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INTRODUCTION 
 

It’s a fact of life that every human moves down one and 

only path, which is aging. This path, as scientists 

suggest, starts in the embryonic development period — 

the so-called “zero point” — when both life and aging 

of an organism begin simultaneously [1]. Research in 

the area of aging processes, which dates back to ancient 

times, has not yet led us to a consensus on the definition 

of this phenomenon, nor has it definitively identified 

unique biomarkers of such processes [2, 3]. Such 

uncertainty may be due to the fact that, when studying 

the complex bi-directional relationship between the 
processes of aging and disease (which often employ the 

same mechanisms of loss of cellular stability or ability 

to recover [4], scientists have to constantly make 

attempts to split off these biological phenomena or, 

conversely, to prove they are identical [5]. 

 

Currently, the concept implying that aging is not a 

disease prevails in the academic community. However, 

we believe that despite the existing conceptual 

differences, these processes can be neither called 

parallel nor completely isolated from each other. 

Having no specific symptoms, unlike disease, aging still 

has its own, inherent pathological features [6, 7]. 

Moreover, aging has long been recognized as a risk 

factor for many diseases [8]. On top of that, aging is 

associated with accelerated accumulation of medical 

conditions. If we imagine these processes as straight 

lines on a plane, then, just as per Euclid's fifth postulate, 

with the time the person lives these lines will be 
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converging and—sooner or later—will intersect, which 

will mark the death of the organism. In this concept, 

every person would have a unique time of intersection 

and converging trajectories. However, every single 

person will inevitably reach the ultimate destination of 

the path—the end of existence. 

 

Interestingly, the attempts of researchers to delve into 

the deep insights of aging face numerous challenges—

particularly because this condition is not regarded as 

disease. Natural, inevitable, and, most importantly, 

physiological, this process also does not imply any 

“treatment.” But, as we all know, “everyone wants to 

live long yet no one wants to be old.” With greater age 

comes a heavier burden of conditions and, 

subsequently, lower quality of life. Potential strategies 

for “anti-aging” and searching for corresponding 

biomarkers are becoming increasingly relevant for the 

aging world population. 

 

To work out these strategies, scientists are trying to 

simulate the processes that occur in the body with age. 

Pregnancy seems to be an interesting case to consider 

(see for review [9]. With underlying temporary medical 

conditions that are largely similar to aging-associated 

medical conditions (e.g., hypercoagulability, impaired 

glucose tolerance, and insulin resistance) as well as 

molecular processes at the cellular level (oxidative 

stress, inflammation), pregnancy has unique potential to 

be a platform for studying the process of aging. At the 

same time, a useful set of signaling pathways activated 

by pregnancy [10] and reversibility of pathological 

phenomena associated with it are of great interest in 

context of development of “anti-aging” tools. The 

endogenous nature of potential targeted agents, which, 

if successfully developed, can be used in pathology of 

aging, is of great value and makes pregnancy a standout 

among other models considered earlier [11]. 

 

Such studies add to our knowledge of the complex 

interrelation between aging processes (and hence 

accumulation of diseases) and hormonal changes in the 

body. There is much already known about the role of 

female sex hormone deficiency in development of 

aging-associated diseases [12]. Reproductive aging, as a 

cause of a decrease in the level of sex hormones, in this 

sense, is a unique phenomenon indeed. Developing 

seemingly along to the canonical biological pathways, 

this process interrelates with disease in a more complex 

manner than somatic aging while having a faster 

progression rate, which has been confirmed by 

numerous studies. 

 
In particular, recent analysis of mutations in the 

genomes of various types of cancer showed that the 

mutation accumulation rate in ovarian and uterine tumor 

cells is 20 % higher than that in tumors of other tissues, 

which, after extrapolation suggests a 20 % increase in 

the reproductive aging rate [13]. The decline in ovarian 

non-growing follicle number begins in the prenatal 

period and constantly accelerates thereafter [14] before 

it reaches the critical threshold of about 1,000 follicles. 

After this, the menopause ensues—usually occurring 

long before the death of a woman. 

 

Desynchronization of the reproductive and somatic 

aging rates causes a woman's post-reproductive lifespan 

to be about 30 years of her total life expectancy [15, 

16]. Since sex hormones produced by the ovarian 

follicles are directly involved in the processes 

maintaining the internal homeostasis of the organism, 

loss thereof leads to many health preservation 

mechanisms getting out of balance. The latter is 

followed by changes in the fundamental aging processes 

at the cellular, tissue, organ, and system levels [17, 18]. 

Natural menopause, which is an example of naturally 

developing isolated aging, is intended to terminate the 

reproductive function rather than end the existence of an 

individual. Nevertheless, menopause is the point of no 

return after which a woman starts moving fast down the 

path of accumulation of diseases. Even more dramatic 

consequences are associated with premature 

menopause, a condition that is thought to share with 

multimorbidity not only loss of sex hormones but also 

other more complex mechanisms [19]. 

 

Social and economic significance of the search 

for markers of reproductive aging 
 

Biomarkers are condition indicators that reflect whether 

an organism or a cell has such condition [20]. The concept 

of using biomarkers in clinical practice comes down to 

several aspects: from diagnosing the development 

probability of a disease or condition to forecasting 

response to treatment. The search for biomarkers of aging 

is necessary to assess the progression of aging as well as 

to evaluate the effect of any drug that influences aging, 

including anti-aging treatments [21]. 

 

It is important to note that the American Federation for 

Aging Research (AFAR) proposed in 2013 that all 

biomarkers of aging should meet the criterion of being 

able to predict the rate of aging [22]. But with regard to 

reproductive aging, this criterion also acquires special 

social value, since modern women are increasingly 

delaying childbearing to a later age. In Russia, the average 

age of first-time mothers increased to 28.5 years through 

2015–2017; for comparison, it amounted to 20.9 years in 

1995–1999 [23]. Such a trend, as is commonly known, 
can be found in all developed countries of America and 

Europe. Subfertility is one of the earliest clinical signs in 

the cascade of events associated with reproductive aging. 
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Despite the fact that some studies revealed that optimal 

and stable probability of monthly conception and giving 

birth to a live child is there until the age of 31 [24], the 

age when this probability begins to decrease is even more 

variable than the age at menopause [25]. The above-

mentioned fact clearly suggests that women should be 

aware of their reproductive potential and plan their 

families considering the real reproductive age rather than 

the chronological age. 

 

At the same time, infertility is just the tip of the iceberg 

of reproductive aging. Numerous studies have 

demonstrated that menopause is associated with a higher 

risk of cardiovascular and other diseases [26, 27]. 

Menopause is included in the Framingham Risk Score for 

Women, developed based on the data of an extensive 12-

year epidemiological study conducted in the United 

States [28]. Osteoporosis is yet another known negative 

health effect caused by estrogen deprivation during 

reproductive aging in females [29] (Figure 1). 

 

Not only the onset of menopause itself but the time of 

the onset can significantly contribute to the 

development of medical conditions in women. The 

cardiovascular risk is known to increase as the age of 

menopause onset comes down [19, 30, 31]. Premature 

ovarian insufficiency (premature menopause) has been 

recognized as the second most important disease 

causing an increased risk of osteoporosis [32]. 

Cognitive decline [33], sexual disorders [34], depressive 

disorders [35], metabolic disorders, and overall 

deterioration in quality of life are particularly associated 

with early-onset and premature menopause [36]. 

 

The reproductive lifespan of a woman depends on 

presence of multiple somatic diseases and all possible 

causes of death [37, 38]. Duration of the estrogenic 

effect on the body is most likely to be the key aspect in 

this regard. Data from The Women's Health Initiative 

suggest that longer reproductive lifespan is significantly 

associated with increased overall longevity [37]. The 

onset of menarche, one of the milestones in the 

reproductive life, is also a crucial factor in a woman's 

reproductive lifespan. However, age at menarche affects 

the risk of progression of somatic diseases in different 

ways. Early age at menarche (<12 years) has been 

shown to be associated with the risk of cardiovascular 

and metabolic disorders [39, 40]. Every 2 years of delay 

in age at menarche is associated with a 10 % decrease in 

the risk of breast cancer [41]. However, late age at 

menarche is associated with an increased risk of 

developing osteoporosis [42]. 

 
The reproductive lifespan varies a lot. The time of the 

menarche onset depends on hereditary factors, ethnicity, 

girl's characteristics at birth, factors in play at early 

infancy, as well as lifestyle and environmental factors 

[43]. The time of menopause onset certainly depends on 

the chronological age, but the variety of factors present 

that influence this event can actually break this link 

[44]. Moreover, scientists point out the discrepancies in 

the initial supply of follicles at the time of birth of a girl 

as one of the main reasons for the variability in the time 

of menopause onset [45]. 

 

There are many genetic and non-genetic determinants that 

affect the reproductive aging rate and the onset of 

menopause. It has been found that birth weight, presence 

of twins, mother's bad habits during pregnancy, as well as 

life history of smoking and exposure to hazardous 

substances (e.g., bisphenol A) are associated with an 

earlier onset of menopause in women [46–50]. 

 

The reproductive lifespan of a woman, which is controlled 

by ovarian function, also determines reproductive 

behavior and reproductive events during life. A large 

multicenter study has shown that early menarche and 

childlessness aggravate the risk of premature and early-

onset menopause by 80 % and 2 times, respectively, while 

their combination can turn the risk of these conditions five 

times higher [51]. A recent systematic review and meta-

analysis have found that age at menarche of ≥13 years and 

the fact of childbirth are associated with the later onset of 

menopause [52]. In another study, by contrast, early age at 

menarche (<11 years) and nulliparity have been shown to 

be risk factors for premature and early-onset menopause 

[51]. A population-based cohort study conducted on more 

than 100 thousand women has shown that women with a 

history of one or more childbirths as well as those with 

long history of breastfeeding (more than 6 months) have 

significantly reduced risks of premature and early-onset 

menopause compared to the nulliparous women [53]. It is 

expected that pregnancy and breastfeeding can, by 

suppressing ovulation, preserve ovarian reserve over the 

period they occur. It has been shown that a later age at the 

first full-term pregnancy as well as longer intervals 

between menarche and the establishment of a regular 

menstrual cycle are associated with a later age at 

menopause [54]. To clarify these associations, it is clearly 

necessary to continue research, in particular, the search for 

biomarkers of reproductive aging. With all the above 

factors taken into account, this will help determine the 

functional status of the reproductive system to 

subsequently predict age at menopause, which, as we 

already know, will significantly change women's lives. 

 

In Search of biomarkers of reproductive aging 
 

What are we trying to measure? 

Up to the present day, researchers who are actively 

engaged in the search for biomarkers of aging have 

faced significant difficulties, since it is effectively 
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impossible to measure all molecular and cellular 

processes that occur in the whole body with age due to 

versatility and multifactorial nature of this phenomenon 

as well as differences in aging rates of different tissues 

[55]. The problem could have been simpler for single 

organs. But, first, the reproductive system is not ovaries 

alone: it is a phylogenetic multi-level axis where other 

organs, including central nervous system structures, are 

structural units. And secondly, the ovaries have a 

distinctive feature—they contain both somatic and sex 

cells. The latter are defined as the “immortal” or 

“ageless” cells [56]. The divergence of the aging 

trajectory of somatic and sex cells is an important 

aspect of issues related to aging we should pay special 

attention to. 

 

Aging of the body, as many gerontologists believe, is a 

consequence of accumulation of various damages in the 

cells (in particular, DNA damage) [57]. Female sex 

cells, like some somatic cells, cannot divide or live long 

and are expected to accumulate DNA damage which 

contributes to aging. However, they ensure the genetic 

information is transmitted from generation to 

generation, and the “old” gametes do not produce 

children that would inherit these age-related changes. In 

this context, the sex cells seem to avoid aging, 

contrasting themselves with the somatic ones. 

 

For at least the past 100 years have the scientists been 

trying to explain this phenomenon [56]. According to 

one of the main theories of “immortality” of the 

germline, sex cells in the process of their development 

“get rid” of accumulated DNA damage through 

recombination repair, while the restoration of the native 

DNA structure is the main prerequisite for them to 

remain as effective as possible in terms of ensuring the 

birth of healthy offspring. 

 

Another explanation for the “immortality” of oocytes 

may be the asymmetric cell division during maturation 

(after the first and second divisions of meiosis) resulting 

in a fully-formed egg cell and polar bodies being 

formed (which are subsequently reduced) [58]. This 

process is crucial for fertilization and subsequent 

development of the embryo; it allows the egg cell to 

“discharge” the accumulated molecular damage, 

including DNA damage, into one of their daughter cells 

(polar bodies). There is an opinion that such an 

asymmetric strategy has developed phylogenetically to 

preserve the population [58, 59]. 

 

However, the quality of egg cells still deteriorates with 

age, the mutational load on the offspring grows, and the 

risk of children with developmental abnormalities 

increases [60]. That is, the sex cells still show signs of 

aging at a certain point in time. This does not 

necessarily mean that the sex cells age in the same way 

as the somatic cells do. Perhaps it is just that the 

patterns of aging that occur in the somatic cells cannot 

be observed in sex cells. Yet, this fact is the main 

argument for those scientists who postulate that sex 

cells do not have any special mechanisms for preserving 

and maintaining youth. In their opinion, it's all about the 

so-called “barriers” that prevent the “old” egg cells

 

 
 

Figure 1. The relationship between reproductive and somatic aging. 
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from production of abnormal offspring [61]. Such 

“barriers” include the short-term ability of egg cells to 

fertilize after ovulation, cessation of the embryo 

development in “old”, defective gametes at different 

stages, atresia of the follicles during their successive 

growth, etc. 

 

Whatever the causes and despite this feature of the sex 

cells it was mentioned above that the reproductive 

system ages faster than other systems in the body. And 

to detect it at early stages, we need to realize what we 

are going to ultimately measure (in terms of 

biomarkers). Despite the fact that, to some extent, all 

the structures of the reproductive axis age, according to 

the accepted dogma, reproductive aging is nowadays is 

defined as a decline in ovarian follicle number and 

decrease in the quality of egg cells in the ovaries [25]. 

 

The exact molecular mechanisms that determine the 

decline in oocyte/follicle quality are still to be 

determined. Having received evidence that the results of 

ART programs, as well as the ovarian follicle number, 

tend to deteriorate in correlation with age. The scientists 

have accepted the follicle number as an indirect marker 

of follicle quality [62, 63]. Although the true quality of 

egg cells can only be evaluated by the reproductive 

outcomes [64]. Some of the latest studies question 

applicability of the “quantity=quality” statement to 

young women, which may redirect the vector of 

research in reproductive medicine [65]. 

 

At the moment, there is still no international consensus 

on whether neo-oogenesis can be observed in the ovary 

or whether the pool of follicles is fixed and cannot 

increase or renew [66–69]. Some scientists do not rule 

out the possibility that stem cells give rise to new 

oocytes throughout a woman's life, but this process 

makes the least contribution to the overall pool of 

follicles and loses its relevance with age, so it alone is 

not sufficient to prevent the onset of menopause [70]. 

Ovarian aging processes would be associated with 

depletion of the available follicular reserve and/or with 

reduced ability to differentiate oogonial stem cells due 

to a decrease in the quality of their micro- and 

macroenvironment, which is associated with age-related 

changes in the hypothalamic-pituitary-ovarian axis and 

the entire organism [71]. Anyway, the signs of ovarian 

aging in clinical practice will (primarily) include 

decreased ovarian reserve, the concept most often used 

in relation to the ovarian follicular reserve. 

 

Though widely spread, the concept of “ovarian reserve” 

causes confusion among scientists and clinicians when 
it comes to defining it. Commonly, the problem lies in 

attempts to evaluate the ovarian response to ovulation 

stimulation instead of true ovarian reserve, although 

these parameters are related [72]. This is probably why 

there is still no consistent approach to evaluating 

ovarian reserve. Some scientists in their attempts to 

resolve the confusion suggest using different terms for 

these concepts: “ovarian reserve” to define a pool of 

resting follicles, and “ovulatory potential” to define a 

pool of growing follicles (also referred to as the 

“functional ovarian reserve”) [73], although this 

approach is not common today. 

 

There are also some difficulties in distinguishing the 

concepts of “decreased ovarian reserve” (DOR) and 

“premature ovarian insufficiency” (POI). DOR is not 

the equivalent of POI but rather applies to women with 

existing infertility and an increased risk of poor 

response to ovulation stimulation (poor ovarian 

response, POR) [74]. It is important to correctly 

interpret the diagnosed DOR, because despite the 

acknowledged trend of this condition towards an 

increase in incidence, the overdiagnosis rate is still high 

[75]. Clinical manifestations of subfertility as well as 

values of FSH >10 mIU/mL or AMH <1.0 ng/mL can 

serve as the criteria for diagnosing DOR [76]. The 

nature of DOR can be physiological when a woman is 

over 40 years old or pathological when she is younger, 

but the diagnosis is not associated with high FSH values 

typical for menopause or suppressed menstruation [77]. 

POI can be diagnosed in women under 40 if they 

develop oligomenorrhea/amenorrhea for at least 4 

months with FSH levels of > 25 IU/l in [78]. 

 

Therefore, there are many definitions of the 

physiological and deteriorated (to some extent) ovarian 

function. But what are we really trying to measure? 

Since true ovarian reserve, including resting and 

growing follicles, can only be confirmed histologically, 

the currently known markers are more applicable to 

functional ovarian reserve — i.e., to growing follicles. 

To some extent, we can extrapolate these data to the 

indicator of true ovarian reserve, given that the number 

of growing and the number of resting follicles are 

intrinsically related to each other [79]. Leading 

scientific communities in the field of obstetrics and 

gynecology, including the American College of 

Obstetricians and Gynecologists (ACOG), postulate that 

the main purpose of ovarian function testing is to 

identify women with decreased ovarian reserve (DOR) 

and subsequently change the counseling tactics applied 

to such women both within ART programs and general 

gynecological and other practice. 

 

It is known that any screening test has a number of 

parameters with sensitivity and specificity having 
special statuses. In the case of ovarian reserve markers 

(as the equivalent of reproductive aging), it is 

impossible to balance the sensitivity/specificity ratio 



 

www.aging-us.com 16878 AGING 

without having either of the parameters decreased [80]; 

for these indicators, the requirements for their predictive 

value come to the fore. There is not much use in a 

marker that serves only to confirm a certain disease or 

condition in an individual or otherwise especially in 

reproductive medicine. 

 

In this review, we will focus on the biomarkers of 

ovarian aging that are recommended due to their proven 

benefits and value of information they give. We would 

also like to focus on new promising areas of research in 

the field of reproductive aging as well as on the search 

for molecules that identify this process. 

 

Generally acknowledged markers of 

reproductive aging today 
 

For a long time, the chronological age of female 

patients, nature of their menstrual cycle, certain 

hormonal parameters (such as estradiol (E2), follicle-

stimulating hormone (FSH), inhibin B, etc.), ultrasound 

characteristics (number of antral follicles or total 

ovarian volume), and dynamic tests, such as the 

clomiphene citrate challenge test (CCCT), have been 

used as potential markers of ovarian reserve as well as 

for prediction of the reproductive potential in IVF 

programs and other areas [81]. According to the 

Practice Committee of the American Society for 

Reproductive Medicine, there is currently no single 

marker that should be recommended for evaluation of 

ovarian reserve; nor is there sufficient evidence that any 

combination of different tests improves the 

effectiveness of diagnosis [80]. Scientists also 

emphasize that the number of false-positive results of 

decreased ovarian reserve at diagnosis increases in the 

group of low-risk patients. In general, the committee's 

opinion on the most promising markers of ovarian 

reserve in terms of their prognostic value is consistent 

with the opinions of scientists from different countries 

and has been confirmed by numerous studies. With 

some limitations, they are still useful in practice and 

help clinicians make tactical treatment decisions. 

 

Follicle stimulating hormone (FSH) is a biochemical 

marker and is a dimeric glycopeptide produced by the 

anterior pituitary gland. It has a regulatory effect on 

growth of follicles at the hormone-dependent stage of 

folliculogenesis. Clinical interpretation of actual 

(absolute) FSH levels is usually performed on the 

third day of the menstrual cycle, since its increase is 

better registered at the beginning of the first phase 

against a decrease in inhibin B and estradiol  

levels [82]. 
 

Individual variations in FSH levels have been 

observed during the menstrual cycle as well as from 

cycle to cycle in the same woman [83]. Studies have 

shown that the level of this hormone is relatively 

stable until the age of 33 and fluctuates slightly until 

the age of 40, but henceforth its fluctuation rate is 

constantly increasing, and as the ovaries age, these 

changes become significant [84]. In other words, the 

most pronounced increases in FSH levels are observed 

during periods when there already are changes in the 

duration and nature of the menstrual cycle that are 

characteristic of perimenopause. In such a case, there 

is an undoubted correlation with reproductive aging, 

although with its later stages thereof. Therefore, FSH 

cannot be considered a direct indicator of ovarian 

reserve [85] despite the simplicity and relatively low 

cost of the test. The FSH level has high specificity but 

low sensitivity and acts as a marker of poor ovarian 

response to ovulation stimulation [80]. Another 

limitation comes from the need to determine FSH and 

estradiol levels together, since, in women with 

decreased ovarian reserve, truly high FSH levels can 

seem conditionally normal when measured alone. This 

is due to the increased effect produced by FSH on 

growth of the remaining follicles at the beginning of 

the menstrual cycle and accordingly on the increase in 

the estradiol level. According to the principle of 

negative feedback, the latter leads to a decrease in the 

gonadotropin level [86]. 

 

Another biochemical parameter, which is currently the 

most promising and frequently used marker of ovarian 

reserve, is anti-Müllerian hormone (AMH). It is a 

glycoprotein that belongs to the transforming growth 

factor beta (TGF-β) family and is exclusively 

produced by granulosa cells of preantral and small 

antral follicles with a diameter of about 4 mm. In 

larger-diameter (6–8 mm) follicles, AMH is no longer 

secreted. Against a background of sharp drop in the 

AMH level, there occurs an increase in the activity of 

the aromatase enzyme and increased synthesis of 

estradiol, which indicates the presence of a feedback 

mechanism between the synthesis of estradiol by the 

granulosa cells of the dominant follicle and AMH. 

This hormone mainly exerts two types of effect on the 

ovary: it suppresses the primary stages of follicle 

growth and suppresses hormone-dependent growth 

and selection of preantral and small antral follicles 

[87]. However, it is only to be found out whether 

AMH exerts an extraovarian effect beside the 

intraovarian effect. 

 

AMH shows less variability within and between the 

cycles compared to FSH [88]. For a long time, it has 

been believed that AMH can be determined at any 
phase of the cycle, but the conclusions of various 

researchers on the constancy of AMH levels are still 

controversial. Moreover, there is a reasonable opinion 
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that AMH levels should be measured at the follicular 

phase of the menstrual cycle [89, 90]. 

 

AMH, along with antral follicle count (AFC), shows 

consistency with the pattern of oocyte loss seen in 

histology specimens [79], which allows us to consider 

it as a promising non-invasive biochemical marker of 

ovarian reserve. While AFC indicates the number of 

visible antral follicles with a diameter of 2–10 mm 

and is only indirectly related to true ovarian reserve 

(not only and not so much functional ovarian reserve), 

AMH is an indirect indicator of follicles that will be 

ready to start growing within the next 3–5 months 

[91]. Since the above directly depends on the number 

of primary follicles, this again points to the important 

role of AMH as the most accurate biomarker of 

ovarian reserve. Probably, the main limitation for 

AMH is the lack of a universally standardized method 

for determining this hormone. 

 

AFC is one of the most popular methods of interpreting 

the functional state of the ovaries employed in current 

clinical practice. AFC, as well as AMH, varies less 

between menstrual cycles compared to FSH or, for 

example, ovarian volume. But the imaging examination 

methods are subjective [92]. AFC is considered the best 

marker of ovarian response to stimulation in IVF cycles. 

At the same time, the decrease in the antral follicle 

count clearly correlates with age, which allows us to 

consider it a marker of ovarian reserve when studying 

reproductive aging [72]. Currently, this is one of the 

most affordable and easy-to-perform diagnostic 

methods. 

 

Although there has always been vigorous discussion on 

the ways to compare the effectiveness of the two key 

markers, AFC and AMH, with regard to different 

parameters of ovarian function [79, 93, 94], scientists 

agree on the high meaningfulness and prognostic value 

of these indicators and also highlight their advantages 

and disadvantages relative to each other [81]. In the 

case of such assessments, a number of factors that can 

affect the final result should be taken into account, 

including higher AMH blood levels being observed 

when ultrasound shows many small-diameter follicles 

as well as the inability to differentiate “healthy” 

follicles with granulosa cells capable of synthesizing 

AMH from follicles of the same size that have 

undergone atresia [63]. 

 

Other candidates for the role of biomarkers of ovarian 

reserve (reproductive aging) are less meaningful. 

According to the Practice Committee of the American 
Society for Reproductive Medicine, neither the basal 

inhibin-B level nor the ovarian volume or estradiol 

level values should be used as independent screening 

test indicators in the diagnosis of decreased ovarian 

reserve [80]. 

 

Genetic markers of reproductive aging 
 

Both menarche and menopause are fundamental 

events in a woman's life. The interval between the 

beginning of the reproductive life and its end is 

referred to as the reproductive lifespan, while a 

specific period within this interval is referred to as the 

reproductive age. While, with the knowledge of the 

female patient's reproductive age (not chronological 

or even biological), the doctor would only be able to 

assess her ability to conceive and give birth to a child 

at a specific time. On the other hand, information 

about the reproductive lifespan would offer more 

counseling options. Genetic markers may be the 

central point in this context, and, in this case, the 

strong genetic component of age at menarche and 

menopause promises scientists good opportunities and 

prospects for research [95]. 

 

Currently, the only genetic marker widely used in 

clinical examination of patients with suspected POI is 

determination of 5'-UTR a triplet-base-repeat (CGG, 

(Cytosine Guanine Guanine) in the FMR1 gene 

(fragile X mental retardation 1) localized on the long 

arm of the X chromosome at locus Хg27.3. This gene 

is considered mainly responsible for one form of 

mental retardation (X-linked mental retardation) when 

the number of triplet repeats are located at the 5' 

untranslated region of the gene exceeds 200 (complete 

mutation). The expression of the product of this gene 

also plays an important role in formation of 

physiological ovarian reserve. The increase in triplet 

CGG repeats in the FMR1 gene within the range of 

55–200 (gene premutation) is well known to 

reproductologists, since it is this range of CGG 

repeats that is most often associated with POI and 

infertility. Another deviation is represented by the 

number of repetitions being within the range of 35–54 

(the “gray zone”), which is typical both of patients 

with the conventional form of POI and patients with 

periodically fluctuating FSH levels [96, 97]. However, 

published findings in this field are very contradictory. 

Some scientists do not associate such a deviation with 

a specific ovarian-insufficiency-prone phenotype [98]. 

It should be noted that mutations in the FMR1 gene 

are also associated with decreased ovarian reserve 

(DOR) [99]. Thus, we can conclude that deviations in 

the normal number of Cytosine-Guanine-Guanine 

repeats in the FMR1 gene somehow indicate an 

increased likelihood of developing POI and early-

onset menopause in the future, which means that such 

patients require careful annual monitoring of the state 

of ovarian reserve and general health. 
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Recent studies have provided a large amount of 

previously unknown information about the molecular 

and genetic basis of reproductive aging [100]. The 

search for genes that are in one way or another involved 

in the processes reducing ovarian reserve (physiological 

or pathological) was carried out using the candidate 

gene approach involving selection of genes based on 

understanding of the pathophysiology of reproductive 

aging. This way, fertility control genes were identified 

and the relationship between monogenic mutations 

(mutation of the follicle-stimulating hormone receptor 

(FSHR) gene), mutation of the luteinizing hormone 

receptor (LHR) gene), or the inhibin A gene (INHA), 

and premature ovarian insufficiency was revealed [101]. 

Another example is the signaling pathways determined 

according to the same principles and ensuring the 

modulating effect produced by growth factor proteins 

(in particular, transforming growth factor beta (TGF-β): 

theca-derived BMP4 (bone morphogenetic protein 4) 

and BMP7, granulosa-derived BMP6, oocyte-derived 

growth differentiation factor 9 (GDF9), as well as 

BMP5 and BMP15) on intraovarian physiological 

interrelations between oocytes, granulosa cells, and 

theca [102], which also contribute to the etiology of 

POI. 

 

A kind of revolution was made just over 10 years ago 

by genome-wide association studies (GWAS), the 

philosophy of which is to identify the interrelations 

between disease and genetic variants (polymorphisms) 

of individual nucleotides [103]. Despite forecasts that 

this type of research would be an intermediate 

technology in understanding the genetics of various 

medical conditions and might soon be replaced by more 

advanced methods, we still receive information about 

previously unknown biological pathways associated 

with reproductive aging [104, 105]. For example, a 

recent meta-analysis of data from 53 GWAS involving a 

total of 70,000 female subjects has identified 44 loci 

associated with age at natural menopause, 2/3 of which 

are associated with DNA-damage reparative response 

(including genes Helicase, POLQ Like (HELQ), crucial 

member of the ATM-mediated DNA double-stand 

breaks repair family of genes (BRCA1), 

minichromosome maintenance complex component 8 

(MCM8), MutS Homolog 5 (MSH5), Exonuclease 1 

(EXO1), DNA Polymerase Gamma, Catalytic Subunit 

gene (POLG), and others) [106]. The most significant 

results on genetic polymorphisms associated with 

premature ovarian insufficiency have been obtained 

with regard to the loci where the DNA repair genes are 

located (Stromal antigen 3 (STAG3), Synaptonemal 

complex central element 1 (SYCE1), Scaffold Protein 
Involved In DNA Repair (SPIDR), PSMC3 Interacting 

Protein (PSMC3IP), ATP-dependent DNA helicase 

homolog (HFM1), MutS Homolog 4 (MSH4), MSH5, 

minichromosome maintenance complex component 8 

(MCM8), MCM9, Nucleoporin 107 (NUP107), 

signaling pathways of mRNA transcription, and 

translation (Eukaryotic Translation Initiation Factor 4E 

Nuclear Import Factor 1 (eIF4ENIF1), KH RNA 

Binding Domain Containing, Signal Transduction 

Associated 1 (KHDRBS), and already known candidate 

genes of POI (Spermatogenesis and oogenesis helix-

loop-helix 1 (SOHLH1), Follicle Stimulating Hormone 

Receptor (FSHR) [104, 107]. 

 

DNA repair appears to play a significant role (much 

more important than previously thought) in the decline 

in the ovarian follicle number. Oocytes can be highly 

susceptible to DNA damage occurring in response to 

metabolic and environmental impacts, including due to 

prolonged cell cycle arrest [106]. DNA damage repair is 

also an important component of meiosis and mitotic 

division of oogonia [108]. Ultimately, the instability of 

the genome caused by the inability to repair DNA 

breaks disrupts the vital activity of oocytes, contributing 

to death thereof. 

 

A series of GWAS studies suggested that certain items 

in the sets of genes responsible for age at natural 

menopause and POI are the same, which revealed 

common pathways of genetic susceptibility of these two 

conditions [109]. Other equally important findings from 

these studies are data on GWAS loci associated with 

age at menopause and located in or near the genes 

responsible for controlling the hypothalamic-pituitary-

ovarian axis (such as Fibroblast Growth Factor 

Receptor 1 (FGFR1), SRY-Box Transcription Factor 10 

(SOX10), Chromodomain-Helicase-DNA-binding 

protein 7 (CHD7), Gonadotropin Releasing Hormone 1 

(GNRH1), KiSS-1 Metastasis Suppressor (KISS1), 

Tachykinin Precursor 3 (TAC3), as well as KISS1 

Receptor (KISSR), Tachykinin Receptor 3 (TACR3) 

and Gonadotropin Releasing Hormone Receptor 

(GNRHR), which indicates that the beginning and end 

of the reproductive lifespan are highly influenced by the 

central regulation [27, 106]. 

 

Allelic heterogeneity is also observed in the loci of 

genes associated with the age at menopause, energy 

homeostasis, regulation of lipid metabolism, etc.  

These findings largely shed light on the gaps  

in understanding of the interrelation between 

reproductive aging and various adverse health 

outcomes, which have been confirmed by numerous 

epidemiological studies [110]. 

 

Physiological and pathological reproductive 
phenotypes have polygenic nature [111]. Diagnosing 

polygenic traits, in particular, those of reproductive 

aging, is difficult due to the complexity of 



 

www.aging-us.com 16881 AGING 

determination of the effects produced by specific genes 

and their contribution to formation of phenotypic traits. 

When applied to the above, the methods used in GWAS 

have their limitations. Such limitations are associated 

with identification of common variants, which are 

widely represented in the genome and the impact of 

which on the development of the disease is 

insignificant [112]. This molecular paradigm, along 

with additional limitations, has pushed scientists to 

develop new approaches to genetic research proceeding 

from common variants with little effect to  

highly penetrant rarer variants — Next-Generation 

Sequencing (NGS). 

 

This approach is promising for the molecular 

diagnostics of reproductive aging (which is a complex 

heterogeneous phenomenon) and, in particular, 

diagnostics of premature ovarian insufficiency. Despite 

the established contribution of the genetic component to 

the pathogenesis of POI (including for the isolated 

form) and identification of several dozen genes 

involved in this condition, there is no complete 

understanding of the genetics of POI, and most patients 

do not receive genetic diagnoses [111]. In ongoing 

studies, NGS has already demonstrated its extensive 

ability to shed light on the mysteries of the genetic 

component of POI [113, 114]. Despite the limitations of 

a relatively small sample size or incomplete panel of 

genes associated with this condition, new causal 

variants have been identified in genes that, without 

NGS, would hardly be considered as priority candidate 

genes. In particular, variants of genes encoding 

important factors involved in DNA damage response 

(MCM9, FA Complementation Group A (FANCA), FA 

Complementation Group L (FANCL) etc.) [115–117], 

variants of genes involved in key biological processes 

such as meiosis and follicle development 

(Spermatogenesis and oogenesis helix-loop-helix 1 и 2 

(SOHLH1, SOHLH2), STAG3, HFM1, MSH4, MSH5, 

Synaptonemal complex protein 2-like (SYCP2L), and a 

number of others) [117, 118], or heterozygous variants 

in Eukaryotic Translation Initiation Factor 2B Subunit 

Beta (EIF2B2) encoding the translation initiation 

mechanism [119]. 

 

Overall, GWAS and NGS have identified common 

genetic and molecular pathways in reproductive aging. 

Some of the results obtained have already been 

confirmed in a number of other studies, and some have 

yet to be clarified. Another important conclusion made 

after more than 10 years of successful use of such large-

scale studies is that the identified genes are often 

difficult to associate with the development of medical 
conditions since most of them do not encode proteins 

and many features can be considered quantitative due to 

the subtle interaction of many genes. Another thing to 

keep in mind is that in the case of polygenic inheritance 

we are dealing with the phenomena of incomplete gene 

penetration and varying relevance to the disease 

progression, which makes it hard to identify responsible 

candidate genes. Scientists suggest that the candidate 

genes for the disease progression function consolidated 

in networks, and it is the discovery of these networks 

and understanding of the principle of their action that is 

a priority for future research. In this regard, there is 

great potential in using individual approaches to each 

case of POI, NGS, and sequencing with pre-analyzed 

coding and regulatory regions of genes for diagnostic 

and prognostic purposes. 

 

Mitochondrial dysfunction as a marker of 

reproductive aging 
 

The etiology of early and premature menopause, which 

is an example of premature reproductive aging, is 

extremely diverse. Chronic conditions that maintain 

inflammation in the body can indirectly or directly 

cause premature reproductive aging. Premature ovarian 

insufficiency is associated with genetic predisposition, 

autoimmune diseases, and infectious diseases [120, 

121]. This condition can be a symptom of monogenic, 

polygenic, and chromosomal diseases as well as that of 

a number of syndromes [122]. However, the etiology 

remains unknown in most cases, and idiopathic cases 

prevail in the incidence structure of POI. 

 

The mechanisms underlying reproductive aging are 

complex and their pathological signaling pathways, 

apparently, run into numerous intersections as the 

disease progresses. There is evidence that premature 

and early-onset menopause are associated with 

mitochondrial dysfunction [123, 124]. The underlying 

causes and pathways of mitochondrial dysfunction are 

extremely significant to identify, as this may later lead 

to the development of anti-aging agents and facilitate 

obtaining new data on potential markers of reproductive 

aging. 

 

As is known, being widely recognized in the scientific 

community, mitochondrial free radical theory of aging 

puts Increased production of mitochondrial reactive 

oxygen species (ROS) and oxidative stress at the center 

of processes that contribute to aging of cells [125, 126]. 

Mitochondria are energy-generating systems of the 

body that control free radical levels and generate ATF, 

thus being the most important regulators of cellular 

survival or death [127, 128]. Also, mitochondria are the 

only cell organelles that have their own, mitochondrial 

DNA (mDNA) [129]. 
 

The number of mitochondria and mtDNA copies 

varies in different cell types depending on their 
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energy needs. Oocytes, the largest cells in the body, 

require the maximum number of mitochondria and 

contain the largest amount of mtDNA [130]. They 

require energy to spend on maintaining normal 

transcription and translation processes during their 

maturation as well as on fulfilling the increased 

energy needs during the post-fertilization stage of 

embryonic development [131]. 

 

Studies demonstrate that decreased mitochondrial 

biogenesis, impaired mitochondrial homeostasis, and 

free radical imbalance, associated with the latter, play 

a critical role in ovarian aging [132]. Qualitative and 

quantitative changes in mtDNA are central factors in 

this process. High content of free radicals can incite 

oxidative damage, chain breaking, and mtDNA 

mutations [131]. Other mechanisms of mitochondrial 

dysfunction include reduction of the transmembrane 

mitochondrial potential and disruption of the electron 

transport chain (ETC) function [132]. These processes 

can initiate apoptosis in the cell, which, in the case of 

oocytes, leads to depletion of the follicular reserve. 

Animal experiments have clearly demonstrated the 

association of mtDNA mutations with decreased 

ovarian reserve and decreased fertility in mice [133]. 

Female carriers of mtDNA mutations in ART 

programs have also shown decreased ovarian  

reserve [134]. 

 

The number of mtDNA is significantly reduced in the 

oocytes of old animals compared to young ones [123]. 

This also correlates with the results of fertilization in 

ART programs [135]. Finally, a reduced number of 

mtDNA is typical of oocytes in patients with ovarian 

insufficiency [136]. 

 

Scientists believe that changes in mtDNA act as 

markers of mitochondrial aging, while mitochondrial 

aging reflects the essence of systemic aging [137]. 

Mitochondrial function indicators may act as markers 

of biological aging, including reproductive aging. The 

mitochondrial theory of aging and the role of 

oxidative stress can be supported by the pronounced 

therapeutic effect of mitochondrial-targeted 

antioxidants produced on oocytes [138]. In the context 

of reproductive technologies, the aging reproductive 

process is seen as poor response to ovulation 

stimulation in ART programs as well as poor quality 

of the resulting embryos. The researchers found that 

not only do low levels of mtDNA correlate with POI, 

but they are directly proportional to the stage of 

reproductive aging; the lowest levels of mtDNA have 

been observed in patients with complete premature 
ovarian insufficiency, higher levels have been 

recorded in patients with poor response to ovulation 

stimulation, and the highest levels of mtDNA have 

been observed in patients with normal ovarian 

function [139]. Interestingly, the reduced number of 

mtDNA copies in the POI arm and poor ovarian 

response were significantly lower than those in the 

control arms (women with normal ovarian reserve and 

older women with natural menopause). The apparent 

downward trend of mtDNA levels between healthy 

women with preserved ovarian reserve and women 

with expanded clinical presentation of POI suggests 

that the number of mtDNA may be a potent marker of 

reproductive aging. Another potential application area 

is ART programs, where the number of mtDNA may 

act as a predictive marker for embryo quality and 

viability [135]. 

 

Mutations of mtDNA accumulate over time and 

worsens cellular function. Based on the above, the 

accumulation of mtDNA mutations is now considered 

as the “biological clock”, which is of great interest 

today [131, 140]. Also, the metabolic function of 

mitochondria can be determined with the use of 

skeletal muscle biopsy (invasive procedure) and 

phosphorus magnetic resonance spectroscopy [141, 

142]. Both methods have their limitations, and, at the 

moment, the indicators of mitochondrial function need 

to be standardized for clinical application. It has also 

recently been shown that the use of technological 

solutions that detect discrete changes in cellular 

bioenergetics in real time, such as Seahorse (Agilent 

Technologies), could be useful for assessing the 

quality of oocytes and early embryos [143]. Specialists 

in reproductive medicine can benefit from these 

markers, since both determination of dysfunctional 

oocytes in ART programs and determination of the 

biological age are extremely important when 

consulting the patients and determining management 

tactics. 

 

“Aging clocks” as a potential biomarker of 

reproductive health 

 
Chronological age is clearly a determining factor of aging 

and accumulation of aging-associated diseases. However, 

among the elderly, the rate of these processes and 

outcomes is significantly heterogenous. Determination of 

biological age as a true indicator of aging has become a 

priority for gerontology recently, and the scientific 

research in the field of identification and implementation 

of the corresponding biomarkers continues [144]. In the 

future, they will be able to help develop approaches and 

interventions to increase life expectancy and mitigate the 

effects of aging in humans [145]. 
 

Cells “report” aging by stopping the cell cycle and 

triggering the so-called secretory aging-associated 

phenotype (“senescence-associated secretory 
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phenotype” (SASP). This phenotype is associated with 

the expression of typical biomarkers (proinflammatory 

cytokines, chemokines, growth factors, etc.) [146]. 

Attempts are being made to “measure” the biological 

age based on the quantitative assessment of aging cells 

in the body by identifying these markers in the blood 

[147]. These markers are not specific, and the most 

promising method currently is determination of these 

molecules in biopsy samples of different tissues, e.g., in 

ovarian tissues in patients with premature and early-

onset menopause. 

 

In recent years, significant progress has been made in 

the development of the so-called epigenetic “aging 

clock”. Epigenetic mechanisms control gene 

expression programs, thereby determining the cellular 

homeostasis. The main epigenetic mechanisms come 

down to DNA methylation and processes that induce 

changes in the state of chromatin (associated with 

histone modification and other molecular events) and 

non-coding RNA [148]. DNA methylation is the 

process of modification of DNA molecules without 

changing the nucleotide sequence. This process 

governs a large number of genetic mechanisms in the 

cell (e.g., replication, transcription, DNA repair) and 

also is a mechanism for cellular and tissue 

differentiation as well as for repression and 

discrimination of genes [149]. During life, when 

exposed to environmental factors as well as during 

aging, an individual develops significant changes in 

the patterns of DNA methylation. In 2013, both 

Horvath [150] and Hannum et al. [151] published 

their works on the epigenetic aging clock that uses the 

state of methylation sites and involves a mathematical 

model calibrated by changes in DNA methylation 

during physiological aging to determine the biological 

age of a person. Later in 2015, scientists proposed 

using deep learning models to predict age with the 

help of simple biochemical test results and cell counts 

[152], transcription profiles [153], face images [154], 

and brain MRI [155]. One of the recent developments 

is represented by the aging clock based on taxonomic 

profiling of the gut microbiome composition [156]. 

Interestingly, the gut microbiome composition is 

associated with the level of estrogens, which opens a 

new area of research [157]. 

 

Nowadays, telomere length is considered to be one of 

the most meaningful markers of biological age [158]. 

Telomeres are repetitive (TTAGGG) n-sequences that 

cap the linear ends of chromosomes. Telomere length 

decreases with age. An insufficient number of 

TTAGGG repeats leads to aging and subsequent death 
of cells [159]. Accelerated telomere shortening is 

associated with a variety of medical conditions. In 

2006, a telomeric theory of reproductive aging in 

females was proposed, according to which the age-

related decrease in the quality of oocytes is the result 

of progressive shortening of telomere length [160]. 

The authors of the theory were able to test it by 

experimentally shortening the length of telomeres in 

mice, as a result of which the animals developed the 

female reproductive aging phenotype typical of 

humans (namely, deterioration of the mitotic and 

meiotic chromosomal divergence, reduced number of 

chiasmata, arrested embryonic development, etc.). 

Some studies show evidence of telomeric DNA 

deficiency occurring in aneuploid oocytes and 

embryos during IVF cycles [161]. Such studies are 

important for the progress of knowledge the biology 

of female aging. However, it is still not fully clear 

whether the shortening of telomere length is a cause 

or a consequence of aging [162]. 

 

The cause-effect relationship between the processes of 

reproductive and general somatic aging is complex. In 

2016, two groups of researchers tried to identify the 

interrelations between biological aging, accumulation of 

diseases, epigenetic changes, and reproductive aging 

[17, 163]. The main interest was drawn to the question 

of how ovarian function can regulate general aging 

processes in females. The conclusions allowed the 

authors to construct several possible models of causes 

and consequences of these processes. 

 

One model suggests that certain factors (genetics, 

environmental factors, social factors) independently 

predispose affected individuals to both accelerated 

biological and accelerated reproductive aging as well as 

to accumulation of various diseases. In this case, the 

true biological age, which differs from the 

chronological age, can be considered a marker of 

accelerated reproductive aging, while its determined 

value may be sort of an indicator of age at menopause. 

 

According to another model, the loss of ovarian 

function (especially after /premature menopause 

resulting from ovariectomy) can be considered the main 

cause of acceleration of general aging processes, 

increase in epigenetic age, and accumulation of 

multimorbidity. In this case, determination of biological 

age provides important additional information about the 

patient's state of health, which may affect therapeutic 

strategies and recommendations (including those 

regarding the ability to bear a child). 

 

As is known, different organs age at different rates, 

moreover, biomarkers appear to track different 

biological processes and, therefore, could have low 
correlation with each other. Obviously, sets of 

biomarkers, rather than any single biomarker, are the 

most effective means of assessing the health status; in 
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the case of aging biomarkers, scientists suggest using 

the most holistic approach to collecting information 

about aging structures of the body for comprehensive 

assessment of the obtained biomarkers [164]. 

Development of bioinformatics and artificial 

intelligent, their potential for processing of omics big 

data, and training of age prediction models using data 

from specific populations are the current goals in this 

area of research. 

 

CONCLUSIONS 
 

With the modern tendency of women emancipation, the 

need to make them aware both of their reproductive 

potential and the reproductive lifespan, which is important 

for their social and labor functioning, is growing. 

Needless to mention, we would like the markers of these 

parameters to be highly meaningful, low-cost, and able to 

predict age at menopause and the endpoint of the 

reproductive period as early as possible. If a decrease in 

ovarian reserve is diagnosed at a younger age, we can 

personalize the approach to managing patients and take 

possible effective measures aimed at facilitating their 

reproductive function capacity (Figure 2). 

In the modern world, there is a certain illusory opinion 

that delayed childbearing is not a problem in the context 

of the developing modern technologies, including IVF 

programs. However, it is not always possible to solve 

the problem of infertility, even with the use of the latest 

technologies. Perhaps, availability of prognostic 

information about the true reproductive lifespan would 

allow women to correctly and timely set the necessary 

priorities in life. Determination of the true biological 

age of a woman may be an additional and very 

important option, regardless of whether we consider it 

as a predictive marker of reproductive health or as an 

indicator of overall health and a powerful tool for 

selecting the most suitable approaches to treatment and 

prevention of various diseases. 

 

The number of potential biomarkers of reproductive 

aging continues to grow, and it is necessary to carefully 

plan the strategies of their development. To date, 

prediction of the length of a woman's reproductive 

lifespan is still a goal that we have not achieved yet. 

Future studies should be aimed at identification of more 

markers, validation thereof, and widespread 

implementation in clinical practice. 

 

 
 

Figure 2. Biomarkers of reproductive and somatic aging ana personification the approach to managing patients. 
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