRNAs were detected in MDA-MB-231 (A) and BT-549 (B) cell lines under treatment of 40 μmol/L 
formononetin. *: P<0.05 in comparison to negative control (NC) group. 
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Supplementary Figure 8. LncRNA AFAP1-AS1, miR-545 and miR-195 expressions were determined in triple-negative breast 
cancer (TNBC)-bearing mice models after injection of 80 mg/kg formononetin. *: P<0.05 in comparison to control group. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Differentially-expressed long non-coding RNAs (lncRNAs) between MDA-MB-231 cell 
line and cisplatin-resistant MDA-MB-231 (MDA-MB-231/DDP) cell line according to results of microarray 
analysis. 

 

Supplementary Table 2. Association of lncRNA AFAP1-AS1 expression with clinicopathological characteristics of 
breast cancer (BC) patients#. 

Items 
TNBC population (n=94)  Non-TNBC population (n=155) 

High (n=51) Low (n=43) χ
2
 P OR (95%CI)  High (n=78) Low (n=77) χ

2
 P OR (95%CI) 

Age (years old, n) 
      

 
     

≤55 33 34 
    

 55 45 
   

>55 17 10 1.453 0.228 1.752(0.701-4.38)  23 32 2.466 0.116 0.588(0.302-1.144) 

Histological grade (n) 
     

 
     

I+II 15 26 
    

 45 40 
   

III 35 18 8.054 0.005* 3.37(1.436-7.908)  33 37 0.516 0.472 0.793(0.421-1.494) 

Tumor size (n) 
      

 
     

T1+T2 26 32 
    

 51 55 
   

T3 24 12 4.255 0.039* 2.462(1.036-5.847)  27 22 0.655 0.418 1.324(0.671-2.612) 

Clinical stage (n) 
      

 
     

I+II 33 27 
    

 58 57 
   

III 17 17 0.218 0.641 0.818(0.352-1.901)  20 20 0.002 0.962 0.983(0.479-2.018) 

Lymph-node metastasis (n) 
     

 
     

No 19 27 
    

 35 38 
   

Yes 31 17 5.112 0.024* 2.591(1.126-5.963)  43 39 0.312 0.577 1.197(0.637-2.251) 

Menopausal status (n) 
     

 
     

No 27 22 
    

 41 33 
   

Yes 23 22 0.150 0.699 0.852(0.378-1.918)  37 44 1.463 0.226 0.677(0.359-1.275) 

Pathological type (n) 
      

 
     

Invasive ductal carcinoma 43 40 
    

 61 59 
   

Others 7 4 0.546 0.460 1.628(0.443-5.986)  17 18 0.055 0.814 0.914(0.43-1.941) 

Family history (n) 
      

 
     

No  39 29 
    

 54 59 
   

Yes 11 15 1.710 0.191 0.545(0.219-1.361)  24 18 1.072 0.301 1.457(0.713-2.975) 

Ki-67 (n) 
      

 
     

≤14% 23 30 
    

 36 40 
   

>14% 27 14 4.683 0.031* 2.516(1.082-5.849)  42 37 0.521 0.471 1.261(0.671-2.371) 

#Collection of triple negative breast cancer (TNBC) specimens: Tumor tissues and adjacent normal tissues were collected from 
a total of 249 BC patients, who has been histopathologically confirmed as TNBC (n=94) and non-TNBC (n=155), recruited from 
Breast Department of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, from December of 
2011 to November of 2016Participants in this program all met following criteria: 1) they were females with primary BC; 2) 
they underwent surgeries; 3) they have signed informed consents; and 4) their tissues were frozen within < 30 min since 
being excised. Moreover, the applicants were excluded if: 1) their TNBC subtype could not be verified; 2) their tissues were 
unavailable from surgery; 3) they participated in this program without consents from their family; and 4) their cancer tissues 
were not stored timely. This program was approved by Longhua Hospital Affiliated to Shanghai University of Traditional 
Chinese Medicine and the ethics committee of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese 
Medicine. High: highly-expressed lncRNA AFAP1-AS1; Low: lowly-expressed lncRNA AFAP1-AS1; OR: odds ratio; CI: confidence 
interval; *: statistical significance. 
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Supplementary Table 3. Association of clinical parameters with prognosis of triple-negative breast cancer 
(TNBC) patients#. 

Items Number of cases (n) 
Uni-variate analysis 

 

Multi-variate analysis 

HR 95% CI P value 
 

HR 95% CI P value 

Age (years old, n) 
    

 
   

≤55 67 
    

 
   

>55 27 
 

0.919 0.547-1.5420.748 0.719 
 

0.861 0.467-1.589 0.632 

Histological grade (n) 
        

I+II 41 
        

III 53 
 

2.235 1.365-3.661 0.001 
 

1.566 0.935-2.623 0.088 

Tumor size (n) 
        

T1+T2 58 
        

T3 36 
 

1.641 1.002-2.635 0.040 
 

1.785 1.063-2.996 0.028* 

Clinical stage (n) 
        

I+II 60 
        

III 34 
 

2.260 1.396-3.658 0.001 
 

2.985 1.772-5.028 <0.001* 

Lymph-node metastasis (n) 
       

No 46 
        

Yes 48 
 

2.080 1.298-3.335 0.002 
 

2.354 1.408-3.933 0.001* 

Menopausal status (n) 
        

No 49 
        

Yes 45 
 

1.055 0.662-1.68 0.823 
 

0.844 0.517-1.38 0.500 

Pathological type (n) 
        

Invasive ductal carcinoma 83 
        

Others 11 
 

0.656 0.3-1.433 0.290 
 

1.095 0.47-2.552 0.834 

Family history (n) 
        

No  68 
        

Yes 26 
 

1.243 0.751-2.056 0.397 
 

1.593 0.917-2.767 0.098 

Ki-67 
         

≤14% 53 
    

 
   

>14% 41 
 

1.657 1.037-2.646 0.035 
 

1.521 0.865-2.674 0.146 

Relative expression of lncRNA AFAP1-AS1 
  

 
   

Low expression 44 
    

 
   

High expression 50 
 

2.346 1.444-3.811 0.001 
 

2.600 1.526-4.431 <0.001* 

#
Follow-up care: The TNBC patients were followed up from the date of diagnosis until December 31 of 2019. Their prognostic 

condition was tracked via telephone communication, and their clinical symptoms were re-examined during follow-up period. 
Parameters that affected prognosis of TNBC patients were figured out by establishing univariate and multivariate Cox 
regression models. HR: hazard ratio; CI: confidence interval; *: statistical significance. 
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Supplementary Table 4. Impact of formononetin on tumor growth in mice models#. 

Group Dose (mg/kg) 
Body weight (g) 

Tumor weight (g) Inhibitory rate (%) 
Pre-treatment Post- treatment 

Control -- 19.96±1.57 26.35±2.98 1.48±0.44 -- 

Formononetin 20 20.5±1.48 25.63±4.09 1.17±0.31 20.95% 

 
40 20.24±1.95 25.17±3.2 0.85±0.24 42.56% 

 
80 20.58±1.8 24.55±2.91 0.60±0.27* 66.22% 

#
: Establishment of triple negative breast cancer (TNBC)-bearing nude mice models: A total of 40 SPF-grade BALB/c 

female mice, aged 6.5 weeks, were provided by experimental animal center of Longhua Hospital Affiliated to 
Shanghai University of Traditional Chinese Medicine. After the mice were acclimate to surroundings at 25° C for 
1week, they were injected by 0.1 ml MDA-MB-231 cell suspension (around 1 × 10

6
 cells) subcutaneously in the 

chest. On the 2nd day, there existed a node in the injection site of each mouse, and TNBC-bearing mice models were 
established successfully. Then the mice models were divided into control group (n=10), formononetin (20 mg/kg) 
group (n=10), formononetin (40 mg/kg) group (n=10) and formononetin (80 mg/kg) group (n=10). Formononetin 
was intra-peritoneally injected into each mouse model once per day, for continuously 21 days. Body weight and 
tumor weight (W) of the mice models were recorded, and tumor growth inhibition rate (%), which was equivalent to 
(1-Wformononetin/Wcontrol) × 100%, was calculated. What’s more, tumors of the mice models were excised to determine 
levels of lncRNA AFAP1-AS1-1, miR-545 and miR-195 with PCR. *: P<0.05 when compared with control group. 
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Supplementary Table 5. Primers of genes. 

Genes 
Primers 

Forward Reverse 

LncRNAs   

HCP5 5'-ATGGTCCTGCTTTGGTGTCC-3' 5'-AGGCCCTACTTCTCTCAGGC-3' 

PRKAG2-AS1 5'-CTGGAACCAGTAAGCCCGTT-3' 5'-GATCCACTGCGCAAACCTTG-3' 

LMLN-AS1 5'-AGATTGCCTAGCAGAAGCCAG-3' 5'-TGGGTTTTGCTCTTGATTTAGCTC-3' 

STARD13-AS2 5'-TTGGACCTCACCCAGGACTT-3' 5'-TGGGTATTTGCCTTGTGCCT-3' 

LINC00261 5'-GCAATCCCCTCCTGAGCATT-3' 5'-CTCCACGGGCTACCAAATGT-3' 

PGM5-AS1 5'-TGGTACTTTCAGCCTGTCCG-3' 5'-AACAGACGGCTTCAGTGGTT-3' 

THAP9-AS1 5'-TCTTGGCATGGTTGGCTGTA-3' 5'-ATTCCTTCCCTGCATATTTTGAGT-3' 

AFAP1-AS1 5'-GGAGTGACGGCATCCAACTC-3' 5'-GTCATCCCTGTCCCTGGTTC-3' 

UCA1 5'-TGCCAGCCTCAGCTTAATCC-3' 5'-TCCCTGTTGCTAAGCCGATG-3' 

H19 5'-CATGCTCCAGAGGGAATCGT-3' 5'-GCTTCAACTGATTCCGTGGC-3' 

Linc00152 5'-CCAGCACCTCTACCTGTTGC-3' 5'-GCCAGACAAATGGGAAACCG-3' 

SPRY4-IT1 5'-CCCAGAGAGCCAAGTCATCG-3' 5'-GGATGTTGGCATTCACAGGC-3' 

FTH1P3 5'-CTCCTCCATTTACCTGTGCGT-3' 5'-CCGCACAGTCTGGTTTCTTG-3' 

Linc ROR 5'-TCCTATGGAGGGGGAACCAT-3' 5'-GGAGTTCGACTTCCCCTGTG-3' 

XIST 5'-GACACAAGGCCAACGACCTA-3' 5'-TCGCTTGGGTCCTCTATCCA-3' 

CASC2 5'-TTGGTCTCGGGAACGTGAAG-3' 5'-CAACCAGGGAGGTGCTGAC-3' 

DLX6-AS1 5'-GATATGGAACAGGCAAGCCG-3' 5'-ATGTTTGGAGGTTCCCCACC-3' 

SNHG15 5'-TTGCCTGACCATTCCTGAGC-3' 5'-CCACTTTGAGACCGTCACCT-3' 

MiRNAs*   

MiR-455-5p 5'-GCGGCGGGCTACATCAGGTTTC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-3163 5'-GCGGCGGCAGAATGACGGGAG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

miR-545-3p 5'-GCGGCGGCGTGTGTTATTTAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-370-5p 5'-GCGGCGGCATTGACGTCTCTGC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-155-5p 5'-GCGGCGGTGGGGATAGTGCTAATC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-653-5p 5'-GCGGCGGGTCATCTCTAACAAAG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-4524a-5p 5'-GCGGCGGACTCTGTCCAAGTAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-195-5p 5'-GCGGCGGCGGTTATAAAGACAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-4524b-5p 5'-GCGGCGGCTCTGTCCGAATACG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-892c-5p 5'-GCGGCGGACTGACCGTGGAAAG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-15a-5p 5'-GCGGCGGGTGTTTGGTAATACAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-16-5p 5'-GCGGCGGGCGGTTATAAATGCAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-15b-5p 5'-GCGGCGGACATTTGGTACTACAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-424-5p 5'-GCGGCGGAAGTTTTGTACTTAAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-497-5p 5'-GCGGCGGTGTTTGGTGTCACAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-6838-5p 5'-GCGGCGGTCCTCAGAACGGTGAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-4731-5p 5'-GCGGCGGGTGTGAGTACACCGG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-512-3p 5'-GCGGCGGCTGGAGTCGATACTG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-216a-5p 5'-GCGGCGGAGTGTCAACGGTCGAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-1180-5p 5'-GCGGCGGATAAGGGCCGGCCCAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-7114-3p 5'-GCGGCGGGACCACCTCTCCCCAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-520g-3p 5'-GCGGCGGTGTGAGATTTCCCTTC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-520h 5'-GCGGCGGTGAGATTTCCCTTCG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-190b 5'-GCGGCGGTTGGGTTATAGTTTG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-190a-5p 5'-GCGGCGGTGGATTATATAGTTTG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-2278 5'-GCGGCGGGGTCCGTTGTGTGTG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 
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MiR-374c-5p 5'-GCGGCGGTCGTGAATCGTCCAAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-1277-3p 5'-GCGGCGGTTTTATGTATATATAG-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

MiR-655-3p 5'-GCGGCGGTTTCTCCAATTGGTAC-3' 5'-ATCCAGTGCAGGGTCCGAGG-3' 

Others   

GAPDH 5'-GGAGCGAGATCCCTCCAAAAT-3' 5'-GGCTGTTGTCATACTTCTCATGG-3' 

U6 5'-CGCTTACAGCAGACATAC-3' 5'-CGCTTACAGCAGACATAC-3' 

Raf-1 5'-GGGAGCTTGGAAGACGATCAG-3' 5'-ACACGGATAGTGTTGCTTGTC-3' 

CDK4 5'-ATGGCTACCTCTCGATATGAGC-3' 5'-CATTGGGGACTCTCACACTCT-3' 

*: The miRNAs were potentially sponged by lncRNA AFAP1-AS1, as predicted by The Encyclopedia of RNA 
Interactomes (ENCORI) platform (http://starbase.sysu.edu.cn/). 

http://starbase.sysu.edu.cn/

