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ABSTRACT 
 

Genetic background has been considered one of the important contributors to the rate of cognitive decline 
among patients with Alzheimer’s disease (AD). We conducted a 4-year longitudinal follow-up study, 
recruited 255 AD and 44 mild cognitive impairment (MCI) patients, and used a data-driven trajectory 
analysis to examine the influence of selected AD risk genes on the age for and the rate of cognitive decline 
in Han Chinese population. Genotyping of selected single-nucleotide polymorphisms in the APOE, ABCA7, 
SORL1, BIN1, GAB2, and CD33 genes was conducted, and a Bayesian hierarchical model was fitted to analyze 
the trajectories of cognitive decline among different genotypes. After adjusting for sex and education years, 
the APOE ε4 allele was associated with an earlier mean change of −2.39 years in the age at midpoint of 
cognitive decline, the G allele in ABCA7 rs3764650 was associated with an earlier mean change of −1.75 
years, and the T allele in SORL1 rs3737529 was associated with a later mean change of 2.6 years. 
Additionally, the rate of cognitive decline was associated with the APOE ε4 allele and SORL1 rs3737529. In 
summary, APOE and SORL1 might be the most important genetic factors related to cognitive decline in Han 
Chinese population. 
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INTRODUCTION 
 

Alzheimer’s disease (AD) is a neurodegenerative 

disease characterized by progressive cognitive decline 

and functional impairment. The rate of cognitive decline 

varies substantially among different AD patients. There 

are many factors that contribute to the rate of cognitive 

decline, such as age of disease onset, gender, education, 

extrapyramidal signs, behavioral disorders, vascular risk 

factors and the most known AD susceptibility genetic 

locus, apolipoprotein E (APOE) genotypes [1, 2]. 

Among these factors, genetic background is one of the 

most important contributors to the rate of cognitive 

decline. The results from previous studies have shown 

that having at least one APOE ε4 allele was associated 

with faster cognitive decline in cognitively healthy 

older Taiwanese adults [3], and PDE7A and MTFR1 

genes were associated with the rate of age-related 

cognitive decline [4]. Moreover, BDNF Val66Met was 

associated with faster cognitive decline and greater 

hippocampal atrophy in preclinical AD patients [5]. 

However, some evidence has revealed that these risk 

genes may act differently in different populations. For 

example, in a meta-analysis, AD was significantly 

associated with variants in ABCA7 in African American 

participants and with other genes that have been 

associated with AD in individuals of European ancestry 

[6]. In addition, the ABCA7 rs3764650 GG genotype 

was reported to increase the risk of AD in Caucasians 

and African Americans, but a protective effect was 

found in the Han Chinese population in our prior study 

[7]. In a study validating genome-wide association 

studies (GWAS)-identified risk loci based on 

Caucasians populations showed that not all of these risk 

loci were linked to the risk of AD in Han Chinese 

populations [8]. Different results regarding APOE was 

also found among white, black or Hispanic respondents 

[9]. If the association between genotypes and AD risk 

varies by race/ethnicity, then this may be the case for 

the rate of cognitive decline as well. Hence, the effect of 

genetic factors on the rate of cognitive decline should 

be addressed in different ethnic groups [10]. 

 

Recent GWAS have identified more than 20 AD 

susceptibility loci, including CR1, CLU, PICALM, 

BIN1, CD2AP, CD33, EPHA1, MS4A6A/MS4A4E, 

SORL1, GAB2, ABCA7, etc [11–18]. However, most of 

these studies have conducted in Caucasian population 

and data about the genetics of AD from other 

populations has been relatively limited [10]. In Han 

Chinese or Asian population, common variants in 

GCH1, KCNJ15 [19], and rare missense variant in the 

C7 genes [20] were also identified by whole-genome 

sequencing and whole-exome sequencing studies. In our 

previous studies, we identified ABCA7 rs3764650 and 

SORL1 rs1784933 as being associated with the risk of 

AD in Han Chinese individuals in Taiwan [7, 21], the 

association between BIN1 rs744373 and AD was 

reported in Asian populations [8], but the effect of these 

AD risk genes on the rate of cognitive decline is not 

clear. In this study, we used a data-driven trajectory 

analysis to examine the influence of selected AD risk 

genes on the age for and the rate of cognitive decline in 

the Han Chinese population. 

 

RESULTS 
 

A total of 299 patients—255 with AD and 44 with 

MCI—were included in this study. The baseline 

demographic and genetic data of the study participants 

are shown in Table 1. At baseline, the mean age of the 

study participants at study entry was 78.4 ± 7.0 years, 

51.8% of the participants were women, and the mean 

MMSE score was 20.0 ± 4.9. The genotypic 

distributions of all SNPs were consistent with Hardy-

Weinberg equilibrium (all p-values > 0.05). 

 

After adjusting for sex and education years, the effects 

of all AD genetic markers on the parameters M and R of 

the trajectories of cognitive function decline based on 

the MMSE are shown in Table 2. Regarding the age at 

the midpoint of the cognitive function decline, one copy 

of the ε4 allele in the APOE gene was significantly 

associated with an earlier mean change of −2.39 years 

(95% CI: −4.12, −0.64); one copy of the G allele in 

ABCA7 rs3764650 was significantly associated with an 

earlier mean change of −1.75 years (95% CI: −3.09, 

−0.37); one copy of the T allele in SORL1 rs3737529 

was significantly associated with a later mean change of 

2.60 years (95% CI: 0.38, 4.88). Moreover, the rate of 

cognitive decline was associated with the APOE gene 

(posterior mean = 0.96, 95% CI: 0.39, 1.57) and SORL1 

rs3737529 (posterior mean = 0.58, 95% CI: 0.05, 1.14). 

No statistically significant associations were observed 

between either the age at midpoint or the rate of 

cognitive decline and the genetic markers of SORL1 

rs1784933, SORL1 rs2298813, BIN1 rs744373, GAB2 

rs2373115, and CD33 rs3865444. 

 

To assess which variable provided the best fit to the 

longitudinal data from the MMSE, we then 

implemented a Bayesian variable selection using the 

Gibbs variable selection method. The results of model 

selection among the eight genetic markers are 

summarized in Table 3. Sex and education variables 

were included in each model. The results revealed that, 

compared with other models, the APOE gene and 

SORL1 rs3737529 in model 1 had the best fit to the data 

based on posterior model probabilities. We again 

evaluated these two genetic markers in the Bayesian 

hierarchical model. Significant associations and 

estimated directions were consistent with the full model
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Table 1. Baseline demographics and genetic characteristics of the study participants. 

Variables Total patients (n = 299) AD patients (n = 255) MCI patients (n = 44) 

Age (years) 78.4 ± 7.0 79.3 ± 6.5 73.3 ± 7.7 

Sex (women) 155 (51.8) 134 (52.6) 21 (47.7) 

Education (years) 9.5 ± 4.6 9.2 ± 4.6 11.5 ± 4.3 

MMSE (scores) 20.0 ± 4.9 19.2 ± 4.7 24.7 ± 3.0 

APOE genotypes    

  ε2ε2/ε2ε3/ε3ε3 195 (65.2) 166 (65.1) 29 (65.9) 

   ε2ε4/ε3ε4 93 (31.1) 81 (31.8) 12 (27.3) 

  ε4ε4 11 (3.7) 8 (3.1) 3 (6.8) 

ABCA7 rs3764650    

  TT 135 (45.2) 111 (43.5) 24 (54.6) 

  TG 128 (42.8) 113 (44.3) 15 (34.1) 

  GG 36 (12.0) 31 (12.2) 5 (11.4) 

SORL1 rs3737529    

  CC 183 (61.2) 150 (58.8) 33 (75.0) 

  CT 99 (33.1) 90 (35.3) 9 (20.5) 

  TT 17 (5.7) 15 (5.9) 2 (4.6) 

SORL1 rs1784933    

  AA 139 (46.5) 114 (44.7) 25 (56.8) 

  AG 134 (44.8) 118 (46.3) 16 (36.4) 

  GG 26 (8.7) 23 (9.0) 3 (6.8) 

SORL1 rs2298813    

  GG 251 (84.0) 215 (84.3) 36 (81.8) 

  GA 45 (15.1) 38 (14.9) 7 (15.9) 

  AA 3 (1.0) 2 (0.8) 1 (2.3) 

BIN1 rs744373    

  AA 104 (34.8) 90 (35.3) 14 (31.8) 

  AG 142 (47.5) 117 (45.9) 25 (56.8) 

  GG 53 (17.7) 48 (18.8) 5 (11.4) 

GAB2 rs2373115    

  CC 139 (46.5) 125 (49.0) 14 (31.8) 

  CA 120 (40.1) 97 (38.0) 23 (52.3) 

  AA 40 (13.4) 33 (12.9) 7 (15.9) 

CD33 rs3865444    

  CC 203 (67.9) 173 (67.8) 30 (68.2) 

  CA 82 (27.4) 71 (27.8) 11 (25.0) 

  AA 14 (4.7) 11 (4.3) 3 (6.8) 

The data are expressed as the mean ± SD or n (%). 
Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; APOE, 
apolipoprotein E. 

that included all genetic markers (Table 4). Moreover, to 

check the fitness of a Bayesian model, we then calculated 

a posterior predictive p-value. The value was 0.937, 

which indicated that the fitted model was adequate to 

describe longitudinal data from the MMSE. 
 

Figure 1 depicts the mean trajectories of cognitive 

function based on the MMSE for individuals of the same 

sex and education level carrying specific genotypes in the 

APOE gene and SORL1 rs3737529. Figure 1 shows that a 

more rapid decline in cognitive function was observed for 

individuals possessing two copies of the ε4 allele in the 

APOE gene and the CC genotype in SORL1 rs3737529. In 
other words, people with the ε4 allele and C allele tended 

to have earlier cognitive function decline than those with 

the non-ε4 allele and the T allele.  
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Table 2. Effects of genetic markers on the age at the midpoint of cognitive function decline (M) and the rate of 
cognitive function decline (R) parameters based on the MMSE after adjusting for sex and education years (n = 299). 

Covariates Minor allele 
Regression coefficients on M  Regression coefficients on R 

Posterior mean 95% CI  Posterior mean 95% CI 

Sex (female vs. male) — −1.11 (−3.05, 0.85)  0.62 (0.16, 1.14)* 

Education years — 0.37 (0.15, 0.58)*  −0.05 (−0.09, 0.001) 

APOE ε4 −2.39 (−4.12, −0.64)*  0.96 (0.39, 1.57)* 

ABCA7 rs3764650 G −1.75 (−3.09, −0.37)*  −0.20 (−0.55, 0.14) 

SORL1 rs3737529 T 2.60 (0.38, 4.88)*  0.58 (0.05, 1.14)* 

SORL1 rs1784933 G 1.04 (−1.02, 3.03)  0.12 (−0.38, 0.58) 

SORL1 rs2298813 A 0.91 (−1.58, 3.52)  −0.06 (−0.62, 0.55) 

BIN1 rs744373 G −0.46 (−1.74, 0.81)  −0.20 (−0.47, 0.09) 

GAB2 rs2373115 A −0.25 (−1.58, 1.07)  0.10 (−0.25, 0.47) 

CD33 rs3865444 A 1.43 (−0.20, 3.08)  −0.07 (−0.49, 0.39) 

Note: The full sample of 255 AD and 44 MCI patients at baseline were analyzed. 
Abbreviations: MMSE, Mini-Mental State Examination; CI, credible interval. 
*Statistically significant with 95% credible interval. 

Table 3. Model selection among the eight genetic markers after adjusting for sex and education years (n = 299). 

Models Variables in the model Posterior model probabilities 

Model 1 APOE, SORL1 rs3737529 0.8956 

Model 2 APOE, SORL1 rs3737529, SORL1 rs1784933 0.0548 

Model 3 APOE, SORL1 rs3737529, CD33 rs3865444 0.0243 

Model 4 APOE, SORL1 rs3737529, BIN1 rs744373 0.0113 

Model 5 APOE, SORL1 rs3737529, GAB2 rs2373115 0.0062 

Model 6 APOE, SORL1 rs3737529, SORL1 rs2298813 0.0056 

Model 7 APOE, SORL1 rs3737529, SORL1 rs1784933, CD33 rs3865444 0.0023 

Model 8 APOE, SORL1 rs3737529, SORL1 rs1784933, SORL1 rs2298813 0.0001 

Note: The full sample of 255 AD and 44 MCI patients at baseline were analyzed. 

 

Table 4. Effects of APOE and SORL1 rs3737529 on the age at the midpoint of cognitive function decline (M) and 
the rate of cognitive function decline (R) parameters based on the MMSE after Bayesian variable selection  
(n = 299). 

Covariates Minor allele 
Regression coefficients on M  Regression coefficients on R 

Posterior mean 95% CI  Posterior mean 95% CI 

Sex (female vs. male) — −1.05 (−3.00, 0.94)  0.61 (0.12, 1.12)* 

Education years — 0.38 (0.18, 0.59)*  −0.04 (−0.10, 0.01) 

APOE ε4 −2.79 (−4.46, −1.09)*  0.93 (0.44, 1.49)* 

SORL1 rs3737529 T 1.53 (0.02, 3.04)*  0.41 (0.02, 0.87)* 

Note: The full sample of 255 AD and 44 MCI patients at baseline were analyzed. 
Abbreviations: MMSE, Mini-Mental State Examination; CI, credible interval. 
*Statistically significant with 95% credible interval. 

In order to test robustness of our results, we excluded 16 
stable MCI patients, who had not progressed to AD 

during the observation period, from the full sample, and 

used the subset of 283 samples to validate the results 

obtained from the full samples. After adjusting for sex and 

education years, similar results showed that the APOE ε4 
allele was significantly associated with an earlier mean 

change of −2.10 years in the age at midpoint of cognitive 

decline, the G allele in ABCA7 rs3764650 was 

significantly associated with an earlier mean change of 
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−1.74 years, and the T allele in SORL1 rs3737529 was 

significantly associated with a later mean change of 2.65 

years. Moreover, the rate of cognitive decline was 

associated with the APOE ε4 allele and SORL1 rs3737529 

(Supplementary Table 1). Model selection and estimation 

of effects using 283 patients are summarized in 

Supplementary Tables 2, 3. No matter whether the stable 

MCI patients were included in the analyzed sample or not, 

the results shown that APOE gene and SORL1 rs3737529 

were associated with the age at midpoint of cognitive 

function decline and the rate of cognitive function decline. 

 

To validate our results with an independent ADNI 

cohort, we also fitted a Bayesian hierarchical model to 

depict the trajectories of cognitive function decline 

using the ADNI data. The effects of all genetic markers 

on the parameters M and R of the trajectories of 

cognitive function decline based on the MMSE after 

adjusting for sex and education years are shown in 

Supplementary Table 4. The results revealed that only 

the APOE gene was associated with the age at midpoint 

of cognitive function decline. 

 

DISCUSSION 
 

In this study, we demonstrated that the APOE, 

ABCA7, and SORL1 genes were associated with 

cognitive function decline in the Han Chinese 

population. The results revealed that one copy of the 

ε4 allele in the APOE gene and one copy of the G 

allele in ABCA7 rs3764650 were significantly 

associated with earlier midpoints of cognitive decline; 

one copy of the T allele in SORL1 rs3737529 was 

significantly associated with a later midpoint of 

cognitive decline. Additionally, the APOE gene and 

SORL1 rs3737529 were associated with the rate of 

cognitive decline. The T allele in SORL1 rs3737529 

seems to be protective against cognitive decline 

independent of APOE genotype. However, in ADNI 

population, only APOE gene was associated with the 

age at midpoint of cognitive function decline.  

 

One prior study in North America found that CLU and 

CR1 were associated with more rapid cognitive decline 

and that PICALM was associated with an earlier age at 

the midpoint of cognitive decline in patients with AD. 

These associations remained after accounting for the 

effects of APOE and demographic factors [22]. The 

present study provides additional evidence that different 

populations have their own risk genes that may 

influence cognitive decline in AD and MCI patients and 

demonstrates that measuring cognitive trajectories is a 

way to test the genetic associations with both age of and 

rate of cognitive decline. 

 

 
 

Figure 1. Mean trajectories of cognitive function for individuals carrying specific genotypes in the APOE gene and SORL1 
rs3737529 SNPa. AIn the figure legend, ApoE4 (0/1/2) means that individuals are carrying zero, one, or two copies of the ε4 allele in the 

APOE gene; rs3737529 (CC/CT/TT) means that individuals are carrying the CC, CT, or TT genotypes in SORL1 rs3737529. Note: The full sample 
of 255 AD and 44 MCI patients at baseline were analyzed. 
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The relationship between APOE ε4 carriage and the rate 

of cognitive decline in AD patients has been examined 

in several studies. However, their results have been 

inconsistent [23], which might have been due to the 

distinct genetic effects in different populations and 

complex interactions between the APOE gene and other 

genetic and vascular risk factors [2]. Previous studies have 

shown that the effect of the APOE gene on the risk of 

cognitive decline and dementia was modified by other 

genetic factors, including ABCA7 [7], SORL1 [21, 24], 

PICALM [25], CR1 [26], BIN1 [16], and TREM2 [27], 

showing complex gene-gene interactions [28]. Although 

the rate of cognitive decline and the risk of AD are not 

identical, the presence of complex gene-gene interactions 

of the APOE gene in both situations should be considered. 

A previous study using data from the Taiwan 

Longitudinal Study of Aging showed an association 

between the APOE genotype and the rate of cognitive 

decline in a predominantly Han Chinese population [3]. In 

the present study, the APOE gene ε4 allele was 

significantly associated with an earlier midpoint of 

cognitive decline in AD and MCI patients in both the Han 

Chinese population in Taiwan and ADNI population in 

America and associated with a rapid rate of cognitive 

decline in the Han Chinese population. 

 

ABCA7 is an ATP-binding cassette transporter protein 

mainly expressed in microglia and neurons [29, 30]. 

The functions of ABCA7 include lipid metabolism, 

regulation of phagocytosis, and amyloid β (Aβ) 

production and clearance [31]. The minor allele of 

rs3764650 in ABCA7 was associated with increased 

neuritic plaque formation [32] and decreased Aβ levels 

in cerebrospinal fluid [33]. Clinically, the ABCA7 

rs3764650 minor allele was associated with cortical and 

hippocampal atrophy [34] and with a later age at onset 

and shorter disease duration [35]. In accordance with 

these findings in previous studies, our study 

demonstrated that the minor allele of rs3764650 in 

ABCA7 was associated with an earlier midpoint of 

cognitive function decline, which suggested that the 

ABCA7 gene affects the clinical course of AD from the 

preclinical stage to the dementia stage. 

 

SORL1 encodes a multidomain-containing, membrane-

bound receptor involved in endosomal sorting of 

proteins between the trans-Golgi network, endosomes 

and the plasma membrane [36]. In AD, the SORL1 

encoded receptor interacts with the amyloid precursor 

protein (APP) and the Aβ peptide [37], participating in 

APP trafficking and processing and Aβ destruction [38]. 

Previous studies have also shown that two SORL1 

polymorphisms (rs3824968-A allele and rs2282649-T 
allele) were related to decreased cerebrospinal fluid 

(CSF) concentrations of Aβ42 and Aβ40 [39], the 

rs2070045-G allele was associated with increased CSF 

tau and more hippocampal atrophy [40], and SORL1 

rs11218343 was associated with cognitive performance 

[41]. In our previous study, SORL1 rs1784933 and 

rs2298813 were associated with AD and MCI risk in the 

Han Chinese population in Taiwan [21], and in the 

present study, SORL1 rs3737529 was associated with 

the midpoint and the rate of cognitive decline in AD and 

MCI patients in Han Chinese population. These results 

suggest that SORL1 plays many different roles in AD 

pathogenesis that are significantly related to clinical 

manifestations. The associations between ABCA7 as 

well as SORL1 and cognitive function decline were 

found in Han Chinese population, but not in the ADNI 

data. It might also suggest that these risk genes may act 

differently in different populations [6–9]. 

 

There are some limitations in this study. First, no other 

cohort can validate our findings in Taiwan currently. 

Other longitudinal follow-up studies need to be 

conducted to test these results. Second, the diagnoses of 

MCI and AD were made according to the clinical 

criteria without biomarker evidence of Aβ and tau, 

which may have influenced the diagnostic accuracy. 

Third, we used the MMSE to evaluate longitudinal 

cognitive changes, which might underestimate cognitive 

decline. Forth, we only tested a limited number of SNPs 

based on the evidence of significant genetic association 

in some previous studies. Other SNPs may also be 

associated with the trajectory of cognitive decline, and 

the genetic effects might be different in different 

populations. Finally, the sample size of our cohort is 

relatively small compared to the other longitudinal 

cohort (such as ADNI cohort). This may limit the 

generalizability of our findings to general population. 

 

In summary, we used a Bayesian approach to examine the 

genetic effects on the trajectory of cognitive decline in 

AD and MCI patients in the Han Chinese population. The 

carriage of the APOE ε4 genotype and the G allele in 

ABCA7 rs3764650 were significantly associated with an 

earlier midpoint of cognitive decline. In contrast, the T 

allele in SORL1 rs3737529 was significantly associated 

with a later midpoint of cognitive decline. Additionally, 

the APOE gene and SORL1 rs3737529 were associated 

with the rate of cognitive function decline. 

 

MATERIALS AND METHODS 
 

Subjects 

 

Participants were recruited from two teaching hospitals 

in the Biosignature Study of Alzheimer’s Disease 

(BSAD). The BSAD is carried out as a subproject of 
Taiwan Biobank [42] and has been designed as a 

prospective longitudinal follow-up study at 1-year 

intervals since 2012 to identify potential biomarkers  
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for early diagnosis of AD in the Han Chinese 

population. The collected data included patients’ 

neuropsychological test outcomes, blood biomarkers, 

brain magnetic resonance imaging, and related clinical 

characteristics. Overall, 255 AD patients and 44 mild 

cognitive impairment (MCI) patients with at least four 

measurements were selected for modeling trajectories of 

cognitive function decline. For the 44 MCI patients at 

baseline, 28 patients (63.6%) would progress to AD 

during the consecutive follow-up period. An AD 

diagnosis was made during a multidisciplinary 

consensus meeting according to the clinical criteria for 

probable AD described by the National Institute on 

Aging–Alzheimer’s Association [43]. A diagnosis of 

MCI was made according to the revised criteria 

established from the consensus report [44, 45]. The 

cutoff value for the diagnosis of MCI was set at 1.5 

standard deviations below the age-adjusted norm for the 

logical memory test of the Wechsler Memory Scale III 

[46]. Other inclusion criteria included an age at onset 

greater than 60 years and the availability of a caregiver 

who could provide collateral patient history. The 

exclusion criteria were significant neurological diseases 

other than AD that may affect cognition, including 

Parkinson’s disease, vascular cognitive impairment, 

normal pressure hydrocephalus, brain tumor, pro-

gressive supranuclear palsy, seizure disorder, subdural 

hematoma, and multiple sclerosis, a history of 

significant head trauma followed by persistent 

neurologic deficits, or other known significant structural 

brain abnormalities. All patients received a standardized 

evaluation that included a clinical interview, neuro-

psychological assessment, laboratory tests and brain 

magnetic resonance imaging. The institutional review 

boards of each participating hospital approved the 

protocol and informed consent form for this study.  

All participants or their legal representatives signed 

informed consent forms at study participation. 

 

Cognitive test 

 

Global cognition was annually assessed using the Mini-

Mental State Examination (MMSE) [47], which was 

carried out to depict the trajectory of cognitive function 

for each participant. The total scores ranged between 0 

and 30, and lower scores revealed poorer cognitive 

performance. The Clinical Dementia Rating (CDR) [48] 

was administered to determine the severity of dementia. 

Additionally, the 12-item memory test, modified 15-

item Boston Naming Test, category verbal fluency test, 

and forward and backward digit span test were used at 

study entry to assess short-term memory, language, 

executive function, attention and working memory, 
respectively. Longitudinal follow-up was performed in 

AD and MCI patients at one-year intervals with the 

MMSE and the CDR assessment. 

Genotypic data 

 

For each participant, a Gentra Puregene kit (Qiagen, 

Hilden, Germany) was utilized to extract genomic DNA 

from whole blood samples based on standard protocols. 

Previous studies have reported that AD is associated 

with several genes, including APOE, ABCA7 [7, 11, 

49], SORL1 [17, 21, 50, 51], BIN1 [52], GAB2 [18], and 

CD33 [11, 53]. Two single-nucleotide polymorphisms 

(SNPs), rs429358 and rs7412, were selected to 

genotype the ε2, ε3, and ε4 alleles of the APOE gene 

[54]. Seven SNPs were selected and considered to serve 

as genetic markers for these candidate genes on the 

basis of (1) our previous study showing ABCA7 

rs3764650, SORL1 rs1784933, and SORL1 rs2298813 

associated with the risk of AD or MCI in Han Chinese 

individuals in Taiwan [7, 21] (2) SORL1 rs3737529 

being one of the most significant SNPs in Asian 

population [17] (3) BIN1 rs744373 and CD33 

rs3865444 being the AlzGene Top Results (alzgene.org) 

and being associated with the risk of AD in Caucasian 

and Han Chinese population [8, 11] (4) GAB2 2373115 

being associated with the AD risk with an odds ratio of 

4.06 [18].  

 

Genotyping of all SNPs was accomplished using the 

TaqMan genotyping assay (Applied Biosystems, Foster 

City, CA, USA) (Supplementary Table 5). Polymerase 

chain reaction (PCR) was carried out using 96-well 

microplates with an ABI 7500 real-time PCR system 

(Applied Biosystems). Allele discrimination was 

performed by identifying fluorescence using SDS 

software version 1.2.3 (Applied Biosystems). 

 

ADNI dataset 

 

ADNI data used in this study were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu) [55, 56]. The ADNI was 

launched in 2003 as a public-private partnership, led by 

Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical 

and neuropsychological assessment can be combined to 

measure the progression of MCI and early AD. For up-

to-date information, see http://www.adni-info.org. 

 

To compare with ADNI cohort, a total of 385 ADNI 

patients in the ADNI-1, ADNI-GO, or ADNI-2 

phases—150 with AD and 235 with MCI and then 

progression to AD—with at least four MMSE 

measurements and genotypic data were selected to 
analyze the trajectories of cognitive function decline. 

Because the three candidate genetic markers—

rs3737529 and rs1784933 in SORL1, and rs2373115 in 

http://www.adni-info.org/
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GAB2— were not genotyped in the ADNI-1 and/or 

ADNI-GO/2 data, we imputed the two datasets 

separately to the 1000 Genomes Project (1000 Genomes 

Phase 3 v5 used as the reference panel, SHAPEIT as the 

phasing, and EUR as the population) using Minimac3 

on the Michigan Imputation Server [PMID: 27571263]. 

 

Statistical analysis 

 

For each SNP, Hardy-Weinberg equilibrium was 

checked using the goodness-of-fit test in AD and MCI 

subjects. A Bayesian hierarchical model with a four-

parameter logistic curve [22] was fitted to depict the 

trajectories of cognitive function decline for patients 

with AD or MCI at baseline (n = 299). This model 

included four major parameters: the asymptotic value of 

cognitive function at lower ages (A), the asymptotic 

value of cognitive function at higher ages (B), the age at 

the midpoint of cognitive function decline (M) between 

A and B, and the rate of cognitive function decline (R) 

from A to B. In the model, random effects on parameters 

A and B were assumed to model the variation between 

subjects. In addition, to consider the effects of genetic 

markers, linear combinations of these covariates on 

parameters M and R were modeled adjusting for sex and 

education years, and an additive mode of inheritance 

was assumed to code the number of copies of the minor 

allele for each genetic marker. The distributions of 

observed measurements and the prior distributions of 

model parameters followed the assumption proposed by 

Sweet et al. [22]. Bayesian inference was based on an 

initial 2,000 iteration burn-in and a 20,000 iteration run 

using Gibbs sampling. 

 

To identify an adequate fitting model of genetic markers 

on trajectories of cognitive function decline, model 

selection was carried out using Gibbs variable selection 

[57]. The statistical significance of all tests was 

evaluated using a 95% credible interval. The adequacy 

of the fitted Bayesian model to the data was checked by 

posterior predictive p-value [58]. All Bayesian analyses 

were performed using the open-source software 

WinBUGS version 1.4.3 [59]. Besides, not all MCI 

patients will develop clinically defined AD during the 

follow-up period. Therefore, we excluded 16 stable 

MCI patients without progression to AD and used the 

subset of 283 samples to validate the results obtained 

from the full samples. In addition, a total of 385 ADNI 

patients with AD or with MCI and then progression to 

AD were fitted to validate the trajectories of cognitive 

function decline obtained from our BSAD patients. 
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Supplementary Tables 
 

Supplementary Table 1. Effects of genetic markers on the age at the midpoint of cognitive function decline (M) 
and the rate of cognitive function decline (R) parameters based on the MMSE after adjusting for sex and 
education years (n = 283). 

Covariates Minor allele 
Regression coefficients on M  Regression coefficients on R 

Posterior mean 95% CI  Posterior mean 95% CI 

Sex (female vs. male) — −1.02 (−2.93, 0.92)  0.64 (0.23, 1.11)* 

Education years — 0.39 (0.18, 0.61)*  −0.04 (−0.09, −0.003)* 

APOE ε4 −2.10 (−3.79, −0.34)*  0.90 (0.37, 1.42)* 

ABCA7 rs3764650 G −1.74 (−3.16, −0.29)*  −0.20 (−0.51, 0.13) 

SORL1 rs3737529 T 2.65 (0.41, 4.90)*  0.56 (0.01, 1.07)* 

SORL1 rs1784933 G 1.16 (−0.91, 3.22)  0.12 (−0.33, 0.52) 

SORL1 rs2298813 A 0.88 (−1.78, 3.61)  −0.005 (−0.60, 0.71) 

BIN1 rs744373 G −0.47 (−1.79, 0.86)  −0.16 (−0.43, 0.11) 

GAB2 rs2373115 A −0.35 (−1.69, 0.99)  0.09 (−0.23, 0.40) 

CD33 rs3865444 A 1.32 (−0.34, 2.95)  −0.05 (−0.41, 0.36) 

Note: The subset of 255 AD and 28 MCI progression to AD patients were analyzed. 
Abbreviations: MMSE, Mini-Mental State Examination; CI, credible interval. 
*Statistically significant with 95% credible interval. 

 

Supplementary Table 2. Model selection among the eight genetic markers after adjusting for sex and education 
years (n = 283). 

Models Variables in the model Posterior model probabilities 

Model 1 APOE, SORL1 rs3737529 0.8988 

Model 2 APOE, ABCA7 rs3764650, SORL1 rs3737529, SORL1 rs1784933 0.0565 

Model 3 APOE, SORL1 rs3737529, CD33 rs3865444 0.0216 

Model 4 APOE, SORL1 rs3737529, SORL1 rs1784933 0.0131 

Model 5 APOE, SORL1 rs3737529, SORL1 rs2298813 0.0066 

Model 6 APOE, SORL1 rs3737529, GAB2 rs2373115 0.0024 

Model 7 APOE, SORL1 rs3737529, BIN1 rs744373, GAB2 rs2373115 0.0009 

Model 8 APOE, SORL1 rs3737529, BIN1 rs744373 0.0002 

Note: The subset of 255 AD and 28 MCI progression to AD patients were analyzed. 
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Supplementary Table 3. Effects of APOE and SORL1 rs3737529 on the age at the midpoint of cognitive function 
decline (M) and the rate of cognitive function decline (R) parameters based on the MMSE after Bayesian 
variable selection (n = 283). 

Covariates Minor allele 
Regression coefficients on M  Regression coefficients on R 

Posterior mean 95% CI  Posterior mean 95% CI 

Sex (female vs. male) — −0.89 (−2.88, 1.12)  0.59 (0.12, 1.12)* 

Education years — 0.40 (0.19, 0.62)*  −0.04 (−0.09, 0.003) 

APOE ε4 −2.50 (−4.25, −0.73)*  0.82 (0.37, 1.30)* 

SORL1 rs3737529 T 1.58 (0.01, 3.23)*  0.43 (0.06, 0.80)* 

Note: The subset of 255 AD and 28 MCI progression to AD patients were analyzed. 
Abbreviations: MMSE, Mini-Mental State Examination; CI, credible interval. 
*Statistically significant with 95% credible interval. 

 

Supplementary Table 4. Effects of genetic markers on the age at the midpoint of cognitive function decline (M) 
and the rate of cognitive function decline (R) parameters based on the MMSE after adjusting for sex and 
education years using the ADNI data (n = 385). 

Covariates Minor allele 
Regression coefficients on M  Regression coefficients on R 

Posterior mean 95% CI  Posterior mean 95% CI 

Sex (female vs. male) — −1.47 (−3.34, 0.39)  −0.05 (−0.29, 0.18) 

Education years — −0.04 (−0.36, 0.28)  −0.07 (−0.10, −0.03)* 

APOE ε4 −3.82 (−5.14, −2.44)*  −0.05 (−0.23, 0.13) 

ABCA7 rs3764650 G 1.35 (−0.55, 3.22)  0.09 (−0.18, 0.37) 

SORL1 rs3737529 T −1.67 (−5.06, 1.92)  0.16 (−0.44, 1.02) 

SORL1 rs1784933 G 1.68 (−1.24, 4.57)  0.11 (−0.30, 0.56) 

SORL1 rs2298813 A 2.19 (−0.62, 4.97)  −0.14 (−0.44, 0.18) 

BIN1 rs744373 G −0.13 (−1.50, 1.26)  −0.14 (−0.32, 0.04) 

GAB2 rs2373115 A −0.39 (−1.94, 1.16)  −0.07 (−0.26, 0.14) 

CD33 rs3865444 A 0.57 (−0.79, 1.95)  0.12 (−0.06, 0.31) 

Note: The sample of 150 AD and 235 MCI progression to AD patients with at least four MMSE measurements were analyzed. 
Abbreviations: MMSE, Mini-Mental State Examination; CI, credible interval. 
*Statistically significant with 95% credible interval. 
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Supplementary Table 5. The TaqMan genotyping assay ID for the selected 
single nucleotide polymorphism (SNP). 

Gene SNP TaqMan genotyping assay ID 

APOE_e2/3/4 rs429358 C_3084793_20 

APOE_e2/3/4 rs7412 C_904973_10 

ABCA7 rs3764650 C_27478162_20 

SORL1 rs3737529 C_25803133_10 

SORL1 rs1784933 C_8799397_10 

SORL1 rs2298813 C_16190780_10 

BIN1 rs744373 C_1042213_10 

GAB2 rs2373115 C_12033202_20 

CD33 rs3865444 C_1487395_40 

 


