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INTRODUCTION 
 

After vascular interventions, neointimal hyperplasia 

occurs and can cause treatment failure; scientists and 

surgeons have attempted to identify an effective 

pharmacological method to suppress neointimal 

hyperplasia [1, 2]. Among the different cell types in the 

neointima after intervention, mature vascular smooth 

muscle cells are the major cellular source of intimal 

hyperplasia in vein grafts [3]. Therefore, paclitaxel- or 

rapamycin-coated balloons and stents have been widely 

used to decrease neointimal hyperplasia by inhibiting 

neointimal smooth muscle cell proliferation [4, 5]. Both 

drugs have been used for more than twenty years and 
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ABSTRACT 
 

Venous neointimal hyperplasia can be a problem after vein interventions. We hypothesized that inhibiting 
programmed death-1 (PD-1) can decrease venous neointimal hyperplasia in a rat inferior vena cava (IVC) patch 
venoplasty model. The rats were divided into four groups: the control group was only decellularized without 
other special treatment; the PD-1 group was injected with a single dose of humanized PD-1 antibody (4 mg/kg); 
the PD-1 antibody coated patches group; the BMS-1 (a PD-1 small molecular inhibitor) coated patches group 
(PD-1 inhibitor-1). Patches were implanted to the rat IVC and harvested on day 14 and analyzed. 
Immunohistochemical analysis showed PD-1-positive cells in the neointima in the human samples. There was 
high protein expression of PD-1 in the neointima in the rat IVC venoplasty model. PD-1 antibody injection can 
significantly decrease neointimal thickness (p < 0.0001). PD-1 antibody or BMS-1 was successfully conjugated to 
the decellularized rat thoracic artery patch by hyaluronic acid with altered morphology and reduced the water 
contact angle (WCA). Patches coated with humanized PD-1 antibody or BMS-1 both can also decrease 
neointimal hyperplasia and inflammatory cells infiltration. PD-1-positive cells are present in venous neointima 
in both human and rat samples. Inhibition of the PD-1 pathway may be a promising therapeutic strategy to 
inhibit venous neointimal hyperplasia. 
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have contributed to improved patency rates after artery 

interventions, although there have been some dis-

agreements [5]. Vascular patches are used during 

surgery to repair or reconstruct damaged blood vessels 

[6]. Venous patch angioplasty is often used in the 

conditions when the inferior vena cava (IVC) or hepatic 

veins have been injured [7, 8]. However, intimal 

hyperplasia of the venous patch is also an important 

cause of graft failure [9].  

 

Humanized antibodies to treat human cancers and 

other diseases are a milestone in modern therapeutic 

strategies, and programmed death-1 (PD-1) is a 

representative of these novel antibodies [10]. We 

previously showed that a PD-1 antibody and BMS-1 

could effectively decrease neointimal hyperplasia in a 

rat aortic patch angioplasty model and that PD-1 

neutralization decreases macrophage and lymphocyte 

numbers in the neointima and decreases TGF β1 

expression [11]. These findings provided a new 

strategy to inhibit neointimal hyperplasia after 

arterial intervention. Arteries and veins are two 

different systems, and there are high occlusion and 

failure rates after prosthetic grafts are implanted in 

the venous system [12]. In humans, we showed a 

substantially thicker neointima in the venous system 

than in the arterial system [13]. Venous bypasses also 

have low patency rates, with 5-year secondary 

patency rates of 86% for femoroiliac and iliocaval 

bypasses and 57% for femorocaval bypasses [14]. In 

rats, we showed a thicker neointima in the venous 

patch angioplasty model compared with the arterial 

patch angioplasty model [11], and rapamycin 

covalent pericardial patches inhibited venous 

neointimal hyperplasia after inferior vena cava (IVC) 

patch angioplasty in rats [9].  

 

Based on this prior knowledge, we hypothesized that 

the inhibition of PD-1 could also decrease venous 

neointimal hyperplasia. We used a decellularized rat 

thoracic artery patch and a rat venoplasty model to test 

our hypothesis [9].  
 

RESULTS 
 

To explore whether there were PD-1 positive or TGF β1 

positive cells in the human venous neointima, human 

spiral vein graft sections were sectioned and stained, 

there were neither PD-1-positive cells nor TGF β1-

positive cells in the fresh human great saphenous vein; 

however, there were PD-1- and TGF β1-positive cells in 

the neointima of the human spiral vein graft sample 

(Figure 1A, 1B). We then examined PD-1 and TGF β1 
protein expression in the rat IVC and the neointima of 

IVC venoplasty harvested on day 14. Western blot 

analysis showed increased PD-1 and TGF β1 protein 

expression in the neointima after patch angioplasty in 

rats (Figure 1C, 1D).  

 

Since the PD-1 antibody neutralization can decrease 

arterial neointimal hyperplasia [11], we next examined 

whether it could decrease venous neointimal 

hyperplasia. There was a thick neointima in the control 

group, but there was a significantly thinner neointima 

in the patches treated with PD-1 injection group 

(Figure 2A, 2B). There were both vWF- and α-actin-

positive cells in the neointima, and there was no 

difference in the neointimal reendothelialization rate 

between the control and PD-1 antibody injection 

groups (Figure 2A, 2C).  

 

We further examined whether PD-1 antibody injection 

could decrease PD-1 protein expression after patch 

angioplasty. Western blot analysis showed decreased 

PD-1 and TGF β1 protein expression after PD-1 

antibody injection at day 14 (Figure 3A, 3B). There 

were significantly fewer PD-1 and CD3 dual-positive 

cells, and significantly fewer PD-1 and CD68 dual-

positive cells in the neointima of the PD-1 antibody 

injection group than the control group (Figure 3C, 3D). 

PDL-1 is a ligand of PD-1, PD-1 affects immune cells 

by binding to PDL-1 in tumor cells. There were 

significantly fewer PD-L1 and CD3 dual-positive cells 

and fewer PD-L1- and CD68-positive cells in the 

neointima of the PD-1 antibody injection group than the 

control group (Figure 3C, 3D). PD-1 and TGF β1 

expression, and α-actin and PCNA dual-positive cells 

were significantly decreased in the PD-1 antibody 

injection group (Figure 3C, 3D).  

 

We then coated PD-1 antibody and BMS-1 onto the 

surface of decellularized rat thoracic patches and 

implanted them into the rat IVC. The coated patch 

surface showed a significantly smaller WCA than the 

control patch (Figure 4A). The 3D optical microscopy 

images showed that the coated patch and uncoated 

control patch displayed distinct surface morphologies, 

wherein the uncoated control patch showed complex 

surface morphology and different roughness 

distributions, which could be directly observed on the 

image by diversified colors. In contrast, the coated 

patch showed uniform morphology and roughness 

distribution, and almost the entire surface was covered 

in blue in the 3D optical microscopy image (Figure 4B).  

 

After 14 days, there were substantially thinner 

neointimas in the PD-1- and BMS-1-coated patches 

than the control patches (Figure 5A, 5B). There were 

similar neointimal reendothelialization rates in these 
three groups (Figure 5A, 5C). Significantly fewer PD-1 

and CD3 dual-positive cells and significantly fewer 

PD-1- and CD68-positive cells were in the coated 
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Figure 1. PD-1 expression in human and rat venous neointimas. (A) Immunohistochemistry images showing PD-1 and TGF β1 

expression in the native human great saphenous vein (GSV control) and the neointima of spiral great saphenous vein graft (SVG); black 
arrowhead showing positive cells; scale bar, 100 μm; n = 3. (B) Bar graphs showing PD-1- (*p < 0.0001, t-test) and TGF β1-positive cells 
(*p < 0.0001, t-test) per high-power field in the human GSV and SVG neointima, n = 6. (C) Western blot showing the expression of PD-1, TGF 
β1, and β-actin in the rat IVC and the patch after patch venoplasty at day 14; n = 3. (D) Bar graph showing PD-1 (*p = 0.0022, t-test) and TGF 
β1 (*p = 0.0128, t-test) density; n = 3. 

 

 
 

Figure 2. Intraperitoneal (IP) injection of PD-1 decreases neointimal thickness after patch venoplasty in rats. (A) Representative 

image of the patch stained with H&E at day 14; first row: a low-power image of H&E staining; second row: a high-power image of H&E staining 
showing the neointima; third row: merged immunofluorescence image of vWF (green) and α-actin (red) and DAPI (blue) staining showing the 
neointima. PD-1 Ab (IP injection of humanized PD-1 antibody group); P, patch; N, neointima; n = 6. (B) Bar graph showing neointimal thickness; 
*p < 0.0001, t-test; n = 6. (C) Bar graph showing neointimal reendothelialization; p = 0.6104, t-test; n = 6. 
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Figure 3. Intraperitoneal (IP) injection of PD-1 antibody decreases PD-1 expression after patch venoplasty in rats. (A) Western 

blot showing the expression of PD-1 and TGF β1 after the intraperitoneal injection of the PD-1 antibody in rat IVCs and neointimas at day 
14; n = 3. (B) Bar graph showing PD-1 (*p = 0.0096, t-test) and TGF β1 (*p = 0.0023, t-test) density; n = 3. (C) Merged immunofluorescence 
images showing CD3 (green), PD-1 (red) and DAPI (blue); CD68 (green), PD-1 (red) and DAPI (blue); CD3 (green), PDL-1 (red) and DAPI 
(blue); CD68 (green), PDL-1 (red) and DAPI (blue); TGF β1 (green), PD-1 (red) and DAPI (blue); PCNA (green), α-actin (red) and DAPI (blue); 
scale bar, 100 μm; n = 6. (D) Bar graphs showing CD3 and PD-1 dual-positive cells (*p < 0.0001, t-test); CD68 and PD-1 dual-positive cells 
(*p < 0.0001, t-test), CD3 and PDL-1 dual-positive cells (*p <0.0001, t-test); CD68 and PDL-1 dual-positive cells (*p < 0.0001, t-test), PCNA and 
α-actin dual-positive cells (*p < 0.0001, t-test); n = 6.  
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Figure 4. (A) Water contact angles, *p < 0.0001, mean ± SD, n = 6. (B) 3D optical microscopy images of each sample, n = 6. 

 

 
 

Figure 5. PD-1- and BMS-1-coated patches decrease neointimal thickness after patch venoplasty in rats. (A) Representative 
image of the patch stained with H&E at day 14; first row: a low-power image of H&E staining; second row: a high-power image of H&E 
staining showing the neointima; third row: merged immunofluorescence image of vWF (green) and DAPI (blue) staining showing the 
neointima; scale bar, 100 μm; n = 6. (B) Bar graph showing neointimal thickness; p < 0.0001, one-way ANOVA; *p < 0.0001, Tukey's multiple 
comparisons test. n = 6. (C) Bar graph showing neointimal reendothelialization; p = 0.9746, n = 6. one-way ANOVA.  
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patches compared to the control patches (Figure 6A, 

6B); fewer PDL-1 and CD3 dual-positive cells and 

fewer PDL-1- and CD68-positive cells were found in 

the neointima of the coated patches compared to the 

control group (Figure 6A, 6B). α-actin and PCNA dual-

positive cells were also significantly decreased in the 

coated groups (Figure 6A, 6B).  

 

DISCUSSION 
 

In this study, we showed that PD-1 was expressed in the 

venous neointima in both humans and rats. Blocking 

PD-1 can also decrease macrophages and lymphocytes 

in the neointima and reduced neointimal thickness in a 

rat patch venoplasty model, this is like our previous 

research [11]. Compared to the commonly used drug 

rapamycin [9], these data suggest that PD-1 may be a 

novel treatment target after vein interventions. There is 

novelty in this research compared to our previous 

research [11], we previously showed there were 

difference of the neointima between arterial patch 

angioplasty and venous patch venoplasty in rat, there 

was a thicker venous neointima compared to the arterial 

neointima; the endothelial cells expressed venous 

markers in the venous system and expressed arterial 

markers in the arterial system [13, 15, 16]. There was 

 

 

 
Figure 6. PD-1- and BMS-1-coated patches decrease PD-1 expression after patch venoplasty in rats. (A) Merged 

immunofluorescence images showing CD3 (green), PD-1 (red) and DAPI (blue); CD68 (green), PD-1 (red) and DAPI (blue); CD3 (green), PDL-1 
(red) and DAPI (blue); CD68 (green), PDL-1 (red) and DAPI (blue); TGF β1 (green), PD-1 (red) and DAPI (blue); PCNA (green), α-actin (red) 
and DAPI (blue); scale bar, 100 μm; n = 6. (B) Bar graphs showing CD3 and PD-1 dual-positive cells (p < 0.0001, one-way ANOVA; 
*p < 0.0001), CD68 and PD-1 dual-positive cells (p < 0.0001, one-way ANOVA; *p < 0.0001), CD3 and PDL-1 dual-positive cells (p < 0.0001, 
one-way ANOVA; *p < 0.0001), CD68 and PDL-1 dual-positive cells (p < 0.0001, one-way ANOVA; *p = < 0.0001), PCNA and α-actin dual-
positive cells (p < 0.0001, one-way ANOVA; *p < 0.0001); n = 6. 
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also a difference between arterial neointima and venous 

neointima in human [17], since there are also a large 

number of venous procedures in clinic, so it is 

meaningful to find new method to decrease venous 

neointimal hyperplasia. 

 

Different cells migrate and accumulate after vascular 

interventions, thus making the process of neointimal 

hyperplasia complex; current therapeutic protocols 

include antiplatelet and antithrombotic therapies [18, 

19]. Devices such as rapamycin- and paclitaxel-coated 

balloons and stents have shown promising results [20, 

21], suggesting that smooth muscle proliferation largely 

contributes to neointimal hyperplasia [3, 22]. Although 

these methods showed increased patency rates, none 

showed long-term success [23, 24]. Neointimal 

hyperplasia not only involves smooth muscle cells 

but also includes macrophage and lymphocyte 

accumulation [25, 26]. Previously, we showed that 

lymphocytes and macrophages accumulated in the 

human venous neointima [17]. In this study, we also 

showed a large number of CD3- and CD68-positive 

cells in the neointima in rats, but in the patches in the 

PD-1-treated or BMS-1-treated groups, there were 

very few CD3- and CD68-positive cells (Figure 3, 

Figure 6). Similar to the arterial neointima, CD3- and 

CD68-positive cells may also contribute to venous 

neointimal thickening [17]. TGF-β1 plays an important 

role in neointimal hyperplasia [27] and is expressed in 

rat aortic patch angioplasty; most of the PD-1-positive 

cells are TGF β1-positive cells, and CD3- and CD68-

positive cells also express PD-1 [11]. In this rat 

venoplasty model, we showed that TGF β-positive 

cells were present in the venous neointima in both 

humans and rats, and CD3- and CD68-positive cells 

also expressed PD-1.   

 

We used HA to modify the surface of the 

decellularized thoracic artery patch, and this method 

was effective in delivering molecules and drugs [28]. 

A smaller WCA leads to a larger contact area 

between material surfaces and blood, and more 

nutrients, such as protein, may be adsorbed onto the 

material surfaces, which is conducive to the adhesion, 

spreading, and proliferation of tissue repair-related 

cells [29]. Therefore, coated substrates are predicted 

to have improved effects on the tissue repair of 

lesions. In the coated patch, the 3D optical 

microscopy images showed uniform morphology and 

roughness distribution. Based on the significant 

changes in surface wettability and morphology, it can 

be concluded that the HA/BMS-1 coating was 

successfully prepared on the substrate [29].  
 

There are some limitations in this research. First, this 

research only showed the neointima of rat IVC patch 

venoplasty model; other models like commonly used 

vein graft, prosthetic graft, balloon injury or stent 

implantation models need to be explored. Second, the 

animal used in this research is rat, other animals like 

mouse or other bigger animals should also be tested; 

since the diameter and velocity of the vessel can 

influence the neointimal hyperplasia. Third, we only 

showed the result of two weeks, longer time of 

observation is needed to see if there were any side 

effects of PD-1 treatment. Fourth, further experiments 

on interposition model should be tested. 

 

In summary, PD-1-positive cells are present in venous 

neointima in both humans and rats, and the inhibition of 

PD-1 can decrease venous neointimal thickening. These 

data suggest that the inhibition of the PD-1 pathway 

may be a novel therapeutic strategy after vein 

interventions.  
 

MATERIALS AND METHODS 
 

Human samples  

 

Human samples were obtained as described previously 

[17]. Briefly, a trauma patient required popliteal artery 

and vein reconstruction with a spiral saphenous vein 

graft (SVG) in the popliteal vein, amputation was 

performed on day 18 after vascular reconstruction 

because of the patient’s serious injuries, and all protocols 

involving human biospecimens complied with all 

relevant ethical regulations. Tissues were processed and 

stained as described previously, briefly, the SVG was 

fixed and embedded in paraffin and sectioned (4 μm 

thickness); sections were heated in citric acid buffer (pH 

6.0) for antigen retrieval and then treated with 0.3% 

hydrogen for 30 min, then the sections were incubated 

with PD-1 or TGF β1 antibody; after overnight 

incubation, the sections were incubated with appropriate 

secondary antibodies for 1 hr at room temperature and 

treated with DAB Horseradish Peroxidase Color 

Development Kit (Beyotime, Shanghai, China) to detect 

the reaction products; finally, the sections were 

counterstained with hematoxylin (BASO) [17].  

 

Coating with hyaluronic acid and humanized PD-1 

antibody or BMS-1  

 

All experiments were approved by the Institutional 

Animal Care and Use Committee at Zhengzhou 

University and performed in accordance with the NIH 

guidelines for the care and use of laboratory animals 

(NIH Publication #85-23 Rev. 1985). Decellularized 

and coating procedures were carried out as we 
previously described [11]. Briefly, the thoracic aorta 

(TA) was harvested and incubated in 10 mL of sodium 

dodecyl sulfate buffer (1.8 mM sodium dodecyl 
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sulfate, 1 M NaCl, and 25 mM EDTA in PBS) for 24 

hours, and then rinsed with PBS. The coating 

procedure was also performed as previously described 

[11]. Briefly, the decellularized TA was immersed in 

hyaluronic acid (HA) solution (2 mg/ml. Bloomage 

Biotech, China) with a molecular weight of 100,000 

Da. for 15 min. The HA solution was activated in 

advance in a water-soluble carbodiimide solution and 

incubated for 6 h at 37°C, and then the HA-coated 

samples were immersed in humanized PD-1 antibody 

(4 mg/ml, SHR-1210, Hengrui Medicine, Jiangsu, 

China) preactivated in water-soluble carbodiimide 

solution. HA/PD-1 were successfully coated onto the 

samples. BMS-1 (1 mg/ml, HY-19991, Med Chem 

Express) was coated in a similar fashion [11]. The 

wettability change in each sample surface was 

measured by determining the WCA (DSA 100, Krüss, 

GmbH, Germany) [30]. The morphology and 

roughness of each sample were observed by 3D optical 

microscopy (NPFLEX, Bruker, Madison, WI, USA) 

[31], and the different colors distributed on the 

surfaces represent different roughness levels and 

morphologies. 

 

Rat IVC patch venoplasty model  

 

A rat IVC venoplasty model was used as previously 

described [9, 13]. Briefly, the rat IVC was exposed, and 

a 3-mm venotomy was made, the control patch and 

coated patch (4 mm × 2 mm) were sewn to the IVC 

using running 11-0 nylon sutures; the clamps were 

removed and the abdomen was then closed. The rats 

were injected with humanized PD-1 antibody (4 mg/kg; 

4 mg/100 μL) in the PD-1 injection group. The patches 

were harvested for analysis on day 14. Neointimal and 

adventitial thickness were the mean of measurements 

from the surface edge to the edge of the patch in three 

independent areas.   

 

Tissue analysis  

 

The rats were anesthetized, and tissues were fixed by 

transcardial perfusion of PBS followed by 10% 

formalin. The samples were fixed and then embedded in 

paraffin and sectioned (4-μm thickness). The tissue 

sections were deparaffinized and stained with 

hematoxylin and eosin (H&E; Baso, Zhuhai, China) 

according to the manufacturer’s recommendations. 

 

Immunohistochemistry (IHC) and immunofluorescence 

(IF) analysis  

 

The sections were heated in a citric acid buffer (pH 6.0, 
Beyotime, Shanghai, China) at 100°C for 10 min for 

antigen retrieval. The sections were then treated with 

0.3% hydrogen peroxide for 30 min in the IHC staining. 

The sections were then incubated overnight at 4°C with 

primary antibodies (Table 1). In the IHC staining, the 

sections were incubated with appropriate secondary 

antibodies (Table 1) for 1 hour at room temperature and 

then treated with a 3,3N-diaminobenzidine tetrahydro-

chloride (DAB) horseradish peroxidase color 

development kit (Beyotime, Shanghai, China) to detect 

the reaction products. Finally, the sections were 

counterstained with hematoxylin (Baso, Zhuhai, China). 

In the IF staining, the sections were incubated overnight 

at 4°C with primary antibodies (Table 1) diluted in 

dilution buffer (Beyotime, Shanghai, China). The 

sections were incubated with secondary antibodies 

(Table 1) for 1 hour at room temperature, after which 

the sections were stained with the fluorescent dye 4,6-

diamidino-2-phenylindole (DAPI, Solarbio, Beijing, 

China) to mark cellular nuclei. Positive cell numbers 

were counted and blindly reviewed by three 

professional pathologists. Reendothelialization was 

determined as the length of CD31-positive cells divided 

by the length of the neointima. Positive cells were 

directly counted in 3 high-power fields in each sample, 

and the mean numbers of cells were then compared. 

 

Western blotting  

 

The patches were carefully harvested and snap-frozen 

in liquid nitrogen as we previously described [9, 16]. 

The samples were crushed and mixed with buffer 

containing protease inhibitors (Roche, Complete Mini 

12108700) before sonication (5 sec) and centrifugation 

(135,000 rpm, 15 min). Equal amounts of protein from 

each experimental group were loaded for SDS-PAGE, 

followed by incubation with primary antibodies (Table 

1) and secondary antibodies (Table 1), and the signals 

were detected using the electrochemiluminescence 

(ECL) detection reagent. The density of the blots was 

measured by Image J software (NIH).  

 

Statistical analysis  

 

The data are expressed as the mean ± SEM. Statistical 

significance was determined by ANOVA and t-tests. 

P-values less than 0.05 were considered significant. The 

data were analyzed using Prism 6.0 software (GraphPad 

Software; La Jolla, CA, USA).  

 

Ethical approval 

 

All applicable international, national, and/or institutional 

guidelines for the care and use of animals were followed. 

 

Consent for publication  
 

Not applicable. All authors agree to publication, and 

there are no permissions needed.  
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Table 1. Antibodies used in this experiment. 

Antibody Vendor Lot number Concentration 

Primary antibody    

α-actin abcam Ab5694 IF:1:200 

β-actin ABclonal AC026 WB:1:1000 

CD3 Santa Cruz SC-20047 IF:1:50 

CD68 abcam Ab31360 IF:1:100 

PCNA abcam Ab29 IF:1:100 

PD-1 ABclonal A11973 IF,IHC:1:50 WB:1:500 

PD-L1 ABclonal A11273 IF:1:50 

TGF β1 Santa Cruz SC-130348 WB:1:100 IF:1:50 

Secondary antibody    

Goat anti rabbit bioworld BS12478 1:100 

Goat anti mouse bioworld BS13278 1:100 

488 Goat anti mouse ABclonal AS073 1:200 

CY3 Goat anti rabbit ABclonal AS007 1:200 

488 Donkey anti rabbit ABclonal AS035 1:200 

Rhodamine Donkey anti goat ABclonal AS069 1:200 

488 Goat anti rabbit ABclonal AS073 1:200 

 

Abbreviations 
 

BMS-1: PD-1 inhibitor-1; CD: Cluster of differentiation; 

DAB: 3,3N-Diaminobenzidine Tertrahydrochloride; 

DAPI: 4′,6-diamidino-2-phenylindole; H&E: Hemato-

xylin and Eosin; HRP: Horseradish Peroxidase; HA: 

Hyaluronic Acid; IP: Intraperitoneal; IVC: Inferior Vena 

Cava; PD-1: Programmed Death-1; PCNA: Proliferating 

Cell Nuclear Antigen; PBS: Phosphate-Buffered Saline; 

PD-L1: Programmed Cell Death 1 Ligand 1; SD: 

Sprague Dawley; SDS-PAGE: Sodium Dodecyl Sulfate-

Polyacrylamide Gelelectrophoresis; TGF: Transforming 

Growth Factor; TA: Thoracic Aorta; WCA: Water 

Contact Angle; WB: Western Blot. 
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