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INTRODUCTION 
 

Osteosarcoma is a common and very aggressive type of 

bone malignancy [1]. Despite advances in diagnosis  

and therapy, the overall prognosis of osteosarcoma 

patients remains poor. Moreover, recurrent metastatic 

osteosarcoma is observed in more than 80% of patients 

after surgery [2, 3]. It is therefore urgent to identify 

regulators of osteosarcoma progression in order to 

improve therapies for this type of cancer. 

 

The Anoctamin (ANO) family, also called the 

transmembrane member 16 (TMEM16) family, is a 

class of calcium-activated chloride channels that 

regulate various biological functions, including ion 

transport and maintenance of membrane proteins [4, 5]. 

ANO family members are up-regulated in and promote 

the development of cancers. For example, ANO1 levels 

were increased in gastric cancer tissues and were 

positively associated with TNM stage [6]. Additionally, 

esophageal squamous cell carcinoma patients with 

higher ANO1 levels had poorer prognoses [7]. ANO9 

was highly expressed in pancreatic cancer and promoted 

the metastasis of pancreatic cancer cells by increasing 

epidermal growth factor receptor expression [8]. 

Finally, ANO6 activated the ERK pathway and 

promoted glioma development [9]. 

 

Neural epidermal growth factor-like (Nel) proteins are a 

class of glycoproteins that are very similar in structure 

to thrombospondin1 and are secreted into the 

extracellular matrix. At present, two Nel family 
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reversed the inhibitory effects of ANO5 knockdown on osteosarcoma cell proliferation and migration. These 
results demonstrated that upregulation of ANO5 promoted osteosarcoma development by decreasing the 
stability of the NELL1 and NELL2 proteins and that ANO5 may be an effective target for the treatment of 
osteosarcoma. 
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members, NELL1 and NELL2, have been identified in 

mammals [10]. NELL1 and NELL2 show greater than 

50% homology in their amino acid sequences and  

map to chromosomes 11p15.1 and 12q12, respectively 

[11]. Physiologically, NELL1 and NELL2 promote 

differentiation during osteogenesis and osteocyte 

proliferation [12]. NELL1 expression is typically 

reduced in osteosarcoma compared with benign tumor 

tissues, indicating that it may act as a tumor suppressor 

[13]. However, little is known about the regulatory 

mechanisms associated with NELL proteins. 

 

In this study, we found that ANO family member 

ANO5 was highly expressed in osteosarcoma tissues 

and cell lines and that it promoted the proliferation and 

metastasis of osteosarcoma cells by increasing the 

degradation of NELL1 and NELL2. 

 

RESULTS 
 

ANO5 was upregulated in osteosarcoma 

 

First, we analyzed gene expression in the GSE32395 

dataset, which contains the normal osteoblast cell line 

hFOB 1.19, the normal bone marrow stromal cell line 

L87/4, and seven osteosarcoma cell lines (HOS, HOS-

58, U2OS, Saos2, MNNG, SJSA, and MG63). The 

results showed that ANO5 gene expression was 

markedly upregulated in osteosarcoma cell lines (Figure 

1A). Using qRT-PCR and western blot, we found that 

ANO5 mRNA and protein levels were both elevated in 

osteosarcoma cells (U2OS, MG63, HOS, and Saos2) 

compared to the normal osteoblast cell line hFOB 1.19 

(Figure 1B–1D). Furthermore, immunohistochemical 

staining of ANO5 in 40 paired osteosarcoma and 

adjacent normal tissues indicated that ANO5 was also 

elevated in osteosarcoma tissues (Figure 1E). Finally, 

we found that high ANO5 expression was positively 

associated with tumor size, tumor grade, and metastasis 

(Table 1). Together, these results indicate that ANO5 

may act as an oncogene in osteosarcoma. 

 

Inhibition of ANO5 reduced osteosarcoma cell 

proliferation and metastasis in vitro 

 

To examine the role of ANO5 in osteosarcoma, short 

hairpin RNAs were used to established ANO5 

knockdown cells (Figure 2A, 2B). CCK-8 and EDU 

 

 
 

Figure 1. ANO5 was upregulated in osteosarcoma. (A) A volcano plot showed that the ANO5 gene was significantly upregulated in 
osteosarcoma cells. (B) qRT-PCR indicated that ANO5 was upregulated in osteosarcoma cells (U2OS, MG63, HOS, and Saos2) compared to the 
normal osteoblast cell line hFOB 1.19. (C, D) Western blot indicated that ANO5 was upregulated in osteosarcoma cells (U2OS, MG63, HOS, 
and Saos2) compared to the normal osteoblast cell line hFOB 1.19. (E) IHC demonstrated that ANO5 was more highly expressed in 
osteosarcoma tissues than in adjacent normal tissues. *, P<0.05; **, P<0.01. 
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Table 1. Relationships between ANO5 
expression and age, gender, tumor size, tumor 
grade, and metastasis in osteosarcoma 
patients were evaluated using a Chi-square 
test. 

Parameters 
ANO5 expression 

P value 
High Low 

Gender   0.996 

Male 13 14  

Female 7 6  

Age   0.995 

>19 6 5  

≤19 14 15  

Tumor size (cm)   0.022 

>5 16 8  

≤5 4 12  

Tumor stage   0.019 

I + IIA 3 11  

IIB/III 17 9  

Metastasis   0.025 

Yes 15 7  

No 5 13  

 

assays showed that inhibition of ANO5 decreased HOS 

and Saos2 cell proliferation (Figure 2C–2F). A wound 

healing assay showed that inhibition of ANO5 

significantly suppressed the migration of HOS and 

Saos2 cells (Figure 2G). Moreover, a transwell assay 

indicated that suppression of ANO5 decreased HOS and 

Saos2 cell invasion (Figure 2H). 

 

Overexpression of ANO5 increased osteosarcoma 

proliferation and metastasis in vitro 

 

Next, we used an ANO5 overexpression lentivirus to 

generate ANO5 overexpression cell lines (Figure 3A, 

3B). CCK-8 and EDU assays indicated that ANO5 

overexpression increased the proliferation rate of HOS 

and Saos2 cells (Figure 3C–3F). Similarly, wound 

healing assays demonstrated that overexpression of 

ANO5 promoted migration in HOS and Saos2 cells 

(Figure 3G). Furthermore, increased ANO5 expression 

promoted invasion in HOS and Saos2 cells (Figure 3H). 

Taken together, these in vitro experiments indicated that 

ANO5 acts as oncogene by promoting osteosarcoma 

cell proliferation and metastasis. 

 

ANO5 bound to and increased degradation of 

NELL1 and NELL2 

 

To explore how ANO5 promotes osteosarcoma 

development, the online tool STRING was used to 

identify proteins that interact with ANO5. NELL1 and 

NELL2, which act as suppressors in various types of 

cancer including osteosarcoma, were identified as 

proteins that interact with ANO5 (Figure 4A). We 

found that NELL1 and NELL2 protein levels were 

decreased in ANO5 overexpression cells and were 

increased in ANO5 knockdown cells (Figure 4B, 4C). 

In addition, immunoprecipitation demonstrated that 

ANO5 directly interacted with NELL1 and NELL2 

(Figure 4D). Moreover, a cycloheximide (CHX, 10 μM) 

was used and the result indicated that overexpression of 

ANO5 increased the degradation rates of NELL1 and 

NELL2 (Figure 4E). Furthermore, confocal microscopy 

demonstrated that ANO5 was colocalized with NELL1 

and NELL2 in osteosarcoma cells (Figure 4F). 

 

Suppression of ANO5 decreased osteosarcoma cell 

proliferation and increased NELL1 and NELL2 

expression in vivo 

 

A subcutaneous tumor transplantation model was then 

employed to examine the effects of ANO5 on 

osteosarcoma cell proliferation and NELL1 and NELL2 

expression in vivo. The results showed that inhibition  

of ANO5 markedly reduced osteosarcoma cell 

proliferation rates in vivo (Figure 5A, 5B). Furthermore, 

both NELL1 and NELL2 were increased in tumor 

tissues with lower ANO5 expression, while the 

expression of KI67 (a biomarker for proliferation) was 
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Figure 2. Inhibition of ANO5 decreased osteosarcoma cell proliferation and metastasis in vitro. (A, B) qRT-PCR and western blot 
were used to determine the transfection efficiency of targeted ANO5 shRNA. (C) A CCK-8 assay was used to evaluate the effects of ANO5 
knockdown on osteosarcoma cell proliferation. (D–F) EDU assays showed that proliferation rates were reduced in ANO5 knockdown 
osteosarcoma cells. (G) A wound healing assay was used to examine the effect of ANO5 inhibition on osteosarcoma cell migration. (H) A 
transwell assay was used to determine the effect of ANO5 knockdown on osteosarcoma cell invasion. *, P<0.05; **, P<0.01. 
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Figure 3. Overexpression of ANO5 increased osteosarcoma cell proliferation and metastasis in vitro. (A, B) qRT-PCR and western 

blot were used to evaluate the transfection efficiency of ANO5 overexpression lentivirus. (C) A CCK-8 assay was used to examine the effects 
of ANO5 overexpression on osteosarcoma cell proliferation. (D–F) EDU assays showed that proliferation rates were higher in ANO5 
overexpression osteosarcoma cells. (G) A wound healing assay was used to determine the effect of ANO5 overexpression on osteosarcoma 
cell migration. (H) A transwell assay was used to determine the effect of ANO5 overexpression on osteosarcoma cell invasion. *, P<0.05; **, 
P<0.01. 
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decreased (Figure 5C). Taken together, these findings 

demonstrate that suppression of ANO5 decreased 

osteosarcoma cell proliferation and increased NELL1 

and NELL2 expression in vivo. 

 

Inhibition of NELL1 or NELL2 reversed the 

inhibitory effects of ANO5 knockdown in 

osteosarcoma cells 

 

To determine whether NELL1 and NELL2 were  

involved in ANO5-induced osteosarcoma, we inhibited 

NELL1 or NELL2 expression in ANO5 knockdown cells 

(Figure 6A). A CCK-8 assay indicated that suppression  

of either NELL1 or NELL2 in ANO5 knockdown  

cells significantly reversed ANO5 suppression-induced 

inhibition of cell proliferation (Figure 6B). Similarly, 

ANO5 knockdown cells with NELL1 or NELL2 

inhibition showed higher invasive ability than cells 

without NELL1 or NELL2 inhibition (Figure 6C). 

 

DISCUSSION 
 

Osteosarcoma is a severe bone tissue malignancy 

characterized by an extremely poor prognosis. Because 

 

 
 

Figure 4. ANO5 bound to and promoted degradation of NELL1 and NELL2. (A) The protein-protein interaction network showed that 

ANO5 bound to NELL1 and NELL2. (B, C) Western blot showed that ANO5 overexpression decreased, while ANO5 knockdown increased, the 
expression of NELL1 and NELL2. (D) Immunoprecipitation demonstrated that ANO5 directly bound with NELL1 and NELL2. (E) Overexpression 
of ANO5 increased the degradation of NELL1 and NELL2. (F) ANO5 was colocalized with NELL1 and NELL2 in osteosarcoma cells. *, P<0.05; **, 
P<0.01. 
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of the high efficacy of targeted gene therapy, 

identification of the molecular mechanisms underlying 

osteosarcoma progression is particularly important [14]. 

Here, we explored the biological functions and 

molecular mechanisms of ANO5 in osteosarcoma. We 

found that ANO5 promoted the proliferation and 

metastasis of osteosarcoma by increasing the 

degradation of NELL1 and NELL2. 

 

Previous studies on the role of ANO5 in cancer 

development have reported contradictory results. Yu et 

al. demonstrated that ANO5 was downregulated in 

prostate cancer and lower expression of ANO5 

predicted poorer prognosis [15]. Similarly, Chang et al. 

found that ANO5 suppressed the mobility of thyroid 

cancer cells by decreasing JAK/STAT pathway activity 

[16]. However, Song et al. showed that ANO5 

expression was increased in pancreatic cancer and 

promoted cell proliferation and metastasis [17]. In 

addition, Ishaque et al. showed that ANO5 expression 

was positively associated with metastasis of colorectal 

cancer [18]. In the current study, bioinformatic analysis, 

western blots, and immunohistochemical staining 

demonstrated that ANO5 expression was higher in 

osteosarcoma tissues and cell lines than in adjacent 

tissues and hFOB1.19 cells. High ANO5 expression 

was positively associated with tumor size, tumor grade, 

and metastasis. Furthermore, by performing loss and 

gain of function experiments, we found that ANO5 

promoted proliferation and metastasis of osteosarcoma 

cells in vitro. To our knowledge, these are the first 

findings to indicate that ANO5 may act as onco-gene in 

osteosarcoma. 

 

The biological functions of a protein are typically a 

result of its interactions with other proteins. The 

STRING online database can predict protein-protein 

association networks and perform functional enrichment 

analysis [19, 20]. The STRING interaction network for 

ANO5 indicated that it interacted with NELL1 and 

NELL2, suggesting that these proteins may play a role 

in ANO5-induced proliferation and metastasis in 

osteosarcoma. In previous studies, NELL1 and NELL2, 

which act as tumor suppressors, were downregulated  

in a variety of cancers including osteosarcoma.  

For example, Peters et al. demonstrated that lower 

NELL1 expression predicted advanced metastasis in 

patients with renal cell cancer [21]. Additionally, 

Maeda et al. showed that both NELL1 and NELL2  

were downregulated in glioma [22]. Furthermore, 

 

 
 

Figure 5. Inhibition of ANO5 decreased cell proliferation and NELL1 and NELL2 expression in vivo. (A, B) ANO5 knockdown 

decreased HOS cell proliferation in vivo. (C) IHC showed that inhibition of ANO5 decreased the expression of KI67 and increased the 
expression of NELL1 and NELL2. *, P<0.05; **, P<0.01. 
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hypermethylation of NELL1 and NELL2, which 

decreased their transcription, was common in cancer 

[23]. Here, we found that ANO5 overexpression 

reduced, while inhibition of ANO5 increased, NELL1 

and NELL2 expression. Previous research indicates 

that proteins can regulate the stability of their binding 

partner proteins. We found that ANO5 directly bound 

to NELL1 and NELL2, and ANO5 overexpression 

increased the degradation of both NELL1 and  

NELL2. Inhibition of ANO5 increased NELL1 and 

NELL2 expression in vivo and decreased tumor 

proliferation. Suppression of NELL1 or NELL2 in 

ANO5 knockdown cells reversed the anti-proliferation 

effects of ANO5 inhibition. To our knowledge, this is 

the first evidence that NELL1 and NELL2 are 

involved in the biological functions of ANO5. We also 

identified a novel mechanism in addition to DNA 

hypermethylation by which the tumor suppressors 

NELL1 and NELL2 were downregulated in cancer 

tissues. 

 

Taken together, our current results demonstrate that 

ANO5 acted as a novel oncogene in osteosarcoma. 

ANO5 expression was elevated in osteosarcoma and 

promoted the development of osteosarcoma cells by 

increasing degradation of the tumor suppressors NELL1 

and NELL2. ANO5 might therefore be a potential target 

for osteosarcoma therapy. 

 

 
 

Figure 6. NELL1 and NELL2 knockdown suppressed ANO5-induced inhibition of proliferation and invasion. (A) Western blot was 
used to detect the effects of NELL1 and NELL2 inhibition on expression of ANO5, NELL1, and NELL2 in ANO5 knockdown cells. (B) CCK-8 was 
used to detect the effects of NELL1 and NELL2 knockdown on ANO5 suppression-induced inhibition of cell proliferation. (C) A transwell assay 
was used to detect the effects of NELL1 and NELL2 knockdown on ANO5 suppression-induced inhibition of cell invasion. *, P<0.05; **, P<0.01. 
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MATERIALS AND METHODS 
 

Patients and tissue specimens 

 

This study was approved by the Affiliated Hospital of 

Guizhou Medical University. A total of 40 paired 

osteosarcoma tissues and adjacent normal tissues were 

collected from the patients (mean age: 19.43 ± 7.27 

years; male/female:27/13) at the pathology department, 

Affiliated Hospital of Guizhou Medical University, 

China, between March 2018 and May 2020. The 

inclusion criteria were as follows: (1) tissues were 

obtained during surgery and osteosarcoma was 

diagnosed by two pathologists; (2) patients were 

diagnosed and treated for the first time; (3)  

patients agreed to participate in the study. The exclusion 

criteria were as follows: (1) patients with other 

malignancies; (2) patients with other systemic diseases; 

(3) patients who had received treatment prior to 

admission; (4) patients who did not agree to participate. 

None of the patients received chemotherapy or 

radiotherapy before sample collection, and all patients 

involved in the current study provided written informed 

consent. 

 

Bioinformatics analysis 

 

The gene expression profile GSE32395, which  

contains data from the normal osteoblast cell line hFOB 

1.19, the normal bone marrow stromal cell line L87/4, 

and seven osteosarcoma cell lines (HOS, HOS-58, 

U2OS, Saos2, MNNG, SJSA, and MG63) was 

downloaded from GENE EXPRESSION OMNIBUS 

(GEO, URL: https://www.ncbi.nlm.nih.gov/gds). After 

standardization, the edgeR package was used to analyze 

differences in gene expression in R software (Version: 

4.0.2); the threshold was set at LogFC>2, and an 

adjusted P value<0.05 was considered significant. 

Differentially expressed genes were shown in a volcano 

plot. The STRING website (URL: https://string-db.org/ 

was used to identify proteins that interact with ANO5 

using a protein-protein interaction network. 

 

Cell culture and transfection 

 

The normal osteoblast cell line hFOB 1.19 and four 

osteosarcoma cell lines (U2OS, MG63, HOS, and 

Saos2) were obtained from ATCC (USA). All cells 

were cultured in Dulbecco's modified Eagle's medium 

(DMEM; Boster, Wuhan, China) containing 10% fetal 

bovine serum (FBS; Hyclone, USA) at 37° C in an 

environment with 5% CO2. ANO5 overexpression 

lentiviruses, negative control lentiviruses (NC), short 

hairpin RNA (shRNA) against ANO5 (sh-ANO5), and 

scramble shRNA (sh-scramble) were purchased from 

Genechem (Shanghai, China). Small interfering RNA 

(siRNA) targeting NELL1 and NELL2 and 

corresponding negative control siRNAs were purchased 

from GeneCopoeia (Guangzhou, China). The sequences 

were as follows: sh-ANO5, GCUGUAGUUGGCUUA 

GCUUTT; sh-scramble, UUCUCCGAACGUGUCACG 

UTT; NELL1 siRNA, GAGCCTGGTTCAAGGAATA; 

NELL2 siRNA, GGACGAAAGCCUUCCUCUU. 

Transfection of lentiviruses, shRNAs, and siRNAs was 

performed using Lipo2000 (Invitrogen, USA) according 

to the manufacturer's instruction. To promote stable 

expression, cells were then incubated continuously with 

1 μg/mL puromycin for 12 days. 

 

qRT-PCR 

 

Total RNA was isolated from osteosarcoma tissues and 

cells using TRIzol (Takara, Japan). cDNA was 

synthesized from 2 μg isolated mRNA using Hifair® II 

1st Strand cDNA Synthesis SuperMix (Yeasen, 

Shanghai, China). The Hifair® III One Step RT-qPCR 

SYBR Green Kit (Yeasen, Shanghai, China) was used 

for qPCR. The qPCR reaction system included the 

following: 1 μL cDNA template, 0.25 μL forward 

primer, 0.25 μL reverse primer, 6.75 μL SYBR Green 

reagent, and 4.25 μL dH2O. The qPCR program 

consisted of 5 min at 95° C and 35 cycles of 30 seconds 

at 95° C, 30 seconds at 65° C, and 1 minute at 70° C. β-

actin was used as the reference gene for determining 

relative expression of the target gene. ANO5 and  

β-actin primers were as follows: ANO5 forward  

primer, 5’-GCGGCGGCTTATGTTTCAAAA-3’; ANO5 

reverse primer, 5’-CGCCTTTAACTCTGCGTCTTTC-

3’; β-actin forward primer, 5’-CATGTACGTTGCTAT 

CCAGGC-3’; β-actin reverse primer, 5’-CTCCTTAAT 

GTCACGCAC GAT-3’. 

 

Western blot 

 

Whole protein was isolated from osteosarcoma cells 

using RIPA reagent (Boster, Wuhan, China) 

containing 10% PMSF inhibitor. Protein samples were 

separated using 10% SDS-PAGE at 100 V for 2 h and 

transferred into PVDF membranes at 310 mA for 2 h. 

After blocking with 10% non-fat milk for 2 h, primary 

antibodies against ANO5 (dilution 1:1000; cat no. 

PA5-109393, Sigma, USA), NELL1 (dilution 1:500; 

cat no. PA5-27958, Sigma, USA), NELL2 (dilution 

1:500; cat no. PA5-42910, Sigma, USA), and β-actin 

(dilution 1:2000; cat no. 20536-1-AP, Proteintech, 

Wuhan, China) were added and incubated at 4° C 

overnight. The membranes were then incubated with 

secondary antibodies after washing three times with 

TBST. Finally, ECL reagent was used to visualize  
the bands, and β-actin was used as a loading  

control to calculate relative expression of target 

proteins. 

https://www.ncbi.nlm.nih.gov/gds
https://string-db.org/
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Immunohistochemistry (IHC) 

 

Osteosarcoma tissues and adjacent tissues were sliced 

into 2 µm thick sections and then incubated at 65° C for 

2 h. The sections were then dewaxed in xylene and 

rehydrated via an ethyl alcohol concentration gradient. 

Antigen retrieval was performed via a high-pressure 

method with an EDTA reagent (Boster, Wuhan, China). 

After blocking using H2O2 and 5% BSA, primary 

antibodies against ANO5 (dilution 1:200; cat no. PA5-

63619, Sigma, USA), NELL1 (dilution 1:200; cat no. 

PA5-27958, Sigma, USA), NELL2 (dilution 1:200; cat 

no. PA5-57373, Sigma, USA), and KI67 (dilution 

1:200; cat no. PA5-19462, Sigma, USA) were added 

and incubated at 4° C overnight. Then, secondary 

antibodies were added and incubated at room 

temperature for 2 h. Finally, after staining with DAB 

(Servicebio, Wuhan, China), hematoxylin was used to 

stain cell nuclei and images were obtained using a light 

microscope (200×, Nikon, Japan). 

 

Cell count kit-8 (CCK-8) assay 

 

A total of 5×103 HOS and Saos2 cells were plated into 

the wells of a 96 well-plate. After 24 h, 48 h, or 72 h, 10 

μL of CCK-8 reagent (Boster, Wuhan, China) was 

added to each well. After culturing for an additional 2 h 

at 37° C, the absorbance of each well at 450 nm was 

measured. 

 

5-Ethynyl-2 (EDU) assay 

 

Osteosarcoma cells were added to 6-well plates (5×105 

cells/well) with DMEM (10% FBS) and cultured for 

24 h. Then, the cells were incubated with 50 μM EdU 

reagent (Beyotime, Suzhou, China) at 37° C for 2.5 h, 

fixed with 4% paraformaldehyde (Servicebio, Wuhan, 

China) and 0.5% Triton reagent (Servicebio, Wuhan, 

China) for 30 min, and stained with 1× Apollo® reaction 

cocktail (Beyotime, Suzhou, China) for 40 min. Finally, 

cell nuclei was stained with DAPI (Servicebio, Wuhan, 

China), and cells were visualized using a fluorescence 

microscope (Nikon, Japan). 

 

Wound healing assay 

 

A total of 5×105 osteosarcoma cells were plated in 6-

well plates and allowed to reach 95% confluence. Then, 

a 200 µL pipette tip was used to form a wound by 

scraping. After washing with PBS three times to remove 

floating cells, wound healing was assessed at 0 h and 24 

h using a light microscope (40×). Migration ability was 

calculated according to the following formula: cell 
migration (%) = (area in treatment group at 0 h – area in 

treatment group at 24h) / (area in control group at 0 h – 

area in control group at 24 h) × 100%. 

Transwell assay 

 

A total of 2×104 osteosarcoma cells were plated in the 

upper chambers of a transwell plate (0.8μm, Corning, 

USA) containing Matrigel (Corning, USA) with 300 μL 

of FBS-free DMEM medium. Then, 700 μL of DMEM 

medium containing 10% FBS was placed in the lower 

transwell chamber as a chemoattractant. After culturing 

for 24 h, the transwells were fixed, stained with 1% 

crystal violet for 30 min, and visualized using a light 

microscope (100×). The invasive ability of cells was 

evaluated by the average number of invaded cells in 

five random fields. 

 

Immunoprecipitation 

 

Cells were lysed in weak RIPA buffer (Boster, Wuhan, 

China) containing 1% PMSF. The liquid was 

centrifuged and the protein was collected. Then, anti-

ANO5 (dilution 1:50) antibody and IgG (dilution 1:50; 

Beyotime; Hangzhou, China) were added for 6 h. A/G-

agarose beads (MCE, Wuhan, China) were then added 

and incubated for 3h. After washing three times with 

PBS, isolated immunoprecipitates attached to the beads 

were collected and analyzed using western blot. 

 

Confocal microscopy 

 

Osteosarcoma cells were injected into a confocal dish 

(5×105 cells/well) with DMEM (10% FBS) and 

cultured for 24 h. Then, the cells were fixed and 

treated with 0.5% Triton reagent for 8 min at room 

temperature. After blocking with 5% BSA, the cells 

were incubated with anti-ANO5, anti-NELL1, and 

anti-NELL2 antibodies at 4° C overnight. After 

incubating with secondary antibodies, nuclei were 

stained with DAPI (Servicebio, Wuhan, China), and 

the cells were visualized using a confocal microscope 

(Nikon, Japan). 

 

Animal experiments 

 

Ten female BALB/c nude mice (4-6 weeks old; weight 

16-18 g) were obtained from Beijing Huafukang 

Biotech (URL: http://www.hfkbio.com/). The mice 

were housed at 23–24° C, and the light-dark cycle was 

set at 12 h intervals. A total of 5 ×106 HOS cells with 

ANO5 inhibition or NC HOS cells were injected 

subcutaneously into the right armpits of the mice (n=5 

mice per group). Tumor proliferation was evaluated 

every three days, and the formula for calculating tumor 

volume was (length×width2)/2. After 30 days, the mice 

were sacrificed, and tumors were dissected to perform 
IHC. The animal experiments in this study were 

approved by the Animal Ethics Committee of Guizhou 

Medical University. 

http://www.hfkbio.com/
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Data analysis 

 

All data were analyzed using SPSS 20.0 software (IBM 

Corp., USA). ANOVA with Bonferroni’s post hoc test 

was used to analyze differences between multiple 

groups. T-tests were used to examine differences 

between two groups. P<0.05 was set as the cut-off for 

statistical significance. 

 

Data availability 

 

Data collected in this study are available from the 

corresponding author upon request. 
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