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INTRODUCTION 
 

In women, breast cancer (BC) is one of the leading 

causes of death, and is the leading cause of cancer-

related death [1]. Although early detection and 

advanced treatment methods for BC are rapidly being 

developed, further research is needed to clarify the 

underlying pathways and prognostic factors of BC. 

Cancer immune surveillance is a critical process 

whereby the immune system combats tumors [2]; thus, 

it is especially important to determine the immune 

escape mechanisms of BC and identify more effective 

immunotherapeutic targets so that BC patients can be 
treated more precisely. 

 

The tumor microenvironment contributes significantly to 

tumor development, and is characterized by an acidic pH. 

ATPase H+ Transporting Accessory Protein 1 

(ATP6AP1) is a component of a multi-subunit enzyme 

within Vacuole ATPase (V-ATPase) [3], and deficiencies 

in this protein can cause immunodeficiency, hepatopathy, 

cognitive impairment and abnormal protein glycosylation 

[4]. Due to its function as a proton pump, V-ATPase can 

help cancer cells excrete excess H+, reverse the 

transmembrane proton gradient and form a highly acidic 

extracellular environment while avoiding apoptosis [5]. 

A recent study indicated that salivary autoantibodies 

against ATP6AP1 could be used as biomarkers for the 

early detection of BC [3]. Therefore, ATP6AP1 may alter 

the immune microenvironment of BC and the prognoses 

of BC patients. 
 

Severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), a novel coronavirus of the family 
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ABSTRACT 
 

Abnormal ATPase H+ Transporting Accessory Protein 1 (ATP6AP1) expression may promote carcinogenesis. We 
investigated the association of ATP6AP1 with breast cancer (BC) and COVID-19. The Oncomine, Gene Expression 
Profiling Interactive Analysis, Human Protein Atlas and Kaplan-Meier plotter databases were used to evaluate 
the expression and prognostic value of ATP6AP1 in BC. ATP6AP1 was upregulated in BC tissues, and higher 
ATP6AP1 expression was associated with poorer outcomes. Data from the Tumor Immune Estimation Resource, 
Tumor-Immune System Interaction Database and Kaplan-Meier plotter indicated that ATP6AP1 expression 
correlated with immune infiltration, and that its prognostic effects in BC depended on tumor-infiltrating immune 
cell subtype levels. Multiple databases were used to evaluate the association of ATP6AP1 with 
clinicopathological factors, assess the mutation and methylation of ATP6AP1, and analyze gene co-expression 
and enrichment. The ATP6AP1 promoter was hypomethylated in BC tissues and differentially methylated 
between different disease stages and subtypes. Data from the Gene Expression Omnibus indicated that ATP6AP1 
levels in certain cell types were reduced after SARS-CoV-2 infections. Ultimately, higher ATP6AP1 expression was 
associated with a poorer prognosis and with higher or lower infiltration of particular immune cells in BC. BC 
patients may be particularly susceptible to SARS-CoV-2 infections, which may alter their prognoses. 
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Coronaviridae, was identified after the outbreak of the 

COVID-19 pandemic [6]. Other coronaviruses such as 

Middle East Respiratory Syndrome-related coronavirus 

in 2012 and Severe Acute Respiratory Syndrome 

coronavirus (SARS, also known as SARS-CoV-1) in 

2002 have led to massive epidemics across certain 

continents, and have especially impacted cancer patients 

[7, 8]. Given the increased incidence rate of SARS-

CoV-2, it is likely to co-exist with humans for a long 

time, like influenza. A previous report indicated that 

ATP6AP1 can function as a bait for the SARS-CoV-2 

nsp6 non-structural protein [9]. The interactions of 

cancer-related proteins with viruses may alter the 

prognoses of cancer patients [10]; however, the effects 

of ATP6AP1 on the prognoses of BC patients during 

the COVID-19 pandemic have not been described. 

 

In this study, we used public datasets to evaluate 

ATP6AP1 levels in BC tissues and to determine their 

correlation with clinicopathological features and patient 

prognoses. We also investigated tumor-immune 

infiltration and its association with the prognostic value 

of ATP6AP1 in BC. Additionally, we determined the 

genes and pathways associated with ATP6AP1 to clarify 

its function in BC. 
 

RESULTS 
 

ATP6AP1 levels in BC patients 
 

We first compared ATP6AP1 expression between BC 

tissues and normal tissues using the Oncomine database 

(Figure 1A). ATP6AP1 mRNA levels were significantly 

greater in BC tissues than in normal tissues in multiple 

datasets (P < 0.05). Then, we used Gene Expression 

Profiling Interactive Analysis (GEPIA) to compare 

ATP6AP1 mRNA levels between BC and normal tissues 

based on RNA sequencing data from The Cancer 

Genome Atlas (TCGA) and the Genotype-Tissue 

Expression (GTEx) database (Figure 1B). ATP6AP1 

mRNA levels were also significantly upregulated in BC 

tissues in this analysis (all P < 0.05). We then assessed 

 

 
 

Figure 1. ATP6AP1 levels in cancer tissues compared with normal tissues. (A) ATP6AP1 mRNA levels in samples from the 

Oncomine database. The numbers in the colored squares represent the number of involved studies. The different colors correspond to 
different ATP6AP1 levels, with red representing high expression and blue representing low expression. The darker the red color, the higher 
the expression, and the darker the blue color, the lower the expression. (B) ATP6AP1 mRNA levels in samples from the GEPIA database. Red 
indicates significant results. (C, D) ATP6AP1 protein levels in normal and cancerous breast tissues based on immunohistochemistry data 
from the HPA database (antibody: CAB015218, provided by Origene. Dilution: 1:30). 
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ATP6AP1 protein levels using the Human Protein Atlas 

(HPA) database, and found that ATP6AP1 was 

moderately expressed in normal breast tissues, but 

moderately or highly expressed in BC tissues. The 

representative immunohistochemistry results from the 

HPA database in Figure 1C and 1D illustrate that 

ATP6AP1 protein levels were greater in BC tissues than 

in normal tissues. Others were showed in the 

Supplementary Figure 1. 

 

Prognostic potency of ATP6AP1 in BC  

 

To determine the relationship between ATP6AP1 

expression and BC prognosis, we used the Kaplan-

Meier Plotter to determine the overall survival (OS) 

and relapse-free survival (RFS) or disease-free 

survival (DFS) of BC patients who were separated into 

two groups (high and low) based on the median 

ATP6AP1 level. As shown in Figure 2A and 2B, 

higher ATP6AP1 expression was associated with a 

poorer BC prognosis (OS hazard ratio = 1.81, log-rank 

P = 0.00024; RFS hazard ratio = 1.7, log-rank P = 

0.018). Data from TCGA in GEPIA confirmed that 

higher ATP6AP1 expression was associated with a 

significantly poorer prognosis in BC patients (all P < 

0.05; Figure 2C and 2D). 

 

Correlation of ATP6AP1 levels with tumor-

infiltrating immune cell (TIIC) and immune cell 

marker levels in BC 

 

We then investigated whether ATP6AP1 expression 

correlated with the levels of TIICs and immune cell 

markers in BC through Tumor Immune Estimation 

Resource (TIMER). Correlation analyses revealed that 

ATP6AP1 levels correlated remarkably with tumor 

purity and to varying degrees with immune cell levels. 

ATP6AP1 levels were negatively associated with the 

 

 
 

Figure 2. Survival curves in BC patients with higher and lower ATP6AP1 levels. (A, B) OS and RFS of BC patients from the Kaplan-

Meier plotter database (n = 1089 and n = 947, respectively). (C, D) OS and DFS curves of BC patients from GEPIA (n = 1070 and n = 1070, 
respectively). 
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levels of CD4+ T cells (Rho = –0.219, P = 2.76e-12), 

neutrophils (Rho = –0.194, P = 7.27e-10), type 2 T 

helper (Th2) cells (Rho =-0.205, P = 6.19e-11) and 

natural killer cells (Rho = –0.148, P = 2.67e-06) in BC 

tissues (Figure 3A). However, ATP6AP1 levels were 

positively associated with the levels of Tregs (Rho = 

0.165, P = 1.07e-07), macrophages (Rho = 0.149, P = 

2.52e-06) and M2 macrophages (Rho = 0.208, P = 

3.71e-11). The levels of memory B cells, CD8+ T cells, 

type 1 T helper (Th1) cells and M0/M1 macrophages 

were weakly associated with ATP6AP1 levels. 

 

Next, we used the Tumor-Immune System Interaction 

Database (TISIDB) to further assess the relationship 

between ATP6AP1 levels and TIIC levels in BC (Figure 

3B). Notably, ATP6AP1 levels correlated negatively 

with B cell, CD4+ T cell, Treg and macrophage levels, 

and exhibited a weak negative correlation with CD8+ T 

 

 
 

Figure 3. Correlation of ATP6AP1 expression with immune infiltration in BC samples from TIMER and TISIDB. The correlation of 

ATP6AP1 levels with the infiltrating levels of B cells, CD4+ T cells, CD8+ T cells, macrophages, Tregs, natural killer (NK) cells and neutrophils in 
BC samples from TIMER (A) and TISIDB (B), respectively (n = 1100). The CIBERSORT, TIMER, XCELL, QUANTISEQ and EPIC in Figure represents 
the algorithm which the database used. 
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cell levels (all P < 0.05). However, ATP6AP1 levels did 

not correlate significantly with neutrophil levels (P = 

0.113). Combining the results from Figure 3A and 3B, 

CD4+ T cells, Tregs and macrophages may strongly 

influence ATP6AP1 expression in BC, thus altering the 

prognoses of BC patients. 

 

We subsequently determined the correlations between 

the levels of diverse immune cell markers and 

ATP6AP1, while removing the influence of tumor 

purity. ATP6AP1 levels exhibited significant negative 

correlations with B cell, CD8+ T cell, macrophage and 

Treg surface marker levels (all P < 0.05; Table 1). 

Interestingly, no significant correlations between the 

levels of these immune cell markers and ATP6AP1 

remained when we removed the influence of the 

patient’s age. Nevertheless, ATP6AP1 expression may 

generally be associated with immune infiltration in BC. 

 

Survival analysis based on ATP6AP1 expression in 

BC patients with different immune cell subtype 

levels 

 

Since higher ATP6AP1 expression was associated with 

a poorer prognosis in BC patients, we used the TIMER 

to determine whether this association depended on the 

abundance of immune infiltrates in BC tissues (Figure 

4A). ATP6AP1 expression-based clinical outcomes 

correlated significantly with B cell levels (log-rank P = 

0.046). We then used Kaplan-Meier Plotter to assess the 

relationship between ATP6AP1 levels and clinical 

outcomes after stratifying patients according to the 

levels of other types of TIICs (Figure 4B). BC patients 

with higher ATP6AP1 levels had poorer prognoses, 

whether they had enriched or reduced levels of B cells, 

CD4+ T cells, eosinophils, macrophages, mesenchymal 

stem cells, natural killer T cells, Th1 cells or Th2 cells 

(all P < 0.05). On the other hand, BC patients with 

higher ATP6AP1 levels had poorer prognoses if they 

had enriched basophil levels, reduced CD8+ T cell 

levels or reduced Treg levels (all P < 0.05), but not if 

they had reduced basophil levels, enriched CD8+ T cell 

levels or enriched Treg levels. Thus, immune 

infiltration may partly explain the poorer prognoses of 

BC patients with higher ATP6AP1 levels.  

 

The clinicopathological significance of ATP6AP1 

expression and methylation in BC  

 

Next, we investigated whether ATP6AP1 expression 

was associated with clinical factors in BC patients. 

ATP6AP1 levels correlated positively with the 

pathological stage (Pr(>F) = 0.043) and clinical stage, 
with an especially pronounced difference between 

stages 1 and 3 (P < 0.05; Figure 5A and 5B). As for 

lymph node metastasis, ATP6AP1 levels were 

significantly greater in N1 than in N0 BC patients (P < 

0.05; Figure 5C). However, ATP6AP1 expression had 

little association with other clinical and pathological 

factors, as shown in Supplementary Figure 2. 

 

Epigenetic changes in DNA methylation (whether they 

occur within a single gene or across the genome) are 

important contributors to tumor initiation and 

development [11]. Thus, we used the UALCAN 

database to compare the methylation of the ATP6AP1 

promoter between BC tissues and normal tissues. The 
ATP6AP1 promoter was significantly hypomethylated 

in BC tissues compared with normal tissues (P < 0.05; 

Figure 5D). Moreover, the methylation of the ATP6AP1 

promoter was significantly associated with the subtypes 

and disease stages of BC, especially differing between 

luminal and triple-negative BC and between stages 1 

and 2 (all P < 0.05; Figure 5E and 5F). Thus, 

hypomethylation of ATP6AP1 may promote the 

occurrence and development of BC. We also assessed 

the genetic variation of ATP6AP1 in BC tissues, and 

found that there was approximately 1.4% variation due 

to fusions, amplifications, deep deletions, missense 

mutations and truncating mutations of unknown 

significance (Supplementary Figure 3). These findings 

suggested that variations in ATP6AP1 may contribute to 

BC tumorigenesis. 

 

ATP6AP1-related network and functional analysis in 

BC 

 

To determine the biological significance of ATP6AP1 in 

BC, we used the function module of UALCAN to 

examine genes that were co-expressed with ATP6AP1 

in the BC cohort. The top 48 genes with significant 

positive or negative correlations with ATP6AP1 levels 

are presented in Table 2. We also analyzed the co-

expression of proteins with ATP6AP1 in BC using the 

Search Tool for the Retrieval of Interacting Genes 

(STRING) database. Twenty-one proteins were 

significantly co-expressed with ATP6AP1, and these 

proteins were used to construct a protein-protein 

interaction network, which contained 21 nodes and 210 

edges (Figure 6A). Most of these proteins were 

components of V-ATPase, except for ATP6AP2, 

LAMTOR1 (Late Endosomal/Lysosomal Adaptor, 

MAPK and mTOR Activator 1) and Renin, and all of 

them have previously been implicated in BC [12, 13]. 

 

Next, we evaluated the enriched Gene Ontology (GO) 

biological functions and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways of the proteins in this 

interaction network (Figure 6C and 6D). In terms of 
biological function, the proteins were mainly associated 

with the ‘proton-transporting two-sector ATPase 

complex’, ‘vacuolar proton-transporting V-type ATPase
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Table 1. Correlation analysis between ATP6AP1 and immune cell type markers in TIMER database. 

Cell type 
Gene 

markers 

None Purity Age 

COR P COR P COR P 

B Cells CD19 –0.224  5.12E-14 –0.121  1.31E-04 0.067  5.57E-01 

 FCRL2 –0.224  5.75E-14 –0.128  5.48E-05 –0.066  5.65E-01 

 CD38 –0.214  7.37E-13 –0.116  2.52E-04 0.025  8.27E-01 

CD8+T Cells CD27 –0.222  1.08E-13 –0.104  1.02E-03 –0.072  5.30E-01 

 CD3D –0.245  1.85E-16 –0.136  1.81E-05 –0.097  3.98E-01 

 CD8A –0.169  1.61E-08 –0.059  6.48E-02 –0.138  2.30E-01 

Neutrophils CXCR2 –0.027  3.65E-01 0.043  1.79E-01 –0.060  5.99E-01 

 SELL –0.094  1.84E-03 0.032  3.10E-01 –0.001  9.94E-01 

 FCGR3B 0.033  2.67E-01 0.069  2.98E-02 0.083  4.70E-01 

Macrophages CD14 –0.178  2.86E-09 –0.110  5.08E-04 –0.216  5.77E-02 

 CD163 –0.078  9.43E-03 0.007  8.19E-01 –0.014  9.05E-01 

 CD84 –0.013  6.58E-01 0.086  6.84E-03 –0.011  9.25E-01 

Dendritics CCL18 –0.208  3.56E-12 –0.156  8.35E-07 –0.076  5.07E-01 

 CD209 –0.128  1.97E-05 –0.030  3.38E-01 –0.121  2.93E-01 

 LYZ –0.149  6.65E-07 –0.043  1.80E-01 –0.160  1.61E-01 

NK cells CD69 –0.163  5.54E-08 –0.036  2.59E-01 –0.168  1.41E-01 

 NKG7 –0.231  7.68E-15 –0.124  9.17E-05 –0.182  1.11E-01 

Th1 cells CCR1 –0.111  2.37E-04 –0.035  2.66E-01 –0.132  2.48E-01 

 CCR5 –0.164  4.44E-08 –0.050  1.17E-01 –0.165  1.49E-01 

 CXCR3 –0.189  2.93E-10 –0.074  2.01E-02 –0.102  3.73E-01 

Treg BIRC3 –0.249  5.43E-17 –0.152  1.49E-06 0.073  5.27E-01 

 CCR4 –0.070  2.09E-02 0.060  5.82E-02 0.082  4.76E-01 

 FOXP3 –0.158  1.32E-07 –0.062  4.95E-02 0.081  4.79E-01 

Monocytes CD86 –0.133  9.24E-06 –0.035  2.69E-01 –0.177  1.21E-01 

 MNDA –0.087  3.83E-03 0.028  3.86E-01 –0.127  2.69E-01 

aCOR, rho value of Spearman’s correlation; Purity, correlation adjusted by purity; bAge, correlation adjusted by age. 
 

complex’, ‘vacuolar membrane’, ‘proton-transporting two-

sector ATPase complex (catalytic domain)’, ‘proton-

exporting ATPase activity (phosphorylative mechanism)’, 

‘apical part of cell’, ‘cellular response to increased oxygen 

levels’ and ‘filcolin-1-rich granule membrane’. In the 

KEGG pathway enrichment results, three pathways were 

the most likely to represent the function of ATP6AP1 in 

BC: ‘V-type ATPase (eukaryotes)’, ‘mTOR signaling 

pathway’ and ‘lysosome’. 

 

We also used the Gene-Cloud of Biotechnology 

Information (GCBI) database to further explore the 

regulators of ATP6AP1 in BC. The long noncoding 

RNAs (lncRNAs), microRNAs (miRNAs) and trans-

cription factors (TFs) associated with ATP6AP1 are 

shown in Figure 6B. 

SARS-CoV-2 infections may reduce the expression 

of ATP6AP1 

 

ATP6AP1 can be used as a bait through which SARS-

CoV-2 nsp6 infects people [9]. Thus, we used the 

GSE153277 and GSE155241 datasets to assess changes 

in ATP6AP1 expression after SARS-CoV-2 infections. 

The results from GSE153277 indicated that ATP6AP1 

levels in induced alveolar type II epithelial-like (iAT2) 

cells were significantly lower in the SARS-CoV-2-

infected group than in the control group (Figure 7A). 

Likewise, in GSE155241, ATP6AP1 levels in human 

pluripotent stem cell-lung organoids (hPSC-LOs) 

declined significantly after the cells were infected with 

SARS-CoV-2 (Figure 7B). These findings suggested that 

ATP6AP1 levels decrease after SARS-CoV-2 infections. 
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Tumor tissues expressing high levels of ATP6AP1 

may be particularly susceptible to viral interference. 

Since SARS-CoV-2 infections can reduce ATP6AP1 

levels, and ATP6AP1 expression is associated with 

immune infiltration in BC, SARS-CoV-2 may 

influence the occurrence, development and prognosis 

of BC. 

 

DISCUSSION 
 

In this study, we comprehensively analyzed the 

involvement of ATP6AP1 in BC. In the context of the 

novel coronavirus, it is particularly important to 

determine the prognoses of cancer patients, especially 

BC patients. As ATP6AP1 is known to bind to SARS-

CoV-2, understanding the contribution of ATP6AP1 to 

the development and prognosis of BC is greatly 

significant. We found that ATP6AP1 levels were 

significantly greater in BC tissues than in normal breast 

tissues, and correlated significantly with the cancer 

stage and lymph node metastasis status (N1 vs. N0). 

These results indicated that ATP6AP1 may be an ideal 

biomarker for early BC diagnosis and nodal metastasis 

detection. Moreover, higher ATP6AP1 expression was 

associated with poorer OS and DFS in BC patients. As 

far as we know, this is the first study to report the 

association of greater ATP6AP1 mRNA levels with a 

poorer prognosis in BC patients. 

 

We also found that ATP6AP1 levels correlated with the 

levels of TIICs in BC, especially those of CD4+ T cells, 

Tregs and macrophages. However, in terms of whether 

the correlations were positive or negative, the results 

from TIMER and TISIDB differed from one another for 

Tregs and macrophages. The levels of most immune 

cell types correlate negatively with tumor purity, so 

correcting for purity can help to clarify the association 

of gene expression with immune cell infiltration. Since 

TIMER corrects for tumor purity, its results are likely to 

be more accurate, especially given that this database 

employs six algorithms [14]. Moreover, TISIDB does 

not contain a subtype analysis for macrophages. 

 

 
 

Figure 4. Survival curves based on ATP6AP1 levels stratified according to TIIC levels in BC samples from TIMER and Kaplan-
Meier Plotter. (A) Data from TIMER (n = 1100). (B) Data from Kaplan-Meier Plotter. 
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Our results indicated that ATP6AP1 expression 

correlated negatively with CD8+ T cell and B cell 

infiltration, but positively with Treg and macrophage 

infiltration. Tumor-associated macrophages can 

dramatically influence tumor initiation and progression 

[15], and have been associated with a poor prognosis in 

BC [16]. M2 (anti-inflammatory) tumor-associated 

macrophages have been implicated in the progression of 

BC to invasive carcinoma. Regarding T cells, CD8+ T 

cell infiltration is known to induce an anti-tumor 

cytotoxic response [17], whereas the prognostic value of 

CD4+ immune cell infiltration is somewhat 

controversial. CD4+ T cells comprise at least four 

lineages – Th1, Th2, Th17 and Treg cells – which differ 

in their functions. CD4+ Th1 cells have been shown to 

prevent tumor growth [16], while CD4+ Th2 and CD4+ 

forkhead box P3+ lymphocytes (Tregs) are considered 

to promote tumor growth [15, 16, 18]. CD4+ Tregs can 

suppress host-derived adaptive anti-tumor immunity by 

inhibiting tumor-specific cytotoxicity [19]. A 

comprehensive retrospective analysis indicated that a 

greater density of infiltrating forkhead box P3+ immune 

cells was associated with poorer OS in BC patients [20]. 

As for B cells, greater CD20+ B cell infiltration has 

been associated with a better survival rate in BC 

patients [21]. Since ATP6AP1 levels correlated 

negatively with CD8+ T cell and B cell levels in the 

present study, high ATP6AP1 expression in BC tissues 

may inhibit the cytotoxic response to tumor cells, 

resulting in poor outcomes. The positive correlation of 

ATP6AP1 levels with CD4+ Treg and macrophage 

levels further explains why patients with higher 

ATP6AP1 levels had poorer prognoses, since these 

TIICs can promote tumor growth. Our findings indicate 

that ATP6AP1 may be a key contributor to immune 

suppression and immune escape, and may worsen the 

prognoses of BC patients by regulating immune 

infiltration. 

 

Previous studies have demonstrated that the loss of 

ATP6AP1 can be carcinogenic; for instance, an 

inactivating mutation in ATP6AP1 was proposed to be 

the driving factor for granular cell tumor development 

[22]. On the other hand, the overexpression of 

oncogenes due to hypomethylation is considered to be 

an important mechanism of carcinogenesis [23], and 

DNA methylation is a candidate early biomarker of BC 

progression [24]. The luminal B subtype of BC is 

characterized by a hypermethylated phenotype, while 

the basal-like subtype is characterized by hypo-

methylation [25]. We found that the ATP6AP1 promoter 

was markedly hypomethylated in BC tissues compared 

with normal tissues, and that its methylation level 

differed significantly between the luminal and 

 

 
 

Figure 5. Associated clinicopathological factors and promoter methylation levels of ATP6AP1 in BC. (A) ATP6AP1 levels in 
various pathological substages of BC in GEPIA. (B) ATP6AP1 levels in different disease stages of BC in UALCAN. (C) The correlation between 
lymph node metastasis and ATP6AP1 expression in BC. (D) ATP6AP1 promoter methylation profiles of different sample types. (E) ATP6AP1 
promoter methylation levels of different BC disease stages. (F) ATP6AP1 promoter methylation levels of different major subclasses of BC. *P 
< 0.05, **P < 0.01, ***P < 0.001. 
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Table 2. The co-expression genes of ATP6AP1 analyzed by UALCAN. 

Positively Genes Pearson CC Negatively Genes Pearson CC 

GDI1 0.71 RPS27A –0.44 

BCAP31 0.6 RPS7 –0.40 

ARF3 0.57 RPS19 –0.39 

P4HTM 0.56 CSDA –0.38 

TMBIM6 0.56 RPL37 –0.38 

NECAB3 0.52 RPS25 –0.38 

POMGNT1 0.52 C11orf75 –0.37 

TMED4 0.52 RPS18 –0.36 

CETN2 0.51 RPL35A –0.35 

PIGT 0.50 RPL24 –0.35 

FAM134A 0.50 RPS10 –0.35 

CXorf40B 0.50 EEF1B2 –0.35 

SPRYD3 0.50 RPL5 –0.35 

RELL1 0.50 RPL11 –0.35 

ATP6V0A1 0.50 TUBB6 –0.34 

CXXC5 0.49 RPL18A –0.34 

RAB5B 0.49 RPS6 –0.34 

HAGH 0.49 RPL27A –0.34 

PLXNA3 0.49 OBFC2A –0.33 

RAB3A 0.49 RPS12 –0.33 

ATP6V0B 0.48 C6orf145 –0.33 

LRBA 0.48 RPL31 –0.33 

WFS1 0.48 EEF1G –0.33 

CDKN2AIPNL 0.48 UBE2E3 –0.33 

aPearson CC value: 0·00–0·19 “very weak,” 0·20–0·39 “weak,” 0·40–0·59 “moderate,” 0·60–0·79 “strong,” 0·80–1·0 “very 
strong.  

 

triple-negative subtypes. We also observed that 

ATP6AP1 promoter methylation differed significantly 

among BC stages, most significantly between stage 1 

and 2. Epigenetic modifications of genes may alter the 

tumor immune microenvironment and induce strong 

anti-tumor immune responses [11, 24, 26]. Thus, the 

hypomethylation of ATP6AP1 may explain its increased 

mRNA levels in BC tissues. 

 

Our analysis indicated that ATP6AP1 expression in 

certain cell types may be reduced after SARS-CoV-2 

infections; thus, its expression in tumor tissues may also 

be reduced following such infections. Considering that 

ATP6AP1 was upregulated in BC tissues, these tissues 
may be more susceptible to viral interference from 

SARS-CoV-2. Moreover, in our protein-protein inter-

action network analysis, one of the proteins found to 

interact with ATP6AP1 was Renin, the rate-limiting 

enzyme of the renin-angiotensin system. Renin not only 

has vital functions in cardiovascular and kidney disease, 

but also is associated with diverse cancers, especially 

BC [27]. Angiotensin converting enzyme 2, a key 

regulator of the renin-angiotensin system, has been 

identified as a functional receptor for SARS-CoV-2 

[28]. Given these findings, it is possible that SARS-

CoV-2 could alter ATP6AP1 expression in BC tissues, 

thus disturbing the tumor microenvironment and 

influencing the development and prognosis of BC. 
 

Our GO and KEGG enrichment analyses indicated that 

the proteins co-expressed with ATP6AP1 were mainly 

components of V-ATPase and participants in the 
mammalian target of rapamycin (mTOR) pathway. V-

ATPase regulates the extracellular environment of 

tumor cells and the pH of many intracellular 

compartments, thus enabling tumor cells to maintain a 
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Figure 6. Functional enrichment and regulatory network analyses of ATP6AP1. (A) The protein-protein interaction network of 

ATP6AP1. (B) Regulatory network analysis conducted in GCBI. (C) GO functional analysis. (D) KEGG pathway analysis. 

 

 
 

Figure 7. Changes in ATP6AP1 levels after SARS-CoV-2 infections. (A) Comparison of ATP6AP1 levels between the mock (n = 3) and 

SARS-CoV-2-infected groups (n = 6) of iAT2 cells from the GSE153277 dataset. Triplicate results are shown for iAT2 cells cultured at the air-
liquid interface with a mock virus (mock, n = 3), with SARS-CoV-2 one day post-infection (1 dpi, n = 3), and with SARS-CoV-2 four days post-
infection (4 dpi, n = 3). (B) ATP6AP1 levels in the SARS-CoV-2-infected group (n = 6) and the mock group (n = 3) of hPSC-LOs from the 
GSE155241 dataset. CPM: counts per million. RPKM: reads per kilobase million. 
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high metabolic rate and contributing to their 

autophagy, invasion, migration and drug resistance [5, 

29]. Enhanced phosphoinositide 3-kinase/AKT/mTOR 

signaling has been associated with BC and found to 

promote drug resistance [30]. Everolimus, which 

inhibits mTORC1 and induces AKT phosphorylation, 

has been approved for the treatment of post-

menopausal women with hormone receptor-positive 

and human epidermal growth factor receptor 2-

negative advanced BC [31]. Therefore, it is extremely 

likely that these co-expressed genes and interacting 

proteins contribute to the tumorigenic effects of 

ATP6AP1 in BC. 

 

We also identified the lncRNAs, miRNAs, TFs and 

downstream genes associated with ATP6AP1 in BC. A 

number of these genes are known to be involved in 

cancer, including the downstream gene epidermal 

growth factor receptor (EGFR), the lncRNAs DSCR8 
and ADARB2-AS1, and the TF heat shock factor 4 

(HSF4). V-ATPase and EGFR can antagonize one 

another [32]. The induction of EGFR under hypoxic 

conditions has been found to promote cell proliferation 

and migration, and patients with hypoxic breast tumors 

and EGFR hypomethylation may benefit from EGFR 

inhibition [33]. Unfortunately, the specific mode of 

interaction between EGFR and ATP6AP1 in BC is still 

unknown. Dysregulation of the lncRNA DSCR8 has 

been observed in uterine cancer, melanoma and liver 

cancer [34], and upregulation of ADARB2-AS1 has been 

detected in human epidermal growth factor receptor 2-

positive BC [35]. Knockout or overexpression of either 

HSF4 and HSF2 have been shown to increase the 

hypoxia-inducible factor-1α expression in MCF-7 BC 

cells [36], though it is unclear whether HSF4 directly 

contributes to the development of BC. These genes are 

probably part of the regulatory network of ATP6AP1 in 

BC; however, their exact functions remain to be 

determined. 

 

Our study had several limitations. Firstly, the number of 

normal breast tissue specimens available in the 

databases was limited, which may have led to 

inaccurate results. Additional evidence is needed at the 

protein level (e.g., from immunohistochemistry or 

Western blotting experiments) to verify that ATP6AP1 

is differentially expressed between normal and 

cancerous breast tissues. Secondly, due to the 

limitations of the databases, we were not able to explore 

the relationship between ATP6AP1 expression and 

immune infiltration in greater detail. Thirdly, the 

mechanism whereby ATP6AP1 promotes a poor 

prognosis in BC was not determined. Future research is 
urgently needed to confirm our substantial results. In 

summary, ATP6AP1 was significantly upregulated in 

BC tissues, and higher ATP6AP1 expression was 

associated with a poorer prognosis and with higher or 

lower infiltration of particular immune cells in BC. The 

poorer prognoses of BC patients with higher ATP6AP1 

levels may have been due to the association of 

ATP6AP1 with immune infiltration, and this possibility 

is worthy of further research. Tumor tissues may be 

especially prone to SARS-CoV-2 infections, which may 

downregulate ATP6AP1, ultimately impacting the 

prognoses of BC patients with COVID-19. 

 

MATERIALS AND METHODS 
 

Differential expression analysis 

 

To compare ATP6AP1 expression between BC and 

adjacent normal tissues, we used the Oncomine [37] 

(http://www.oncomine.org), GEPIA [38] 

(http://gepia.cancer-pku.cn/index.html) and HPA [39] 

(http://www.proteinatlas.org) databases. The Oncomine 

database draws relevant datasets directly from the 

Stanford Microarray Database, the National Center for 

Biotechnology Information Gene Expression Omnibus 

(GEO), published literature, etc. In Oncomine, mRNA 

data were selected with P = 0.05 and fold-change = 1.5 

as the threshold values. The datasets in GEPIA are 

based on TCGA and GTEx, which contain normal 

tissue data for comparison. 

 

The HPA database is a Swedish project to map all 

human proteins in cells, tissues and organs by 

integrating data from TCGA, HPA datasets, the GTEx 

consortium and recount2. We used the HPA database to 

assess ATP6AP1 protein levels in tumors and adjacent 

normal tissues. The antibody used to obtain the 

immunohistochemistry results was CAB015218 

(Origene) at a dilution of 1:30. The immunohisto-

chemistry results and antibody information are shown in 

Figure 1; however, due to the number of specimens in 

the database, we selected only a representative group 

for the figure, and placed the rest in the Supplementary 

Material. 

 

GEO is a common functional genomics data repository. 

We analyzed expression profiles from GSE153277 [40] 

and GSE155241 [41]. GSE153277 contains nine 

samples from iAT2 cells infected with SARS-CoV-2 or 

a mock virus. GSE155241 contains data from hPSC-LO 

cells cultured with SARS-CoV-2 or a mock virus. Nine 

samples were selected from a total of 18. The 

GPL18573 Illumina NextSeq 500 (Homo sapiens) and 

GPL24676 Illumina NovaSeq 6000 (Homo sapiens) 

platforms were used to sequence the respective datasets. 

ATP6AP1 levels were compared between the control 

and SARS-CoV-2 groups using the Sangerbox tool, a 

free online platform for data analysis (http://www. 

sangerbox.com/tool). 

http://www.oncomine.org/
http://gepia.cancer-pku.cn/index.html
http://www.proteinatlas.org/
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Prognostic analysis 

 

To assess the clinical significance of ATP6AP1, we 

used RNA sequencing data from Kaplan-Meier plotter 

[42] (https://kmplot.com) to evaluate the OS and RFS of 

BC patients based on ATP6AP1 expression. Kaplan-

Meier plotter includes data from GEO, the European 

Genome-Phenome Archive and TCGA. We also used 

data from GEPIA to determine the association of 

ATP6AP1 expression with BC patient survival. In 

addition, we performed survival analyses based on 

ATP6AP1 expression stratified by TIIC subtype levels 

in BC tissues. 

 

Immune infiltration analysis  

 

The TIMER 2.0 database [14] (http://timer.cistrome. 

org/) is a comprehensive resource for the systematic 

analysis of immune infiltration in different cancer types 

based on data from TCGA. It integrates six state-of-the-

art algorithms, including TIMER, xCell, MCP-counter, 

CIBERSORT, EPIC and quanTIseq. TISIDB [43] 

(http://cis.hku.hk/TISIDB/index.php) is a web portal for 

detecting tumor and immune system interactions. 

TISIDB integrates data from TCGA, PubMed literature, 

other public databases (UniProt, GO, DrugBank, etc.) 

and high-throughput sequencing analyses. The gene set 

variation analysis package was used to infer tumor-

infiltrating lymphocyte levels in TISIDB. We further 

explored the relationship between ATP6AP1 and TIIC 

levels in BC and analyzed the surface markers of TIICs 

using the CellMaker [44] (http://biocc.hrbmu.edu.cn/ 

CellMarker/) database. 

 

Genomic analysis 

 

To analyze the mutation and copy number variation of 

ATP6AP1 in BC, we used the cBioPortal database [45, 

46] (https://www.cbioportal.org), which contains 

numerous multidimensional cancer genomics datasets 

from various studies. The promoter methylation status 

of ATP6AP1 and the associated clinical features were 

explored using UALCAN [47] (http://ualcan.path. 

uab.edu/index.html), a comprehensive, user-friendly, 

interactive web resource for analyzing cancer OMICS 

data (TCGA and MET500). 

 

Gene co-expression and functional enrichment 

analyses 

 

We used the UALCAN database to determine the 

genes that were co-expressed with ATP6AP1 in BC. 

The STRING database [48] (https://string-db.org) was 

used to construct the protein-protein interaction 

network of ATP6AP1 in BC. GO and KEGG  

enrichment analyses of ATP6AP1 and its interacting 

proteins were conducted using Metascape [49] 

(https://metascape.org), an integrated web-based 

portal. 

 

Network analysis 

 

The lncRNAs, miRNAs and TFs associated with 

ATP6AP1 were assessed using GCBI (https://www. 

gcbi.com.cn), a resource based on multiple databases 

and published studies. 

 

Statistical analysis 

 

The log-rank test was used to analyze patients’ 

outcomes. The correlations of ATP6AP1 levels with 

TIIC or immune cell marker levels were evaluated using 

Spearman's correlation analyses. The association of 

ATP6AP1 expression with pathological staging was 

determined using one-way analysis of variance with 

data from GEPIA. Student’s t-test was used to analyze 

the association of ATP6AP1 expression with clinical 

factors from UALCAN. Wilcoxon’s signed rank test 

was used to compare ATP6AP1 levels between the 

control and SARS-CoV-2-infected groups. Spearman’s 

method was used to determine the correlation 

coefficients between genes in the co-expression 

analysis. All results with P-values <0.05 were 

considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. ATP6AP1 protein levels in normal (A–E) and cancerous breast tissues (F, G) based on immunohistochemistry data 

from the HPA database (antibody: CAB015218, provided by Origene. Dilution: 1:30). 

  

 

 

 
 

Supplementary Figure 2. The survival analysis of ATP6AP1 expression based on subtype (A) and gender (B) of BC. 

 



 

www.aging-us.com 16921 AGING 

 
 

Supplementary Figure 3. The mutation analysis of ATP6AP1 in BC. (A) The genetic alternation condition of ATP6AP1 in BC (n = 7274). 

(B, C) The summary of alternation frequency based on different datasets and cancer types in BC (n = 7274). (D–G) The prognosis of ATP6AP1 
based on its alternation condition. 

 


