
 

www.aging-us.com 16713 AGING 

INTRODUCTION 
 

Endometrial cancer (EC) is the leading gynecologic 

tumor in developed countries and remains the second 

most frequently occurring tumor in developing 

countries. With the decline in birth rate and the growing 

epidemic of obesity, its incidence rate has increased 

significantly. It was reported that there were an 

estimated 382,000 new cases and 89,900 deaths 

worldwide in 2018 [1]. Although surgical treatment 

provides early-stage EC patients with a good prognosis, 

the 5-year OS of relapsed or metastatic EC patients  

is decreased dramatically [2]. Therefore, careful 

prognostic evaluation is urgently needed. 

Since iron has a unique role and function in the female 

reproductive system, it is not surprising that iron 

disorders have been noted in many gynecological 

diseases [3]. It was reported that iron-mediated cell 

death (ferroptosis) was closely related to several 

endometrial diseases, such as endometriosis [3], 

repeated implantation failure [4], and endometrial 

hyperplasia [5], and it can be used as a therapeutic 

target for these diseases [5–7]. Ferroptosis is a novel 

form of programmed cell death induced by the excess 

accumulation of iron-dependent lipid peroxidation 

products [8]. Studies have revealed that ferroptosis is 

related to the growth and development of EC [9, 10] 

and various other cancers, such as pancreatic cancer 
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ABSTRACT 
 

Ferroptosis, a form of programmed cell death induced by excess iron-dependent lipid peroxidation product 
accumulation, plays a critical role in cancer. However, there are few reports about ferroptosis in endometrial 
cancer (EC). This article explores the relationship between ferroptosis-related gene (FRG) expression and 
prognosis in EC patients. One hundred thirty-five FRGs were obtained by mining the literature, retrieving 
GeneCards and analyzing 552 malignant uterine corpus endometrial carcinoma (UCEC) samples, which were 
randomly assigned to training and testing groups (1:1 ratio), and 23 normal samples from The Cancer Genome 
Atlas (TCGA). We established a signature using eight screened FRGs (MDM2, GPX4, PRKAA2, PRNP, SLC11A2, 
ATP5MC3, PHKG2 and ACO1) related to overall survival using LASSO regression analysis. The samples were 
divided into low- and high-risk subgroups according to the median risk score. Kaplan-Meier survival curves 
showed that the low-risk group had better OS. ROC curves showed that this signature performed well in 
predicting OS (1-, 2-, 3-, and 5-year AUCs of 0.676, 0.775, 0.797, and 0.826, respectively). We systematically 
analyzed the immune infiltrating profile in UCEC samples from TCGA. Overall, our study identified a novel 
prognostic signature of 8 FRGs that can potentially predict the prognosis of EC. 
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[11], hepatocellular carcinoma [12], gastric cancer [13, 

14], colorectal cancer [15, 16], breast cancer [17, 18], 

lung cancer [19], ovarian cancer [20], clear cell renal 

cell carcinoma [21, 22], and head and neck cancer [23]. 

However, the role of ferroptosis in EC remains unclear; 

thus, it is imperative to explore the relationship between 

EC and ferroptosis. 

 

To explore the relationship between ferroptosis-related 

genes (FRGs) and the prognostic value of ferroptosis in 

EC, we collected 135 FRGs, downloaded 552 UCEC 

samples from The Cancer Genome Atlas (TCGA) and 

constructed a prognostic signature containing eight 

FRGs. The results showed that FRGs may play a critical 

role in EC. 

 

RESULTS 
 

Identification of candidate FRGs 

 

We obtained 87 differentially expressed ferroptosis-

related genes (DE-FRGs) (false discovery rate (FDR) < 

0.05) through the Wilcoxon test and the “limma” R 

package between 23 normal samples and 276 training 

samples. Then, we extracted 12 prognostic FRGs 

through univariate Cox analysis implemented by the 

“survival” R package (P < 0.05) (Supplementary Figure 

1). Intersecting the 87 DE-FRGs and the 12 prognostic 

FRGs resulted in eight prognostic FRGs, namely, 

MDM2, GPX4, PRKAA2, PRNP, SLC11A2, ATP5MC3, 

PHKG2 and ACO1. From the results of univariate Cox 

regression analysis, we found that MDM2, GPX4, 

SLC11A2 and PHKG2 are favorable genes; that is, those 

with high expression levels of these genes had a good 

prognosis. PRKAA2, PRNP, ATP5MC3 and ACO1 were 

unfavorable genes (Figure 1A). From the heatmap in 

Figure 1B and the mean expression of the eight FRGs in 

Table 1, we could see that the eight FRGs were 

abnormally expressed in EC samples compared with 

normal samples. The expression levels of GPX4, 

ATP5MC3, SLC11A2, PHKG2 and MDM2 were 

upregulated in the EC group, while the expression 

levels of PRNP, ACO1 and PRKAA2 were higher in the 

normal group. 

 

Construction and validation of a prognostic FRG 

signature 

 

Then, these eight FRGs were input into the LASSO 

regression model for feature selection. Under penalizing 

conditions (alpha = 1), 8 FRG scores with nonzero 

coefficients were selected to formulate the risk score: 

Risk score = (–0.34216 × MDM2 expression) + (–

0.08952 × GPX4 expression) + (0.55497 × PRKAA2 

expression) + (0.08230 x PRNP expression) + (–

0.46253 × SLC11A2 expression) + (0.41109 × 

ATP5MC3 expression) + (–0.50883 × PHKG2 

expression) + (0.30930 × ACO1 expression) (Figure 

1C, 1D). According to the median risk score of the 

training group, the samples were divided into low- and 

high-risk groups (Figure 1E–1H). By principal 

component analysis (PCA), we also demonstrated that 

EC samples in different risk groups were distributed in 

two directions as a whole (Figure 2A, 2B). The Kaplan-

Meier survival curves of the training group showed that 

the predicted survival time of the low-risk group was 

obviously longer than that of the high-risk group, P < 

0.001 (Figure 2C, 2D). Time-dependent receiver 

operating characteristic (ROC) curves of the EC 

samples showed that the 1-year area under the curve 

(AUC) was 0.676, the 2-year AUC was 0.775, the 3-

year AUC was 0.797, and the 5-year AUC was 0.826 in 

the training group, and the 1-year AUC was 0.692, the 

2-year AUC was 0.704, the 3-year AUC was 0.670, and 

the 5-year AUC was 0.690 in the testing group, which 

indicated that the performance of the 8-FRG signature 

was very stable (Figure 2E, 2F). 

 

The above analysis showed that this signature 

performed well. Then, we wanted to determine whether 

the signature was an independent prognostic factor, so 

we performed univariate and multivariate Cox 

regression analyses, which showed that the signature 

was indeed an independent prognostic factor (Figure 

3A–3D). 

 

Functional annotation 

 

To observe the expression specificity of these eight 

FRGs in different tissues of the human body, we 

searched the Human Protein Atlas (HPA) database. We 

found that PHKG2 and GPX4 were specifically highly 

expressed in germ cells; ATP5MC3 was specifically 

highly expressed in distal tubular cells, proximal tubular 

cells, Hofbauer cells, extravillous trophoblasts, and 

cytotrophoblasts; PRNP was highly expressed in basal 

keratinocytes; ACO1 was highly expressed in 

hepatocytes and proximal tubular cells; PRKAA2  

was highly expressed in cardiomyocytes and rod 

photoreceptor cells; and MDM2 and SLC11A2 had low 

cell-type specificity (Supplementary Figure 2A–2J). 

Then, we explored the relationships among the eight 

FRGs through Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING) and Pearson 

correlation analysis. The STRING results showed that 

SLC11A2 was related to ACO1, while the others were 

independent of each other (Figure 4A). The correlation 

network of these 8 FRGs showed that there was a 

positive coexpression correlation among PRKAA2, 
MDM2 and SLC11A2. ATP5MC3 and ACO1 had a 

similar positive correlation. PRNP and GPX4, PRKAA2 

and GPX4, PHKG2 and SLC11A2, and PHKG2 and 
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Table 1. Mean expression and calculated difference value of eight FRGs. 

Gene ID ConMean EC.Mean logFC P Value FDR Coef 

MDM2 5.209091 7.138429 0.454575 0.024106 0.033182 –0.34216 

GPX4 77.67361 197.0067 1.342749 3.29E-10 2.14E-09 –0.08952 

PRKAA2 2.082538 1.557735 –0.41889 0.000291 0.000576 0.55497 

PRNP 82.51514 18.32231 –2.17106 4.29E-14 1.25E-12 0.08230 

SLC11A2 6.368706 12.21955 0.940119 1.06E-05 2.48E-05 –0.46253 

ATP5MC3 15.5362 25.16703 0.695901 1.40E-07 4.97E-07 0.41109 

PHKG2 2.96983 7.257239 1.28904 1.79E-12 2.09E-11 –0.50883 

ACO1 7.499537 5.685589 –0.39949 0.000159 0.000332 0.30930 

Abbreviations: ConMean: Mean gene expression in normal samples; FDR: false discovery rate; EC.Mean: Mean gene 
expression in endometrial cancer samples; Coef: Coefficients in prognostic models. 
 

 

 
 

 

Figure 1. Construction of the signature. (A) The prognostic analyses for eight ferroptosis-related genes in the training cohort of 

endometrial cancer using a univariate Cox regression model. Hazard ratio >1 represented risk factors for survival and hazard ratio <1 
represented protective factors for survival. (B) Heatmap of eight ferroptosis-related genes in 23 normal samples and 272 endometrial cancer 
samples. (C) Optimal parameter (λ) selected in the LASSO Cox regression model based on the minimum criteria. (D) The LASSO coefficient 
profiles of the eight ferroptosis-related genes signature. (E) The distribution and median value of the risk scores in the training cohort. (F) The 
distribution and median value of the risk scores in the training cohort. (G) Survival statuses of endometrial cancer patients in the training 
cohort. (H) Survival statuses of endometrial cancer patients in the testing cohort. 
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ACO1 showed negative coexpression correlations 

(Figure 4B). 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis of these eight FRGs showed that they were 

mainly related to ferroptosis (Supplementary Figure 

3A). Gene Ontology (GO) analysis of the biological 

processes of these eight FRGs showed that they were 

mainly related to metal ions. Their molecular functions 

were mainly involved in proton transmembrane 

 

 

 
Figure 2. Validation of the signature. (A) PCA plot in the training cohort. (B) PCA plot in the training and testing cohorts. (C) K-M 

survival curve of endometrial cancer patients in the training group. (D) K-M survival curve of endometrial cancer patients in the testing 
group. (E) Time-dependent ROC curve of endometrial cancer patients in the training group. (F) Time-dependent ROC curve of endometrial 
cancer patients in the testing group. 
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transporter activity and monovalent inorganic cation 

transmembrane transporter activity (Supplementary 

Figure 3B). KEGG analysis of the differentially 

expressed genes (DEGs) between the low- and high-risk 

groups showed that they were mainly enriched in 

cancer-associated pathways, such as the PI3K-Akt 

signaling pathway [24], human papillomavirus infection 

[25], breast cancer, proteoglycans in cancer, protein 

digestion and absorption, and hepatitis C [26] (Figure 

4C, 4D). GO analysis of biological processes and 

cellular components showed that the DEGs were mainly 

related to the cilium. Molecular function analysis 

showed that the DEGs were mainly related to tubulin 

binding (Figure 4E, 4F). 

 

Immune annotation 

 

Since ferroptosis is closely related to immunity, we 

explored the differences in immune infiltration 

between the high- and low-risk groups. CIBERSORT 

is a classic method for characterizing the composition 

of 22 immune cells from gene expression profiles in 

complex tissues [24], so we used it to analyze the 

composition of immune cells. Through CIBERSORT 

algorithm analysis, we obtained 243 EC patients (133 

low-risk patients and 110 high-risk patients) whose 

CIBERSORT results showed P < 0.05. The results are 

presented in the form of a heatmap and bar plot 

(Figure 5A, 5B). As seen from the figure, the 

composition of tumor-infiltrating immune cells 

(TIICs) in the high- and low-risk groups remained 

basically the same, mainly composed of M0 

macrophages, CD8 T cells and resting memory CD4 T 

cells, with significant differences in some immune 

cells, such as M2 macrophages. The relatively high 

expression of CD8 T cells may be the reason why 

endometrial carcinoma has a better prognosis than 

highly malignant tumors. It can also be seen that local 

immunity is not strongly suppressed in these EC 

patients. Wilcoxon test analysis showed that plasma 

cells and regulatory T cells (Tregs) showed higher 

infiltration in the low-risk group than in the high-risk 

group. Activated memory CD4 T cells, activated 

dendritic cells (aDCs), M1 macrophages and M2 

macrophages showed higher infiltration in the high-

risk group (Figure 5C). 

 

 
 

Figure 3. Independent prognostic analysis of risk scores and clinical parameters. (A) Univariate Cox regression analysis in the 

training cohort. (B) The multivariate Cox regression analysis in the training cohort. (C) The univariate Cox regression analysis in the testing 
cohort. (D) The multivariate Cox regression analysis in the testing cohort. 
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Considering the high proportion of CD8 T cells in the 

high- and low-risk groups, the particularity of activated 

memory CD4 T cells and the poor display of 

neutrophils and dendritic cells (DCs) in the violin plot, 

we further conducted single-sample gene set enrichment 

analysis (ssGSEA) for these cells and other immune 

functions (Figure 5D, 5E). The ssGSEA results were 

consistent with those of CIBERSORT. CD8 T cells, 

DCs, and plasmacytoid DCs (pDCs) did not differ 

between the high- and low-risk groups. There was also 

no difference in effector memory CD8 T cells (CD8+ 

Tem). However, activated CD8 T cells were more 

significantly enriched in the low-risk group, while 

central memory CD8 T cells were more significantly 

enriched in the high-risk group. Activated CD4 T cells, 

effector memory CD4 T cells (CD4+ Tem), and aDCs 

were also more significantly enriched in the high-risk 

group, while immature dendritic cells (iDCs) and 

neutrophils were more significantly enriched in the low-

risk group. In addition, the ssGSEA results of immune 

function showed that aDCs, NK cells, APC co-

inhibition, MHC class I, parainflammation, and type I 

interferon (IFN) response were more significantly 

enriched in the high-risk group, while HLA, T cell co-

stimulation, and type II IFN response were more 

significantly enriched in the low-risk group. 

 

To better understand the relationship between the eight 

FRGs and TIICs, we searched the TIMER database 

(Figure 6A–6H). We could see from the left-most panel, 

which displays the gene expression levels (log2 TPM) 

against tumor purity, that MDM2 expression was higher 

in the microenvironment in EC (cor = –0.116, P = 

0.048). ACO1, GPX4, PRNP and SLC11A2 may be 

highly expressed in the microenvironment, but the 

difference was not statistically significant (cor < 0, P > 

0.05). ATP5G3, PHKG2 and PRKAA2 may be highly 

expressed in tumor cells, but the difference was not 

statistically significant (cor > 0, P > 0.05). The results 

also showed that ACO1 was positively correlated with 

macrophages, neutrophils, CD8+ T cells and DCs (P < 

0.05) and negatively associated with CD4+ T cells (cor 

= 0.123, P = 0.036). ATP5MC3 was negatively 

correlated with B cells (P = 0.048) and CD4+ T cells 

and positively correlated with neutrophils (P = 0.003). 

GPX4 was negatively associated with neutrophils (P < 

0.001) and positively associated with CD4+ T cells (P = 

0.025). MDM2 was significantly positively associated 

with CD8+ T cells, CD4+ T cells, macrophages and 

DCs (P < 0.05). PHKG2 was negatively correlated with 

CD8+ T cells and DCs (cor < 0, P < 0.05). PRKAA2 

was significantly negatively correlated with B cells, 

CD4+ T cells, and macrophages and positively 

correlated with CD8+ T cells and neutrophils (P < 

0.05). PRNP was significantly positively associated 

with CD8+ T cells, macrophages, neutrophils and DCs 

(P < 0.05). SLC11A2 was negatively correlated with B 

cells and CD4+ T cells. 

 

 
 

Figure 4. (A) PPI of eight ferroptosis-related genes (FRGs). (B) Correlation network of the eight FRGs. (C) KEGG analysis of the differentially 

expressed genes (DEGs) between the low- and high-risk groups in the training cohort. (D) KEGG analysis of the DEGs between the low- and 
high-risk groups in the testing cohort. (E) GO analysis of the DEGs between the low- and high-risk groups in the training cohort. (F) GO 
analysis of the DEGs between the low- and high-risk groups in the testing cohort. 
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Genetic variation 

 

We then summarized the incidence of copy number 

variations (CNV) and somatic mutations of 8 FRGs in 

EC. Among 529 samples, 74 experienced alterations of 8 

FRGs, with frequency 13.99%. The genetic alteration 

rates of MDM2, GPX4, PRKAA2, PRNP, SLC11A2, 

ATP5MC3, PHKG2 and ACO1 were 2%, 1%, 5%, 2%, 

5%, 0%, 2% and 6%, respectively. Most of their genetic 

alteration type was missense mutation (Figure 7A). The 

investigation of CNV alteration frequency showed most 

were focused on the amplification in copy number, while 

GPX4 had a widespread frequency of CNV deletion 

(Figure 7B). The location of CNV alteration of FRGs on 

chromosomes was shown in Figure 7C. To ascertain 

whether the above genetic alterations influenced the 

expression of FRGs in EC patients, we investigated the 

mRNA expression levels of FRGs between normal and 

EC samples, and found that the alterations of CNV was 

not the prominent factors resulting in perturbations on the 

GPX4, ACO1 and PRNP expression. Compared to 

normal endometrial tissues, genes with amplificated 

CNV demonstrated markedly lower expression in EC 

tissues (e.g., ACO1 and PRNP), and vice versa (e.g., 

GPX4) (Figure 7C, 7D). The alterations of CNV could be 

the prominent factors resulting in perturbations on the 

PHKG2, SLC11A2 and ATP5MC3 expression. They 

exhibited higher expression in EC tissues, companied 

with amplificated CNV. The above analyses indicate a 

high degree of heterogeneity in the landscape of genetic 

and expressional alterations in FRGs between normal and 

EC samples. 
 

DISCUSSION 
 

EC is a heterogeneous disease. Although surgery can 

provide favorable survival in early-stage EC patients, 

the treatment measures and prognosis of advanced and  

 

 
 

Figure 5. Tumor-infiltrating immune cells (TIICs) analysis of 243 endometrial cancer (EC) patients (133 low-risk patients and 
110 high-risk patients) (CIBERSORT: P < 0.05). (A, B) Composition of 22 TIICs. (C) Wilcoxon test analysis of 22 TIICs between low- and 

high-risk EC patients. (D, E) Single-sample gene set enrichment analysis (ssGSEA) of specific immune cells and immune functions (*p < 0.05; 
**p < 0.01; ***p < 0.001). 
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Figure 6. (A–H) The TIMER database results of the correlations between the expression of eight ferroptosis-related genes and immune 

infiltrating cells in endometrial cancer patients, showing the purity-corrected partial Spearman’s rho value and statistical significance. 
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metastatic EC remain poor. Since iron plays a critical 

role in the female reproductive system, iron-mediated 

cell death (ferroptosis) aroused our attention. A 

previous study found that cell death pathways, such as 

necroptosis and ferroptosis, are present in low-grade, 

early-stage endometrioid EC [10]. Interestingly, these 

proteomic research [10] results are consistent with our 

research results, namely, macrophage and CD8 T cell 

infiltration was significantly increased in EC tissues. 

Meanwhile, there was heterogeneity in the immune 

response between tumors (Figure 5A, 5B) [25]. In our 

study, TIICs in EC were analyzed by CIBERSORT,  

ssGSEA and the TIMER database. As seen in Figure 

5C, 5D patients in the low-risk group had a better 

immune response to kill tumor cells, namely, more 

plasma cells and activated CD8+ T cells, and more 

enrichment in immune function of T cell costimulation 

and type Ⅱ IFN response. T-cell costimulation is a 

hierarchical process with elements of mutual 

interdependence [26]. It is often essential for the 

development of an effective immune response. Type II 

IFN is mainly produced by activated T cells and NK 

cells. Although the proportion of Tregs in the low-risk 

group was significantly higher than that in the high-risk 

 

 
 

Figure 7. Landscape of genetic and expression variation of eight ferroptosis-related genes (FRGs) in endometrial cancer (EC) 
samples. (A) The alteration frequency of 8 FRGs in 529 EC samples. Each column represented individual patients. The upper bar plot showed 
TMB. The number on the right indicated the alteration frequency in each regulator. The right bar plot showed the proportion of each variant 
type. The stacked bar plot below showed fraction of conversions in each sample. (B) The CNV variation frequency of FRGs in EC samples. The 
height of the column represented the alteration frequency. The deletion frequency, blue dot; The amplification frequency, red dot. (C) The 
location of CNV alteration of FRGs on 23 chromosomes. (D) The expression of 8 FRGs between normal tissues and EC tissues. Tumor, red; 
Normal, blue. The upper and lower ends of the boxes represented interquartile range of values. The lines in the boxes represented median 
value, and black dots showed outliers. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). 
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group, according to the calculation results of 

CIBERSORT, the enrichment score of Tregs in ssGSEA 

was significantly lower than that in the high-risk group. 

Combined with the greater enrichment of APC 

coinhibition of immune function, antitumor immunity 

was suppressed in the high-risk group. Tregs are an 

important subset of CD4+ T cells. Their function is to 

maintain immune homeostasis. Loss of function of 

Tregs can lead to autoimmunity, while excessive 

activity of Tregs can promote tumorigenesis [27]. 

Higher Tregs may be the result of higher para-

inflammation and a type I IFN response. Para-

inflammation is a type of inflammation between 

homeostasis and chronic inflammation. Numerous 

studies have shown that parainflammation is widely 

present in tumors and correlates with poor prognosis 

[28]. The function of pDCs is mainly to secrete type I 

IFN. Although the enrichment score of pDCs showed 

no difference between the high- and low-risk groups, 

the enrichment of type I IFN-responsive genes was 

significantly higher in the high-risk group. Type I IFN 

is mainly activated by viruses and responds to viral 

infection [29, 30]. 

 

T-helper 17 (Th17) cells can mobilize, recruit and 

activate neutrophils. In our results, Th17 cells were 

significantly enriched in the low-risk group. Th17 cells 

have also been suggested to be an independent 

prognostic factor for the survival of squamous cervical 

cancer and are significantly associated with improved 

disease-specific survival [31]. Kryczek et al. reported 

that decreased tumor ascites Th17 cells are a significant 

predictor of increased risk for reduced survival in 

ovarian cancer [32]. Th2 cells secrete IL-4 and IL-13, 

which can promote the differentiation of macrophages 

into M2 macrophages. Macrophages are cells that 

differentiate from mononuclear cells in the blood when 

they pass through the blood vessels. It is a plastic and 

pluripotent cell population, showing obvious functional 

differences under the influence of different micro-

environments. In this article, M2 macrophages had a 

much higher proportion than M1 macrophages. M2 

macrophages were more common in the high-risk group 

than in the low-risk group, which predicted a poorer 

prognosis. M2 is the pro-tumor subtype of 

macrophages. Jin et al. reported that TBBPA (a novel 

organic contaminant widely detected in human 

samples)-driven M2 macrophage polarization is 

responsible for EC deterioration [33]. M2 macrophage–

conditioned medium treated with selective estrogen 

receptor alpha (ERα) agonists induced epithelial-to-

mesenchymal transformation (EMT) in EC cells [34]. 

Although the high-risk group was enriched with more 
APCs (aDCs, activated CD4 T cells, MCH I class, etc.), 

its antigen-presenting function was significantly 

suppressed (higher enrichment of APC coinhibition). 

In summary, our results showed that the low-risk group 

had a greater immune ability to kill tumor cells, while 

the immune response of the high-risk group was more 

strongly suppressed. 

 

Glutathione peroxidase 4 (GPX4) is a key regulator of 

ferroptosis that catalyzes the reduction of hydrogen 

peroxide, organic hydroperoxides, and lipid hydro-

peroxides, thereby protecting cells against oxidative 

damage. It can also repair lipid peroxides as an 

antioxidant enzyme and regulate cytokine signaling [35, 

36]. This is consistent with our findings: GPX4 is a 

favorable prognostic factor in EC patients. PRKAA2 

encodes a catalytic subunit of AMP-activated protein 

kinase (AMPK), an important energy-sensing enzyme 

that monitors cellular energy status. HPA is a favorable 

prognostic marker for renal cancer and an unfavorable 

prognostic marker for liver cancer and EC, which is 

consistent with our results. In addition, high expression 

of PRKAA2 may predict poor prognosis in head and 

neck squamous cell carcinoma [37] and colorectal 

cancer (CRC) [38]. MDM2 is a p53 regulator and 

encodes a nuclear-localized E3 ubiquitin ligase that 

keeps the activity of p53 low under normal conditions 

by targeting p53 for degradation via the 26S proteasome 

[39]. In response to various oncogenic stresses, the 

p19ARF protein product of the INK4a locus binds to 

and disables the E3 ligase activity of MDM2; thus, 

hyperproliferative signals activate p53[40]. The MDM2 

promoter SNP55 (rs2870820) T-allele was also 

associated with a reduced risk of endometrial cancer 

before 50 years of age [41]. However, the single-cell 

specificity of MDM2 was low (Supplementary Figure 

2D). The TIMER results showed that MDM2 expression 

was higher in the microenvironment in EC and strongly 

positively associated with CD8+ T cells (cor = 0.402, P 

= 1.26e-12) (Figure 6A). The RNA blood cell type of 

MDM2 also showed that it was commonly expressed in 

all immune cells (Supplementary Figure 2J). Therefore, 

high levels of MDM2 and CD8+ T cells in the tumor 

microenvironment may be the reason why EC patients 

have a better OS. Zhou et al. reported that mice with 

MDM2-deficient T cells showed accelerated tumor 

progression and decreased survival and function of 

tumor-infiltrating CD8+ T cells [42]. Therefore, it is 

interesting to conduct further research on MDM2-CD8+ 

T cell-p53 in EC. SLC11A2 is the only known 

transmembrane iron transporter involved in cellular iron 

uptake, acting as a proton-dependent iron importer of 

Fe2+ [43]. Its relationship with cancer has not been 

reported. Our study shows that the expression of 

SLC11A2 is upregulated in EC, and it is positively 

coexpressed with MDM2. PHKG2 is a phosphorylase 
kinase. Methylation of PHKG2 may be associated with 

mutation of the BRAF/RAS oncogene in papillary 

thyroid cancer [44]. It is differentially expressed in 
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paired normal tissue samples and EC samples [45] and 

could be inhibited by alectinib, which can strongly 

inhibit RET activity [46]. However, studies about its 

relationship with cancer are rare. The prion protein 

(PRNP) gene encodes a membrane glycosyl-

phosphatidylinositol-anchored glycoprotein (prion 

protein, PrPC) that tends to aggregate into rod-like 

structures. It is involved in the main aspects of cancer 

biology: proliferation, metastasis, and drug resistance 

[47]. PRNP is associated with the prognosis of many 

cancers, such as gastric cancer [48], CRC [49] and 

pancreatic cancer [50]. Therefore, it is not surprising 

that it is a poor prognostic factor for EC. Reports on the 

correlation of ATP5MC3 (also known as P3 and 

ATP5G3) with cancer are lacking. However, according 

to data from the HPA database, it is a potentially 

favorable prognostic marker in renal cancer and CRC 

and a potentially unfavorable prognostic marker in head 

and neck cancer. In our reports, ATP5MC3 was an 

unfavorable prognostic factor for EC. Aconitase 1 

(ACO1) encodes a bifunctional, cytosolic protein that 

functions as an essential enzyme in the TCA cycle and 

interacts with mRNA to control intracellular iron levels. 

When the iron content is high, this protein binds to 4Fe-

4S and acts as an aconitase, catalyzing the conversion of 

citrate to isocitrate. When cellular iron levels are low, 

this protein binds to the iron response element, thereby 

inhibiting the translation of ferritin mRNA and the 

degradation of rapidly degrading transferrin receptor 

mRNA. It may be associated with tumor development 

and progression [51, 52]. 

 

This study also has limitations. First, the data were 

analyzed from the TCGA database. However, the 

sample size was large enough that we could perform 

random grouping to analyze and verify the data. 

Second, due to the scarcity of studies about 

ferroptosis in EC, the prognostic value and 

mechanisms of ferroptosis still need further validation 

in more studies. 

 

In conclusion, we constructed a prognostic FRG 

signature in EC for the first time. We also validated that 

it can be a prognostic indicator independent of other 

clinical factors in EC. Since studies on the relationship 

between ferroptosis and EC are still rare, this study can 

also provide ideas and directions for ferroptosis-related 

studies in EC, which may be favorable for novel 

therapeutic methods. 

 

MATERIALS AND METHODS 
 

Datasets and FRGs 

 

Gene expression quantification RNA-Seq (HTSeq-

FPKM) of transcriptome profiling and clinical data of 

uterine corpus endometrial carcinoma (UCEC) were 

downloaded from The Cancer Genome Atlas (TCGA) 

website (https://portal.gdc.cancer.gov), including 552 

malignant tumor samples and 23 normal samples. A 

total of 552 malignant tumor samples were randomly 

assigned to two groups in a 1:1 ratio. Then, malignant 

tumor samples with incomplete key clinical information 

(age, grade, stage, survival time, survival status) were 

omitted, leaving 272 samples in the training group and 

273 samples in the test group (Supplementary Table 1). 

A total of 103 ferroptosis-related genes (FRGs) were 

retrieved from GeneCards (https://www.genecards. 

org/), and 60 FRGs were retrieved from previous 

literature [20]. Intersecting the two sets of genes 

resulted in 135 FRGs (Supplementary Table 2). Finally, 

the expression of the eight genes in single cells was also 

analyzed in the Human Protein Atlas (HPA) database 

(https://www.proteinatlas.org). 

 

Construction of the FRG signature 

 

First, we screened the differentially expressed FRGs 

(DE-FRGs) between normal samples and EC patients in 

the training set by using the “limma” R package with P 

< 0.05 and false discovery rate (FDR) < 0.05. Then, we 

identified twelve potential prognostic FRGs in the 

training set through univariate Cox analysis of OS by 

using the coxph function in the “survival” R package 

with P < 0.05 (Supplementary Figure 4). Intersecting 

the two sets of genes resulted in eight FRGs 

(Supplementary Figure 1). Second, we put these eight 

prognostic FRGs into the least absolute shrinkage and 

selection operator (LASSO) regression model. The 

LASSO analysis with cross-validation was conducted 

by the “glmnet” R package [53, 54]. 

 

Verification of the FRG signature 

 

The patients were classified into low- and high-risk 

subgroups based on the median risk score of the training 

group. We performed survival analysis to compare the 

OS between the high- and low-risk groups and showed 

results via Kaplan-Meier curves. Multivariate Cox 

analysis, receiver operating characteristic (ROC) 

analysis, and principal component analysis (PCA) were 

also performed to test the specificity and sensitivity of 

the survival prediction. 

 

Functional annotation analysis 

 

After verifying that this 8-FRG signature performed 

well, we obtained the differentially expressed genes 

(DEGs) between the low- and high-risk groups of EC 
patients in the training and testing groups by the 

“limma” R package and performed Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

https://portal.gdc.cancer.gov/
https://www.genecards.org/
https://www.genecards.org/
https://www.proteinatlas.org/
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(KEGG) enrichment analyses of the DEGs by using the 

“clusterProfiler” R package. 

 

Immune cells and immune-related functional 

annotation 

 

We analyzed the proportion of 22 tumor-infiltrating 

immune cells (TIICs) in all malignant tumor samples 

via the CIBERSORT algorithm [55, 56] and compared 

the difference in infiltrating scores of 13 immune-

related pathways and 16 immune cells between the low- 

and high-risk groups by using single-sample gene set 

enrichment analysis (ssGSEA) in the "GSVA" R 

package [57]. Finally, we also explored the correlation 

of the eight prognostic FRGs with immune cells in EC 

patients through the TIMER database [58, 59]. In 

addition, simple nucleotide variation dataset (workflow 

type: VarScan2 Variant Aggregation and Masking) of 

UCEC were downloaded from TCGA and analyzed by 

the “maftools” R package. Copy number (gene-level) of 

TCGA-UCEC were downloaded from UCSC Xena 

(http://xena.ucsc.edu/) and analyzed by the “RCircos” R 

package. 

 

Statistical analysis 

 

In this study, all statistical analyses were performed 

using R software (version 3.6.3). Continuous variables 

were compared using the Wilcoxon test. Survival 

analyses were conducted using the Kaplan–Meier 

method with the log-rank test by the “survival” R 

package. Feature selection was conducted with 

univariate and multivariate Cox regression. Time-

dependent ROC curve analysis and LASSO Cox 

regression analysis with cross-validation were 

performed using R packages. Unless otherwise stated, 

statistical significance was defined at p values < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 

 
 

Supplementary Figure 1. Venn diagram of 87 differentially expressed ferroptosis-related genes (DE-FRGs) between normal 
samples and EC patient samples and 12 prognostic FRGs. 
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Supplementary Figure 2. (A–I) RNA single-cell analysis of 8 FRGs in normal human tissue cells. (J) MDM2 RNA single-cell analysis in blood 

cells. 
 

 
 

Supplementary Figure 3. (A) KEGG analysis of the eight ferroptosis-related genes (FRGs). (B) GO analysis of the eight FRGs. 
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Supplementary Figure 4. Results of the univariate Cox analysis of the twelve prognostic ferroptosis-related genes in EC 
patients. 
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Supplementary Tables 
 

Supplementary Table 1. Clinical characteristics of the patients included in the study. 

Characteristics Training Cohort  Validation Cohort  

AGE ≤65 161 161 

>65 111 112 

GRADE <3 107 100 

≥3 165 173 

STAGE ≤2 194 185 

>2 78 88 

DIABETES NO 140 133 

YES 47 54 

NA 85 86 

HYPERTENSION NO 91 84 

YES 109 116 

NA 72 73 

RACE Asian 9 11 

black 53 56 

white 184 187 

other 8 4 

NA 18 15 

Total sample num. 272 273 

 

Supplementary Table 2. List of ferroptosis-related genes. 

 Total Elements 

GCards.txt text_mining.txt 28 

MT1G CD44 GPX4 STEAP3 HSPB1 GCLM TP53 FTH1 HMOX1 
ALOX12 SLC7A11 TFRC GOT1 CARS1 PEBP1 ACSL3 NCOA4 
ALOX15 CISD1 GSS GCLC ACSL4 AIFM2 SAT1 NFS1 LPCAT3 
FANCD2 NFE2L2 

GCards.txt 75 

FH HSPA5 BECN1 MUC1 EPAS1 SLC39A8 PRKAA2 VDAC1 VDAC3 
G3BP1 SLC40A1 MAP1LC3A ACSL5 OTUB1 SLC11A2 TF FTMT 
CDKN2A PCBP1 MAP1LC3B2 MIR9-1 RIPK1 MIR7-1 MYC ACSL1 
HELLS LAMP2 ALOX15B NF2 PROM2 CASP8 SESN2 PRDX6 NGB 
CYBB MAP1LC3B ACSL6 SLC39A14 ELAVL1 ATG5 SLC3A2 
MAP1LC3C MIR137 EGLN1 TIGAR MAP3K5 CP ATF4 ARNTL ATG7 
MAPK1 HILPDA ANO6 PRNP SOCS1 LINC00472 CA9 PRKAA1 YAP1 
RB1 CFTR MDM2 AURKA VDAC2 SAT2 MIF BAP1 NEDD4 PCBP2 
ITGA6 GUCY1A1 HMGB1 FTL LINC00336 PRC1 

text_mining.txt 32 

HMGCR AKR1C3 CRYAB NOX1 G6PD ZEB1 AKR1C1 KEAP1 ALOX5 
EMC2 CS PGD PHKG2 ACACA HSBP1 SLC1A5 AKR1C2 RPL8 FDFT1 
FADS2 PTGS2 SQLE GLS2 CBS ABCC1 CHAC1 DPP4 NQO1 IREB2 
ACO1 ATP5MC3 ACSF2 

 

 


