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INTRODUCTION 
 

Clinically, glioblastoma (GBM) ranks as most prevalent 

central nervous system cancer comprising 55.4% of all 

and 15% of all the central nervous systems, with an 

occurring percentage of 3.2% out of 100,000 people [1–

4]. World Health Organization (WHO) has classified 

glioblastoma as the grade IV of astrocytic tumors, 

characterized by mitotic activity, anaplasia, cytological 

atypia, microvascular proliferation, and necrosis [5–7]. 

In recent decades, although there are a variety of 

therapeutic strategies including surgery, radiotherapy, 

and chemotherapy, it remains incurable with recurrence 

and poor prognosis, and infected patients after diagnosis 

survive for 15 months with a 5.5% 5-year survival rate 

[8–10]. Meanwhile, the increasing incidence of glioma 

raises the importance and urgency of its diagnosis and 

therapies. To further improve the survival period and 

quality of life of patients, accurate molecular bio-

markers are urgently needed. 
 

Recently, ferroptosis is an emerging approach that 

has fetched much attention from researchers. It is 

considered an iron-dependent cell death, which is 
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ABSTRACT 
 

Background: Glioblastoma (GBM) is the most common type of brain cancer with poor survival outcomes and 
unsatisfactory response to current therapeutic strategies. Recent studies have demonstrated that ferroptosis-
related genes (FRGs) are linked with the occurrence and development of GBM and may become promising 
biological indicators in GBM therapy. 
Methods: We systematically assessed the relationship between FRGs expression profiles and prognosis in 
glioma patients based on the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets 
to establish a risk score model according to the gene signature of multiple survival-associated DEGs. Further, 
the differences between the tumor microenvironment score, immune cell infiltration, immune checkpoint 
expression levels, and drug sensitivity in the high- and low-risk group are analyzed through a variety of 
algorithms in R software. 
Results: GBM patients were divided into two subgroups (high- and low-risk) according to the established risk 
score model. Patients in the high-risk group showed significantly reduced overall survival compared with those in 
the low-risk group. Also, we found that the high-risk group showed higher ImmuneScore and StromalScore, 
while different subgroups have significant differences in immune cell infiltration, immune checkpoint expression 
levels, and drug sensitivity. In summary, we developed and validated an FRGs risk model, which served as an 
independent prognostic indicator for GBM. Besides, the two subgroups divided by the model have significant 
differences, which provides novel insights for further studies as well as the personalized treatment of patients. 
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triggered by high levels of lipid hydroperoxide [11–

14]. Ferroptosis contribute to occurrence and 

development of diverse disorders e.g., blood diseases, 

kidney damage, nervous system diseases, and cancers 

[15–17]. For instance, non-thermal plasma (NTP) splits 

ferritin and reduces Fe3
+ to Fe2

+, eliminating oral 

squamous cell carcinoma cells [18]. In lung cancer, 

blockade of NFS1, induces iron-starvation response 

and ferroptosis [19]. Besides, withaferin A can kill 

tumors in high-risk neuroblastoma via Kelch-like ECH-

associated protein 1 (KEAP1) -Nrf2 axis, a non-

canonical ferroptosis pathway [20]. Furthermore, it is 

reported that cisplatin together with inhibition of GPX4 

can initiate ferroptosis and synergistically improved 

chemotherapeutic efficacy in GBM [21]. However, the 

effect of ferroptosis and ferroptosis-related genes in 

GBM is still not well studied, and they are great 

treatment value in GBM that is worthy of further 

researches. 

 

In the current investigation, the features of ferroptosis-

related genes (FRGs) in GBM were characterized using 

data from the TCGA and CGGA data sets. An 

individualized signature of FRGs was constructed and 

validated for GBM patients, which holds promising 

prospects for diagnosis and prognosis application in the 

future. In addition, the FRGs model classified GBM 

patients into two subgroups. Different subgroups have 

significant differences in tumor microenvironment 

score, immune cell infiltration, and immune checkpoint 

expression levels, which may provide help for the 

development of GBM novel immunotherapy. Also, we 

investigated candidate drugs targeting this FRGs-related 

signature via the publicly available drug sensitivity 

database. At last, we preliminarily performed the in 
vitro protein expression level of the genes in our model 

through western blot. 

 

MATERIALS AND METHODS 
 

Data collection 

 

RNA sequencing data (TCGA-GBM) of 169 GBM 

samples and 5 normal tissue samples with their  

clinical details were retrieved from TCGA 

(http://cancergenome.nih.gov/). However, some 

samples were excluded which were without survival 

time and finally 165 GBM samples from TCGA were 

considered in this study (Supplementary Table 1). Using 

DESeq2 package, we carried out preprocessing of raw 

data. Subsequently, the |log2 fold change (FC)| ≥ 1 and 

false discovery rate (FDR) < 0.05 were employed to 

identify differentially expressed FRGs. The clinical 

information and RNA-seq transcriptome data of the 

samples (dataset ID: mRNAseq_325, dataset ID: 

mRNAseq_693) were retrieved from the CGGA 

(http://www.cgga.org.cn/). In this study, TCGA data 

was used as the training set, and the CGGA data was 

used as the validation set. Next, 60 genes involved in 

ferroptosis were obtained from published studies [22–

25] which are outlined in Supplementary Table 2. 

 

Design of a PPI network 

 

With the aim of analyzing the protein-protein 

interaction information between different genes, the 

STRING (https://string-db.org/) online platform was 

utilized to evaluate the interactions among those FRGs 

and hided disconnected nodes in the network. The 

Cytoscape_v3.7.0 software was applied in the 

construction of a visual PPI network [26–29]. 

 

KEGG pathway and GO enrichment analysis 

 

The “clusterProfiler” R package [30] was applied in the 

enrichment analysis of differentially expressed FRGs 

based on Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Gene Ontology (GO) and analyses. P < 

0.05 represented statistical significance. 

 

Prognostic model construction and evaluation 

 

Based on the FRGs in TCGA first selected prognosis-

related FRGs by univariate Cox regression, a 

multivariate Cox proportional hazards regression model 

was designed for predicting GBM patients’ prognosis. 

In this model, we determined risk scores for each 

sample according to the following formula: 

Risk Score = ∑ 𝐸𝑥𝑝𝑖 𝛽𝑖𝑛
𝑖=1  

Where Exp is the gene expression value, β stands for 

the regression coefficient [31–33]. 

 

Further, the GBM patients were assigned into low- and 

high-risk groups based on risk score cutoff values. The 

groups were subjected to survival analysis using the 

Kaplan-Meier method with the log-rank test. In 

addition, an ROC curve was developed using the 

“SurvivalROC” R package which was then applied in 

evaluation of the prognosis prediction ability of the 

designed model. A nomogram was drawn to assess the 

OS based on the “rms” R package. The performance of 

the nomogram was further clarified using CGGA as the 

validation cohort. P < 0.05 represented statistical 

significance. 

 

Generation of ImmuneScore and StromalScore 

 

The ratio of immune to stromal components for every 
sample in the tumor microenvironment was determined 

using the ESTIMATE package [34], which was shown 

as two scores: StromalScore and ImmuneScore. Higher 
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scores correlated with higher ratios of in the tumor 

microenvironment. 

 

Calculation of immune cell type fractions 

 

The CIBERSORT was applied for estimating 22 

immune cell types fractions (neutrophils, eosinophils, 

activated mast cells, resting mast cells, activated 

dendritic cells, resting dendritic cells, macrophages M2, 

macrophages M1, macrophages M0, monocytes, 

activated NK cells, resting NK cells, gamma delta T 

cells, T cells regulatory, follicular helper T cells, 

activated memory CD4 T cells, resting memory CD4 T 

cells, naive CD4 T cells, CD8 T cells, plasma cells, 

memory B cells, and naive B cells) between subjected 

with high -and low-risk scores. 

 

GSEA functional analysis 

 

To characterize pathways associated with low- and 

high-risk subgroups, the Gene Set Enrichment Analysis 

(GSEA software, version 4.0.1) was applied. We set 

number of random sample permutations at 1000, and 

significance cut-off values at P < 0.05. 

 

Cell culture 

 

The normal human glial cell line (HEB) was bought 

from Otwo Biotech (China). HS 683 cell line, H4 cell 

line, and U251 cell line were all purchased from the 

Cell Resource Center, Peking Union Medical College. 

These cells were passaged with DMEM (Hyclone), 

enriched with 10% FBS (Hyclone) in 37 Celsius and 

5% CO2 incubator. 

 

Western blot 

 

The protein expression levels were determined as 

previously reported with some modifications [35–37]. 

Antibodies used were: Anti-STEAP3 (1/1000 dilution, 

Abcam, ab151566, UK), Anti-CRYAB (1/1000 

dilution, Abcam, ab76467, UK), Anti-MT1G (1/1000 

dilution, Omnimab, #OM263051, USA). 

 

Statistical analysis 

 

The “survminer” package in R was applied in univariate 

and multivariate Cox regression analyses. The ROC 

curve and AUC were obtained using the “timeROC” 

package in R. The “ggplotify” “VennDiagram,” 

“maftools,” “plot3D,” “cowplot,” “ggforest,” and 

“ggplot2,” packages in R were used for visualization. 

The results were expressed as mean ± SEM. Statistical 
analysis was done using SPSS.22 and R software 

version 4.0.3. P < 0.05 was chosen as the threshold of 

statistically significance. 

Ethics approval and consent to participate 

 

Animal and human experiments were not conducted in 

this study. 

 

Availability of data and material 

 

Technical appendix, statistical code, and dataset are 

available from the corresponding author at 

[090102080@m.fafu.edu.cn]. 

 

RESULTS 
 

Determination of differently expressed FRGs in 

GBM patients 

 

Firstly, we extracted FRGs from the TCGA-GBM as 

presented in (Figure 1A). The differential gene 

expression of FRGs between the two groups identified 

17 upregulated and 15 downregulated FRGs (Figure 

1B). The STRING and Cytoscape were used to 

visualize the interactions among FRGs. Moreover, 

FRGs disconnected nodes in the network were not 

shown (Figure 1C). 

 

Results of GO and KEGG analysis 

 

Based on GO analysis, upregulated differently 

expressed FRGs were strongly linked to cellular 

response to oxidative stress, NADP metabolic process, 

regulation of oxidative stress−induced intrinsic 

apoptotic signaling pathway, cellular response to 

oxidative stress, response to oxidative stress, intrinsic 

apoptotic signaling pathway, apoptotic signaling 

pathway, cellular response to chemical stress, 

cell−substrate junction, focal adhesion, invadopodium, 

lamellipodium membrane, and intrinsic apoptotic 

signaling pathway (Figure 1D). 
 

The GO results exhibited that downregulated differently 

expressed FRGs showed strongly enrichment in sulfur 

compound biosynthetic process, organic acid transport, 

carboxylic acid transport, several metabolic processes 

including purine nucleoside bisphosphate, fatty− 

acyl−CoA, ribonucleoside bisphosphate, nucleoside 

bisphosphate, and glutamate, fatty−acyl−CoA bio-

synthesis, organic hydroxy compound biosysnthesis, ER 

membrane protein complex, autolysosome, lipid droplet, 

microbody, peroxisome, peroxisomal membrane, 

medium−chain fatty acid−CoA ligase activity, 

arachidonate−CoA ligase activity, long−chain fatty 

acid−CoA ligase activity, and decanoate−CoA ligase 

activity (Figure 1F). 
 

Moreover, the upregulated differently expressed FRGs 

were mainly enriched in Ferroptosis, Fluid shear stress, 

mailto:090102080@m.fafu.edu.cn
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and atherosclerosis (Figure 1E), while downregulated 

FRGs were significantly enriched for Ferroptosis, 

Proximal tubule bicarbonate reclamation, Terpenoid 

backbone biosynthesis, Steroid biosynthesis, 

2−Oxocarboxylic acid metabolism, Phenylalanine 

metabolism, AMPK signaling pathway, Peroxisome, 

PPAR signaling pathway, Adipocytokine signaling 

pathway, Fatty acid degradation, Alanine, aspartate and 

glutamate metabolism, Arginine biosynthesis, Fatty acid 

metabolism, Fatty acid biosynthesis (Figure 1G). 

 

Prognosis-related FRGs selection 

 

A total of 6 prognostic-related hub FRGs were found 

(Figure 2A). Three of the six hub FRGs could 

independently predict the outcomes of GBM patients 

(Figure 2B, Table 1). 

 

Construction and validation of prognosis risk score 

model 

 

A prognosis prediction model was designed from the 3 

hub FRGs. Using the model, a risk score for a given 

patient could be determined as: 

Risk Score = ∑ 𝐸𝑥𝑝𝑖 𝛽𝑖𝑛
𝑖=1  

The model assigned the TCGA-GBM patients into low- 

and high-risk subgroups. The findings revealed that 

those in high-risk subgroup had worse OS relative to 

those in low-risk subgroup as displayed in Figure 2C. 

Analysis of a time-dependent ROC and AUC) of the 

FRGs model found a prognostic ability of 0.708 (one-

year), 0.707 (two-year), and 0.683 (three-year), 

indicating a good performance (Figure 2E). Figure 2F–

2H displays the heat map, risk score, and survival status 

 
 

Figure 1. Identification of FRGs in GBM. (A) A Venn diagram indicating that 60 FRGs were identified in the TCGA-GBM cohorts. (B) 
Volcano plot showing DEGs among FRGs in GBM. (C) A PPI network on the relationship between up-regulated and down-regulated DEGs. Blue 
or yellow are up-or down-regulated DEGs, respectively. (D) GO analysis of up-regulated DEGs. (E) KEGG analysis of up-regulated DEGs. (F) GO 
analysis of down-regulated DEGs. (G) KEGG analysis of down-regulated DEGs. 
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Table 1. Univariate and multivariate Cox regression analysis. 

Gene 
Univariate analysis Multivariate analysis 

HR (95% CI) p HR (95% CI) p 

HSPB1 1.002 (1.000–1.004) 0.029   

CRYAB 0.999 (0.999–1.000) 0.017 0.852 (0.711–1.022) 0.085 

MT1G 1.027 (1.011–1.043) 0.000 1.269 (1.032–1.561) 0.024 

NCOA4 0.981 (0.963–0.998) 0.032   

PTGS2 1.084 (1.005–1.169) 0.035   

STEAP3 1.017 (1.005–1.029) 0.006 1.226 (1.003–1.499) 0.047 

 

of subjects in the 3 FRGs in both subgroups. We 

applied the formula to validate the prognostic 

significance of the model in other GBM patient cohorts 

using CGGA dataset as validation. Similarly, those with 

high-risk scores showed poorer OS than subjects with 

low-risk scores in the CGGA dataset (Figure 2D). 

Figure 2J–2L shows the survival status, risk score, and 

expression heat map of CGGA cohorts both risk groups, 

the FRGs signature built in this study has stable 

prognostic ability and a similar tendency of gene 

 

 
 

Figure 2. Prognostic significance of the FRGs signature derived risk scores. (A, B) Univariate and multivariate Cox analysis evaluating 

the prognostic-related genes in the TCGA (A) and CGGA cohort (B). The Kaplan-Meier survival curves for the high- and low-risk groups in 
TCGA (C) and CGGA cohort (D). (E, I) The predictive efficiency of the FRGs risk signature on the 1-, 3-, and 5-years survival rate in TCGA (E) and 
CGGA cohort (I) via ROC curve. (F, J) Heat maps of these three FRGs (CRYAB, MT1G, STEAP3) expression profiles in TCGA (F) and CGGA cohort 
(J). (G–I, K–L) Distribution of risk score and patient survival time, and status of GBM in TCGA (G, H) and CGGA cohort (K, L). The black dotted 
line is the optimal cut-off value for dividing patients into low-risk and high-risk groups. (M–P) Univariate and multivariate Cox analyses for 
evaluating the independent prognostic value of the FRGs signature in TCGA (M, N) and CGGA cohort (O, P). 
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expression in both groups. The results presented in 

Figure 2M–2P depicted that risk score can could 

independently assess the progress of GBM patients. 

Hence the model had satisfactory specificity and 

sensitivity. 

 

Design of a nomogram and drug relevance using 3 

hub FRGs 

 

Briefly, the 3 FRGs were applied to design a nomogram 

(Figure 3A). The calibration curve results as presented 

in Figure 3B–3D exposed that the survival rate obtained 

by the model was nearly equal to the actual survival 

rate. Additionally, the relationship between level of the 

three FRGs and drugs was explored (Figure 3E). The 

drug data is obtained from the cellminer database 

(https://discover.nci.nih.gov/cellminer/loadDownload.do). 

Significant differences between low- and high-risk 

patients 

 

Next, the patients were scored by the prognostic FRGs 

model, and grouped into low-risk and high-risk groups 

on the basis of median score. The results of PCA and 

t-SNE supported the classification of GBM patients 

into two subgroups by our FRGs signature (Figure 

4A–4B). Additionally, verification in the CGGA 

cohort was also carried out and the outcomes are 

shown in Figure 4C–4D. 

 

The ESTIMATE algorithm was adopted to assess the 

TCGA-GBM tumor microenvironment, and the results 

showed higher ImmuneScore and StromalScore in high-

risk patients (Figure 4E–4F). The Supplementary Table 3 

outlines the features of patients in both risk groups. 

 

 
 

Figure 3. Construction of a nomogram and drug relevance based on the 3 hub FRGs. (A) Validation of the nomogram in the TCGA 

cohort. (B–D) Calibration maps used to predict the 1-year (B), 3-year (C), and 5-year survival (D). (E) The correlation between gene 
expression levels and drugs. The top 16 most relevant were visualized. 

https://discover.nci.nih.gov/cellminer/loadDownload.do
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The CIBERSORT algorithm analysis results found 21 

immune cell types in TCGA-GBM samples (Figure 4G). 

Through GSEA enrichment analysis revealed that high-

risk patient had enrichment in ferroptosis-related 

pathways, such as AMINO SUGAR AND 

NUCLEOTIDE SUGAR METABOLISM, APOPTOSIS, 

CELL CYCLE, ETHER LIPID METABOLISM, 

GALACTOSE METABOLISM, and GLYCOLYSIS 

GLUCONEOGENESIS (Figure 4H, Table 2). 

 

In previous researches, immune checkpoint inhibitors 

e.g., PD-L1, PD-L2, and LAG3, were proposed as 

treatments for cancer. In the present study, CD274 (PD-

L1), STEAP3, IL1B, PDCD1LG2 (PD-L2), and MT1G 

expressions were enriched in patients with high risk 

scores whereas the expression of CRYAB, LAG3, and 

IL12A was markedly enriched in those with low risk 

(Figure 4I–4P). 

 

To further study characterize drug responses in patients, 

the R package “pRRophetic” [35] was adopted to 

determine the half-maximal inhibitory concentration 

(IC50) of every GBM patient using the Genomics of Drug 

Sensitivity in Cancer (GDSC) website. Consequently, 24 

drugs showed distinct estimated IC50 between low and 

high-risk GBM patients (Figure 5A–5X). 

 

Validation of the three genes in GBM cells 

 

Western blot assay was conducted to quantify the 

protein level of the three genes in three GBM cell lines 

(HS 683 cells, H4 cells, and U251 cells), and in an HEB 

 

 
 

Figure 4. Analysis of differences between high- and low-risk subgroups (tumor microenvironment, immune cell infiltration, 
and immune checkpoint regulators). PCA (A) and t-SNE (B) analysis supported the stratification into two GBM subclasses the TCGA 

cohort. PCA (C) and t-SNE (D) analysis supported the stratification into two GBM subclasses the CGGA cohort. The comparison of stromal 
scores (E) and immune scores (F) in high- and low-risk subgroups. (G) The comparison of immune cell fractions between high- and low-risk 
subgroups. (H) The pathways enriched in high-risk GBM through GSEA analysis by enrichment map. (I–P) The key Immune checkpoint 
regulators with significant differential expression in the high- and low-risk subgroups. 
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Table 2. Gene set enrichment analysis in high-risk group. 

NAME ES NES NOM p-val FDR q-val 

KEGG_CELL_CYCLE –0.590 –1.752 0.021 0.494 

KEGG_RNA_DEGRADATION –0.548 –1.601 0.036 0.433 

KEGG_AMINO_SUGAR_AND_NUCLEOTIDE_SUGARMETABOLISM 0.614 1.812 0.005 0.052 

KEGG_APOPTOSIS 0.593 1.994 0 0.011 

KEGG_ETHER_LIPID_METABOLISM 0.448 1.463 0.040 0.187 

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 0.483 1.601 0.018 0.139 

KEGG_GALACTOSE_METABOLISM 0.609 1.757 0.001 0.062 

KEGG_GLYCOSAMINOGLYCAN_DEGRADATION 0.792 1.980 0 0.010 

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_GANGLIO_SERIES 0.676 1.707 0.009 0.087 

KEGG_JAK_STAT_SIGNALING_PATHWAY 0.462 1.581 0.020 0.148 

KEGG_LYSOSOME 0.671 2.050 0 0.011 

KEGG_STARCH_AND_SUCROSE_METABOLISM 0.463 1.599 0.022 0.135 

NOM P value < 0.01 was statistically significant. Abbreviations: FDR, False discovery rate. 

 

 

cell line (Figure 6A). Results presented in Figure 6 

indicate that CRYAB (Figure 6B) and STEAP3 (Figure 

6D) were upregulated in GBM cells than in HEB cell 

line, whereas MT1G (Figure 6C) was downregulated. 

 

 

DISCUSSION 
 

GBM is one of the deadliest cancers with only a few 

approved therapies at present. Despite extensive studies 

 
 

Figure 5. Drug sensitivity analysis to drugs of high- and low-risk subgroups. Differential chemotherapeutic responses in high- and 

low-risk patients (A–X). 
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on it over the last several decades, it remains incurable 

and fatal disease with little improvement in the survival 

rates for patients [36–39]. Thus, it boosted researchers 

to further explore on the mechanisms of GBM for novel 

prognostic biomarkers and therapeutic targets. 

 

Ferroptosis is a form of cell death driven by iron 

dependent phospholipid peroxidation, which completely 

differs from other cell death such as necrosis, apoptosis, 

and autophagy for unique cell morphology, gene 

expression, and metabolic pathways. Cells undergoing 

ferroptosis gain a round shape before death with its 

distinctive feature, the smaller mitochondria, and 

increased mitochondrial membrane density. Previously, 

many pieces of researches have revealed that cancer 

cells in several cancers e.g., ovarian, lung, and breast 

cancers have high levels of iron relative to normal cells 

[40–45]. Moreover, it is reported that salinomycin can 

kill cancer stem cells by sequestering iron in lysosomes 

causing lysosomal membrane permeabilization and 

ferroptosis, suggesting that therapies targeting 

ferroptosis might be a possible strategy for cancer [46]. 

In another research, authors concluded that withaferin A 

can kill tumors in high-risk neuroblastoma via KEAP1 -

Nrf2 axis, a noncanonical ferroptosis pathway [20]. 

Also, compelling evidence reported the lethality of 

GPX4 inhibitors in drug-resistant cells via ferroptosis, 

supporting that targeting GPX4 could act as a potential 

therapy to prevent drug resistance [47–49]. And in 

GBM, cisplatin co-delivered with small interference 

RNAs of GPX4 showed a significant superior thera-

peutic effect through a mechanism related to ferroptosis 

compared with cisplatin only in vitro and in vivo [21]. 

These evidences support the perspective applications of 

ferroptosis in GBM therapies. Nevertheless, the 

mechanisms of ferroptosis in GBM and its potential 

ability to prognosis are still not clear. 

 

Therefore, we carried out current study to 

systematically evaluate the significance of FRGs in 

GBM with advanced computational tools. We assessed 

the expression profile of FRGs in GBM to get 32 DEGs. 

 

 
 

Figure 6. Validation of the differential expression of the three genes in GBM cells. (A) Western blot images and the relevant 
quantification (B–D) of CRYAB, MT1G, and STEAP3. Data are shown as mean ± SEM from three independent experiments, *P < 0.05, 
**P < 0.01, ***P < 0.001. 
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The relationship within these differentially expressed 

FRGs visualized by the PPI network suggesting TP53 

with the most connected lines might play an important 

part in ferroptosis of cancer cells, while TP53 has 

already been one of the crucial dysregulated genes in 

most cancer types, indicating ferroptosis could also be 

one fundamental mechanism in GBM development. 

Next, we conducted GO and KEGG in the upregulated 

FRGs and downregulated FRGs. Results displayed that 

the upregulated FRGs are enriched in responses to 

oxidative stress except for ferroptosis itself. The close 

connection of FRGs and oxidative stress in GBM is 

readily comprehensible for the definition of ferroptosis 

cell death as an iron-dependent accumulation of lipid 

peroxidation. Some radical-trapping antioxidants can 

prevent ferroptosis. Meanwhile, the enrichment of the 

downregulated FRGs is associated with metabolism and 

biosynthesis as well as metabolism-related signaling 

pathways like PPAR and AMPK pathways. At present, 

metabolic changes are essential evidence for ferroptosis 

research. For example, iron abundance and lipid 

peroxidation level are two of the most critical indicators 

of ferroptosis. These findings revealed that ferroptosis, 

as well as FEGs, may have a significant impact on 

GBM development and give direction for in-depth 

studies on ferroptosis in GBM. 

 

Based on the 32 differentially expressed FRGs, we 

observed 3 prognosis-associated candidate hub FRGs 

(CRYAB, MT1G, and STEAP3) as independent 

predictors to design a risk score model for prognostic 

prediction. The strong correlation between the low-risk 

subgroup of GBM and high survival rate suggested that 

those patients with low risk predicted by the FRGs 

signature are prone to a better prognosis with decent 

efficacy in both TCGA and CGGA cohorts. 

Furthermore, we performed various analyses to assess 

the correlation of FRGs signature and tumor micro-

environment, which displayed higher ImmuneScore and 

StromalScore in the high-risk subgroup. More 

specifically, patients with high risk have a higher 

fraction of B cell memory (p = 0.024), T cell CD4 

memory activated (p = 0.009), NK cells resting (p = 

0.032), monocytes (p = 0.014), dendritic cells activated 

(p = 0.027), and neutrophils (p < 0.001), while those 

with low risk generate more T cells follicular helper (p 

< 0.001), and macrophages M1 (p = 0.013). For gene 

expressions of key immune checkpoints, there were 

significant differences in CD274, STEAP3, CRYAB, 

IL1B, PDCD1LG2, LAG3, IL12A, and MT1G in high- 

and low-risk subgroups. Our results uncovered that the 

FRGs signature may participate in tumor immunity 

and guide stratification and therapeutic strategies of 
immunotherapies in the future. In recent times, 

immunotherapies have made great progress in several 

solid tumors but could not improve the survival rate 

of GBM patients. Integrating immunotherapies with 

ferroptosis can provide a new insight to solve the 

challenges of current immunotherapies. Previous 

research found that during the anti-PD-L1 treatment, 

the dramatically elevated lipid peroxidation specific to 

ferroptosis along with inhibition of ferroptosis 

signaling cascades contributed thereby reducing tumor 

cells sensitivity. Above all, the functional mechanism 

of CRYAB, MT1G, and STEAP3 in ferroptosis and 

immunity should be further explored for potential 

treatments of GBM. 

 

Thus, we analyzed the correlation between gene 

expression of CRYAB, MT1G, and STEAP3 and drugs, 

and also investigated the drug sensitivity in low- and 

high-risk subgroups, introducing possible drugs for 

certain subgroups divided by FRGs signature. 

Combination therapy with checkpoint inhibitors and 

drugs has proven to be a reliable therapy and is 

associated with a better prognosis [50–53]. 
 

At last, we preliminarily measured the protein 

expression of CRYAB, MT1G, and STEAP3 in GBM 

cell lines (HS 683, H4, and U251) compared with that 

in HEB cells. The rise of CRYAB and STEAP3 

expression and fall of MT1G expression in vitro are 

consistent with their RNA level in TCGA sequencing 

data, supporting our bioinformatics analysis. 
 

In summary, our novel FRGs-associated prognostic 

model for GBM could greatly provide access to the 

ferroptosis and pathogenesis in GBM and guide new 

prognostic biomarkers as well as therapeutic strategies 

for GBM. 
 

CONCLUSIONS 
 

Overall, our study comprehensively analyzed the FRGs 

in GBM and builds an FRGs model (CRYAB, MT1G, 

and STEAP3) for prognosis and stratification of GBM 

patients. Subgroups with relative low or high-risk 

classified by the model have differences in 

ImmunoScore and StromalScore in tumor micro-

environment and fraction of multiple immune cells, 

expression of immune checkpoint genes, and drug 

sensitivity. These findings can provide new insights for 

the development of new immunotherapy for GBM. 
 

AUTHOR CONTRIBUTIONS 
 

Zhou Chu and Sian Pan designed the study, analyzed 

data, and wrote the manuscript. Yuxiang Zhou, 

Yangqian Ou, Zebo Cheng, and Deqing Han analyzed 

data and contributed in writing the manuscript. 

Xiaopeng Zhu performed the experiments, analyzed 

data, and wrote the manuscript. 



 

www.aging-us.com 17665 AGING 

ACKNOWLEDGMENTS 
 

We would like to thank everyone who contributed to 

this article. We thank Dr. Li Ming from Beijing Foreign 

Studies University for his assistance in language 

modification. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest related to 

this study. 

 

FUNDING 
 

This work was supported by the Scientific research 

project (2019) of health commission of Hunan 

(B2019200) and the Science and technology innovation 

project of Hunan (2018SK52802). 

 

REFERENCES 
 
1. Grimm SA, Chamberlain MC. Brainstem glioma: a 

review. Curr Neurol Neurosci Rep. 2013; 13:346. 
https://doi.org/10.1007/s11910-013-0346-3 
PMID:23512689 

2. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, 
Langer CE, Pekmezci M, Schwartzbaum JA, Turner 
MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS. The 
epidemiology of glioma in adults: a "state of the 
science" review. Neuro Oncol. 2014; 16:896–913. 
https://doi.org/10.1093/neuonc/nou087 
PMID:24842956 

3.  Chen R, Smith-Cohn M, Cohen AL, Colman H. Glioma 
Subclassifications and Their Clinical Significance. 
Neurotherapeutics. 2017; 14:284–97. 
https://doi.org/10.1007/s13311-017-0519-x 
PMID:28281173 

4. Miller JJ, Shih HA, Andronesi OC, Cahill DP. 
Isocitrate dehydrogenase-mutant glioma: Evolving 
clinical and therapeutic implications. Cancer. 2017; 
123:4535–46. 
https://doi.org/10.1002/cncr.31039 
PMID:28980701 

5.  Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for 
glioma: Current management and future application. 
Cancer Lett. 2020; 476:1–12. 
https://doi.org/10.1016/j.canlet.2020.02.002 
PMID:32044356 

6. GLASS Consortium. Glioma through the looking 
GLASS: molecular evolution of diffuse gliomas and the 
Glioma Longitudinal Analysis Consortium. Neuro 
Oncol. 2018; 20:873–84. 
https://doi.org/10.1093/neuonc/noy020 

PMID:29432615 

 7. Oberndorfer S, Hutterer M. Palliative care in glioma 
management. Curr Opin Oncol. 2019; 31:548–53. 
https://doi.org/10.1097/CCO.0000000000000584 
PMID:31464760 

 8. Poff A, Koutnik AP, Egan KM, Sahebjam S, D'Agostino 
D, Kumar NB. Targeting the Warburg effect for cancer 
treatment: Ketogenic diets for management of 
glioma. Semin Cancer Biol. 2019; 56:135–48. 
https://doi.org/10.1016/j.semcancer.2017.12.011 
PMID:29294371 

 9. Alarcón S, Niechi I, Toledo F, Sobrevia L, Quezada C. 
Glioma progression in diabesity. Mol Aspects Med. 
2019; 66:62–70. 
https://doi.org/10.1016/j.mam.2019.02.002 
PMID:30822432 

10. Jung E, Alfonso J, Osswald M, Monyer H, Wick W, 
Winkler F. Emerging intersections between 
neuroscience and glioma biology. Nat Neurosci. 2019; 
22:1951–60. 
https://doi.org/10.1038/s41593-019-0540-y 
PMID:31719671 

11. Liang C, Zhang X, Yang M, Dong X. Recent Progress in 
Ferroptosis Inducers for Cancer Therapy. Adv Mater. 
2019; 31:e1904197. 
https://doi.org/10.1002/adma.201904197 
PMID:31595562 

12. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B, 
Wang G. Ferroptosis: past, present and future. Cell 
Death Dis. 2020; 11:88. 
https://doi.org/10.1038/s41419-020-2298-2 
PMID:32015325 

13. Hassannia B, Vandenabeele P, Vanden Berghe T. 
Targeting Ferroptosis to Iron Out Cancer. Cancer Cell. 
2019; 35:830–49. 
https://doi.org/10.1016/j.ccell.2019.04.002 
PMID:31105042 

14. Zhuo S, Chen Z, Yang Y, Zhang J, Tang J, Yang K. 
Clinical and Biological Significances of a Ferroptosis-
Related Gene Signature in Glioma. Front Oncol. 2020; 
10:590861. 
https://doi.org/10.3389/fonc.2020.590861 
PMID:33330074 

15. Tang R, Hua J, Xu J, Liang C, Meng Q, Liu J, Zhang B, Yu 
X, Shi S. The role of ferroptosis regulators in the 
prognosis, immune activity and gemcitabine resistance 
of pancreatic cancer. Ann Transl Med. 2020; 8:1347. 
https://doi.org/10.21037/atm-20-2554a 
PMID:33313092 

16. Wang Y, Zhao G, Condello S, Huang H, Cardenas H, 
Tanner EJ, Wei J, Ji Y, Li J, Tan Y, Davuluri RV, Peter 

https://doi.org/10.1007/s11910-013-0346-3
https://pubmed.ncbi.nlm.nih.gov/23512689
https://doi.org/10.1093/neuonc/nou087
https://pubmed.ncbi.nlm.nih.gov/24842956
https://doi.org/10.1007/s13311-017-0519-x
https://pubmed.ncbi.nlm.nih.gov/28281173
https://doi.org/10.1002/cncr.31039
https://pubmed.ncbi.nlm.nih.gov/28980701
https://doi.org/10.1016/j.canlet.2020.02.002
https://pubmed.ncbi.nlm.nih.gov/32044356
https://doi.org/10.1093/neuonc/noy020
https://pubmed.ncbi.nlm.nih.gov/29432615
https://doi.org/10.1097/CCO.0000000000000584
https://pubmed.ncbi.nlm.nih.gov/31464760
https://doi.org/10.1016/j.semcancer.2017.12.011
https://pubmed.ncbi.nlm.nih.gov/29294371
https://doi.org/10.1016/j.mam.2019.02.002
https://pubmed.ncbi.nlm.nih.gov/30822432
https://doi.org/10.1038/s41593-019-0540-y
https://pubmed.ncbi.nlm.nih.gov/31719671
https://doi.org/10.1002/adma.201904197
https://pubmed.ncbi.nlm.nih.gov/31595562
https://doi.org/10.1038/s41419-020-2298-2
https://pubmed.ncbi.nlm.nih.gov/32015325
https://doi.org/10.1016/j.ccell.2019.04.002
https://pubmed.ncbi.nlm.nih.gov/31105042
https://doi.org/10.3389/fonc.2020.590861
https://pubmed.ncbi.nlm.nih.gov/33330074
https://doi.org/10.21037/atm-20-2554a
https://pubmed.ncbi.nlm.nih.gov/33313092


 

www.aging-us.com 17666 AGING 

ME, Cheng JX, Matei D. Frizzled-7 Identifies Platinum-
Tolerant Ovarian Cancer Cells Susceptible to 
Ferroptosis. Cancer Res. 2021; 81:384–99. 
https://doi.org/10.1158/0008-5472.CAN-20-1488 
PMID:33172933 

17. Huang HX, Yang G, Yang Y, Yan J, Tang XY, Pan Q. 
TFAP2A is a novel regulator that modulates 
ferroptosis in gallbladder carcinoma cells via the Nrf2 
signalling axis. Eur Rev Med Pharmacol Sci. 2020; 
24:4745–55. 
https://doi.org/10.26355/eurrev_202005_21163 
PMID:32432738 

18. Sato K, Shi L, Ito F, Ohara Y, Motooka Y, Tanaka H, 
Mizuno M, Hori M, Hirayama T, Hibi H, Toyokuni S. 
Non-thermal plasma specifically kills oral squamous 
cell carcinoma cells in a catalytic Fe(II)-dependent 
manner. J Clin Biochem Nutr. 2019; 65:8–15. 
https://doi.org/10.3164/jcbn.18-91 
PMID:31379408 

19. Alvarez SW, Sviderskiy VO, Terzi EM, 
Papagiannakopoulos T, Moreira AL, Adams S, Sabatini 
DM, Birsoy K, Possemato R. NFS1 undergoes positive 
selection in lung tumours and protects cells from 
ferroptosis. Nature. 2017; 551:639–43. 
https://doi.org/10.1038/nature24637 
PMID:29168506 

20. Hassannia B, Wiernicki B, Ingold I, Qu F, Van Herck S, 
Tyurina YY, Bayır H, Abhari BA, Angeli JPF, Choi SM, 
Meul E, Heyninck K, Declerck K, et al. Nano-targeted 
induction of dual ferroptotic mechanisms eradicates 
high-risk neuroblastoma. J Clin Invest. 2018; 
128:3341–55. 
https://doi.org/10.1172/JCI99032 
PMID:29939160 

21. Zhang Y, Fu X, Jia J, Wikerholmen T, Xi K, Kong Y, 
Wang J, Chen H, Ma Y, Li Z, Wang C, Qi Q, Thorsen F, 
et al. Glioblastoma Therapy Using Codelivery of 
Cisplatin and Glutathione Peroxidase Targeting siRNA 
from Iron Oxide Nanoparticles. ACS Appl Mater 
Interfaces. 2020; 12:43408–21. 
https://doi.org/10.1021/acsami.0c12042 
PMID:32885649 

22. Liang JY, Wang DS, Lin HC, Chen XX, Yang H, Zheng Y, 
Li YH. A Novel Ferroptosis-related Gene Signature for 
Overall Survival Prediction in Patients with 
Hepatocellular Carcinoma. Int J Biol Sci. 2020; 
16:2430–41. 
https://doi.org/10.7150/ijbs.45050 
PMID:32760210 

23. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, 
Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, 
Kagan VE, Noel K, Jiang X, Linkermann A, et al. 
Ferroptosis: A Regulated Cell Death Nexus Linking 

Metabolism, Redox Biology, and Disease. Cell. 2017; 
171:273–85. 
https://doi.org/10.1016/j.cell.2017.09.021 
PMID:28985560 

24. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, 
Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, 
Bassik MC, Nomura DK, Dixon SJ, Olzmann JA. The 
CoQ oxidoreductase FSP1 acts parallel to GPX4 to 
inhibit ferroptosis. Nature. 2019; 575:688–92. 
https://doi.org/10.1038/s41586-019-1705-2 
PMID:31634900 

25. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, 
Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, 
Scheel CH, Mourão A, Buday K, Sato M, et al. FSP1 is a 
glutathione-independent ferroptosis suppressor. 
Nature. 2019; 575:693–98. 
https://doi.org/10.1038/s41586-019-1707-0 
PMID:31634899 

26. Xu N, Wu YP, Ke ZB, Liang YC, Cai H, Su WT, Tao X, 
Chen SH, Zheng QS, Wei Y, Xue XY. Identification of 
key DNA methylation-driven genes in prostate 
adenocarcinoma: an integrative analysis of TCGA 
methylation data. J Transl Med. 2019; 17:311. 
https://doi.org/10.1186/s12967-019-2065-2 
PMID:31533842 

27. Xu M, Li Y, Li W, Zhao Q, Zhang Q, Le K, Huang Z, Yi 
P. Immune and Stroma Related Genes in Breast 
Cancer: A Comprehensive Analysis of Tumor 
Microenvironment Based on the Cancer Genome 
Atlas (TCGA) Database. Front Med (Lausanne). 
2020; 7:64. 
https://doi.org/10.3389/fmed.2020.00064 
PMID:32195260 

28. Chen L, Lu D, Sun K, Xu Y, Hu P, Li X, Xu F. 
Identification of biomarkers associated with diagnosis 
and prognosis of colorectal cancer patients based on 
integrated bioinformatics analysis. Gene. 2019; 
692:119–25. 
https://doi.org/10.1016/j.gene.2019.01.001 
PMID:30654001 

29. Li L, Chen X, Hao L, Chen Q, Liu H, Zhou Q. Exploration 
of immune-related genes in high and low tumor 
mutation burden groups of chromophobe renal cell 
carcinoma. Biosci Rep. 2020; 40:BSR20201491. 
https://doi.org/10.1042/BSR20201491 
PMID:32662515 

30. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012; 16:284–87. 
https://doi.org/10.1089/omi.2011.0118 
PMID:22455463 

31. Cao M, Cai J, Yuan Y, Shi Y, Wu H, Liu Q, Yao Y, Chen 

https://doi.org/10.1158/0008-5472.CAN-20-1488
https://pubmed.ncbi.nlm.nih.gov/33172933
https://doi.org/10.26355/eurrev_202005_21163
https://pubmed.ncbi.nlm.nih.gov/32432738
https://doi.org/10.3164/jcbn.18-91
https://pubmed.ncbi.nlm.nih.gov/31379408
https://doi.org/10.1038/nature24637
https://pubmed.ncbi.nlm.nih.gov/29168506
https://doi.org/10.1172/JCI99032
https://pubmed.ncbi.nlm.nih.gov/29939160
https://doi.org/10.1021/acsami.0c12042
https://pubmed.ncbi.nlm.nih.gov/32885649
https://doi.org/10.7150/ijbs.45050
https://pubmed.ncbi.nlm.nih.gov/32760210
https://doi.org/10.1016/j.cell.2017.09.021
https://pubmed.ncbi.nlm.nih.gov/28985560
https://doi.org/10.1038/s41586-019-1705-2
https://pubmed.ncbi.nlm.nih.gov/31634900
https://doi.org/10.1038/s41586-019-1707-0
https://pubmed.ncbi.nlm.nih.gov/31634899
https://doi.org/10.1186/s12967-019-2065-2
https://pubmed.ncbi.nlm.nih.gov/31533842
https://doi.org/10.3389/fmed.2020.00064
https://pubmed.ncbi.nlm.nih.gov/32195260
https://doi.org/10.1016/j.gene.2019.01.001
https://pubmed.ncbi.nlm.nih.gov/30654001
https://doi.org/10.1042/BSR20201491
https://pubmed.ncbi.nlm.nih.gov/32662515
https://doi.org/10.1089/omi.2011.0118
https://pubmed.ncbi.nlm.nih.gov/22455463


 

www.aging-us.com 17667 AGING 

L, Dang W, Zhang X, Xiao J, Yang K, He Z, et al. A 
four-gene signature-derived risk score for 
glioblastoma: prospects for prognostic and response 
predictive analyses. Cancer Biol Med. 2019; 16:595–
605. 
PMID:31565488 

32. Sheng Y, Yanping C, Tong L, Ning L, Yufeng L, Geyu L. 
Predicting the Risk of Melanoma Metastasis Using an 
Immune Risk Score in the Melanoma Cohort. Front 
Bioeng Biotechnol. 2020; 8:206. 
https://doi.org/10.3389/fbioe.2020.00206 
PMID:32296685 

33. Huang R, Mao M, Lu Y, Yu Q, Liao L. A novel immune-
related genes prognosis biomarker for melanoma: 
associated with tumor microenvironment. Aging 
(Albany NY). 2020; 12:6966–80. 
https://doi.org/10.18632/aging.103054 
PMID:32310824 

34. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna 
R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird 
PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, et 
al. Inferring tumour purity and stromal and immune 
cell admixture from expression data. Nat Commun. 
2013; 4:2612. 
https://doi.org/10.1038/ncomms3612 
PMID:24113773 

35. Geeleher P, Cox N, Huang RS. pRRophetic: an R 
package for prediction of clinical chemotherapeutic 
response from tumor gene expression levels. PLoS 
One. 2014; 9:e107468. 
https://doi.org/10.1371/journal.pone.0107468 
PMID:25229481 

36. Hellmark T, Segelmark M. Diagnosis and classification 
of Goodpasture's disease (anti-GBM). J Autoimmun. 
2014; 48–49:108–12. 
https://doi.org/10.1016/j.jaut.2014.01.024 
PMID:24456936 

37. Wang S, Yao F, Lu X, Li Q, Su Z, Lee JH, Wang C, Du L. 
Temozolomide promotes immune escape of GBM 
cells via upregulating PD-L1. Am J Cancer Res. 2019; 
9:1161–71. 
PMID:31285949 

38. Mukherjee S, Fried A, Hussaini R, White R, Baidoo J, 
Yalamanchi S, Banerjee P. Phytosomal curcumin 
causes natural killer cell-dependent repolarization 
of glioblastoma (GBM) tumor-associated 
microglia/macrophages and elimination of GBM 
and GBM stem cells. J Exp Clin Cancer Res. 2018; 
37:168. 
https://doi.org/10.1186/s13046-018-0792-5 
PMID:30041669 

39. Martikainen M, Essand M. Virus-Based 

Immunotherapy of Glioblastoma. Cancers (Basel). 
2019; 11:186. 
https://doi.org/10.3390/cancers11020186 
PMID:30764570 

40. Shoja Z, Chenari M, Jafarpour A, Jalilvand S. Role of 
iron in cancer development by viruses. Rev Med Virol. 
2019; 29:e2045. 
https://doi.org/10.1002/rmv.2045 
PMID:30994254 

41. Torti SV, Torti FM. Iron and cancer: more ore to be 
mined. Nat Rev Cancer. 2013; 13:342–55. 
https://doi.org/10.1038/nrc3495 
PMID:23594855 

42. Wei J, Gao X, Qin Y, Liu T, Kang Y. An Iron 
Metabolism-Related SLC22A17 for the Prognostic 
Value of Gastric Cancer. Onco Targets Ther. 2020; 
13:12763–75. 
https://doi.org/10.2147/OTT.S287811 
PMID:33363382 

43. Shen Y, Li X, Zhao B, Xue Y, Wang S, Chen X, Yang J, Lv 
H, Shang P. Iron metabolism gene expression and 
prognostic features of hepatocellular carcinoma. J 
Cell Biochem. 2018; 119:9178–204. 
https://doi.org/10.1002/jcb.27184 
PMID:30076742 

44. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti 
FM. Iron and Cancer. Annu Rev Nutr. 2018; 38:97–125. 
https://doi.org/10.1146/annurev-nutr-082117-
051732 
PMID:30130469 

45. Liu Y, Zhang X, Zhang J, Tan J, Li J, Song Z. 
Development and Validation of a Combined 
Ferroptosis and Immune Prognostic Classifier for 
Hepatocellular Carcinoma. Front Cell Dev Biol. 2020; 
8:596679. 
https://doi.org/10.3389/fcell.2020.596679 
PMID:33425905 

46. Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, 
Wicinski J, Cabaud O, Leroy C, David A, Acevedo V, 
Ryo A, Ginestier C, Birnbaum D, et al. Salinomycin kills 
cancer stem cells by sequestering iron in lysosomes. 
Nat Chem. 2017; 9:1025–33. 
https://doi.org/10.1038/nchem.2778 
PMID:28937680 

47. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, 
Skouta R, Viswanathan VS, Cheah JH, Clemons PA, 
Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish 
VW, et al. Regulation of ferroptotic cancer cell death 
by GPX4. Cell. 2014; 156:317–31. 
https://doi.org/10.1016/j.cell.2013.12.010 
PMID:24439385 

48. Seibt TM, Proneth B, Conrad M. Role of GPX4 in 

https://pubmed.ncbi.nlm.nih.gov/31565488
https://doi.org/10.3389/fbioe.2020.00206
https://pubmed.ncbi.nlm.nih.gov/32296685
https://doi.org/10.18632/aging.103054
https://pubmed.ncbi.nlm.nih.gov/32310824
https://doi.org/10.1038/ncomms3612
https://pubmed.ncbi.nlm.nih.gov/24113773
https://doi.org/10.1371/journal.pone.0107468
https://pubmed.ncbi.nlm.nih.gov/25229481
https://doi.org/10.1016/j.jaut.2014.01.024
https://pubmed.ncbi.nlm.nih.gov/24456936
https://pubmed.ncbi.nlm.nih.gov/31285949
https://doi.org/10.1186/s13046-018-0792-5
https://pubmed.ncbi.nlm.nih.gov/30041669
https://doi.org/10.3390/cancers11020186
https://pubmed.ncbi.nlm.nih.gov/30764570
https://doi.org/10.1002/rmv.2045
https://pubmed.ncbi.nlm.nih.gov/30994254
https://doi.org/10.1038/nrc3495
https://pubmed.ncbi.nlm.nih.gov/23594855
https://doi.org/10.2147/OTT.S287811
https://pubmed.ncbi.nlm.nih.gov/33363382
https://doi.org/10.1002/jcb.27184
https://pubmed.ncbi.nlm.nih.gov/30076742
https://doi.org/10.1146/annurev-nutr-082117-051732
https://doi.org/10.1146/annurev-nutr-082117-051732
https://pubmed.ncbi.nlm.nih.gov/30130469
https://doi.org/10.3389/fcell.2020.596679
https://pubmed.ncbi.nlm.nih.gov/33425905
https://doi.org/10.1038/nchem.2778
https://pubmed.ncbi.nlm.nih.gov/28937680
https://doi.org/10.1038/s41586-019-1705-2
https://pubmed.ncbi.nlm.nih.gov/24439385


 

www.aging-us.com 17668 AGING 

ferroptosis and its pharmacological implication. Free 
Radic Biol Med. 2019; 133:144–52. 
https://doi.org/10.1016/j.freeradbiomed.2018.09.014 
PMID:30219704 

49. Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, 
Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, 
Reznik E, Ye LF, Tyurina YY, Lin AJ, et al. FINO2 
initiates ferroptosis through GPX4 inactivation and 
iron oxidation. Nat Chem Biol. 2018; 14:507–15. 
https://doi.org/10.1038/s41589-018-0031-6 
PMID:29610484 

50. Lynes JP, Nwankwo AK, Sur HP, Sanchez VE, Sarpong 
KA, Ariyo OI, Dominah GA, Nduom EK. Biomarkers for 
immunotherapy for treatment of glioblastoma. J 
Immunother Cancer. 2020; 8:e000348. 
https://doi.org/10.1136/jitc-2019-000348 
PMID:32474411 

51. McGranahan T, Therkelsen KE, Ahmad S, Nagpal S. 
Current State of Immunotherapy for Treatment of 
Glioblastoma. Curr Treat Options Oncol. 2019; 20:24. 
https://doi.org/10.1007/s11864-019-0619-4 
PMID:30790064 

52. Li L, Zhu X, Qian Y, Yuan X, Ding Y, Hu D, He X, Wu Y. 
Chimeric Antigen Receptor T-Cell Therapy in 
Glioblastoma: Current and Future. Front Immunol. 
2020; 11:594271. 
https://doi.org/10.3389/fimmu.2020.594271 
PMID:33224149 

53. Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio 
L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan 
A, Filip I, Orenbuch R, Goetz M, et al. Immune and 
genomic correlates of response to anti-PD-1 
immunotherapy in glioblastoma. Nat Med. 2019; 
25:462–69. 
https://doi.org/10.1038/s41591-019-0349-y 
PMID:30742119 

 

 

 

https://doi.org/10.1016/j.freeradbiomed.2018.09.014
https://pubmed.ncbi.nlm.nih.gov/30219704
https://doi.org/10.1038/s41589-018-0031-6
https://pubmed.ncbi.nlm.nih.gov/29610484
https://doi.org/10.1136/jitc-2019-000348
https://pubmed.ncbi.nlm.nih.gov/32474411
https://doi.org/10.1007/s11864-019-0619-4
https://pubmed.ncbi.nlm.nih.gov/30790064
https://doi.org/10.3389/fimmu.2020.594271
https://pubmed.ncbi.nlm.nih.gov/33224149
https://doi.org/10.1038/s41591-019-0349-y
https://pubmed.ncbi.nlm.nih.gov/30742119


 

www.aging-us.com 17669 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. TCGA samples used in the study. 

Sample ID (normal) Sample ID (GBM) Sample ID (GBM) Sample ID (GBM) Sample ID (GBM) Sample ID (GBM) 

TCGA-06–0675–11 TCGA-02–0047–01 TCGA-06–0646–01 TCGA-06–5856–01 TCGA-19–1389–02 TCGA-28–2513–01 

TCGA-06–0678–11 TCGA-02–0055–01 TCGA-06–0649–01 TCGA-06–5858–01 TCGA-19–1390–01 TCGA-28–2514–01 

TCGA-06–0680–11 TCGA-02–2483–01 TCGA-06–0686–01 TCGA-06–5859–01 TCGA-19–1787–01 TCGA-28–5204–01 

TCGA-06–0681–11 TCGA-02–2485–01 TCGA-06–0743–01 TCGA-08–0386–01 TCGA-19–2619–01 TCGA-28–5207–01 

TCGA-06-AABW-11 TCGA-02–2486–01 TCGA-06–0744–01 TCGA-12–0616–01 TCGA-19–2620–01 TCGA-28–5208–01 

 TCGA-06–0125–01 TCGA-06–0745–01 TCGA-12–0618–01 TCGA-19–2624–01 TCGA-28–5209–01 

 TCGA-06–0125–02 TCGA-06–0747–01 TCGA-12–0619–01 TCGA-19–2625–01 TCGA-28–5213–01 

 TCGA-06–0129–01 TCGA-06–0749–01 TCGA-12–0821–01 TCGA-19–2629–01 TCGA-28–5215–01 

 TCGA-06–0130–01 TCGA-06–0750–01 TCGA-12–1597–01 TCGA-19–4065–01 TCGA-28–5216–01 

 TCGA-06–0132–01 TCGA-06–0878–01 TCGA-12–3650–01 TCGA-19–4065–02 TCGA-28–5218–01 

 TCGA-06–0138–01 TCGA-06–0882–01 TCGA-12–3652–01 TCGA-19–5960–01 TCGA-28–5220–01 

 TCGA-06–0141–01 TCGA-06–1804–01 TCGA-12–3653–01 TCGA-26–1442–01 TCGA-32–1970–01 

 TCGA-06–0152–02 TCGA-06–2557–01 TCGA-12–5295–01 TCGA-26–5132–01 TCGA-32–1980–01 

 TCGA-06–0156–01 TCGA-06–2558–01 TCGA-12–5299–01 TCGA-26–5133–01 TCGA-32–1982–01 

 TCGA-06–0157–01 TCGA-06–2559–01 TCGA-14–0736–02 TCGA-26–5134–01 TCGA-32–2615–01 

 TCGA-06–0158–01 TCGA-06–2561–01 TCGA-14–0781–01 TCGA-26–5135–01 TCGA-32–2616–01 

 TCGA-06–0168–01 TCGA-06–2562–01 TCGA-14–0787–01 TCGA-26–5136–01 TCGA-32–2632–01 

 TCGA-06–0171–02 TCGA-06–2563–01 TCGA-14–0789–01 TCGA-26–5139–01 TCGA-32–2634–01 

 TCGA-06–0174–01 TCGA-06–2564–01 TCGA-14–0790–01 TCGA-27–1830–01 TCGA-32–2638–01 

 TCGA-06–0178–01 TCGA-06–2565–01 TCGA-14–0817–01 TCGA-27–1831–01 TCGA-32–4213–01 

 TCGA-06–0184–01 TCGA-06–2567–01 TCGA-14–0871–01 TCGA-27–1832–01 TCGA-32–5222–01 

 TCGA-06–0187–01 TCGA-06–2569–01 TCGA-14–1034–01 TCGA-27–1834–01 TCGA-41–2571–01 

 TCGA-06–0190–01 TCGA-06–2570–01 TCGA-14–1034–02 TCGA-27–1835–01 TCGA-41–2572–01 

 TCGA-06–0190–02 TCGA-06–5408–01 TCGA-14–1402–02 TCGA-27–1837–01 TCGA-41–3915–01 

 TCGA-06–0210–01 TCGA-06–5410–01 TCGA-14–1823–01 TCGA-27–2519–01 TCGA-41–4097–01 

 TCGA-06–0210–02 TCGA-06–5411–01 TCGA-14–1825–01 TCGA-27–2521–01 TCGA-41-5651–01 

 TCGA-06–0211–01 TCGA-06–5412–01 TCGA-14–1829–01 TCGA-27–2523–01 TCGA-76–4925–01 

 TCGA-06–0211–02 TCGA-06–5413–01 TCGA-14–2554–01 TCGA-27–2524–01 TCGA-76–4926–01 

 TCGA-06–0219–01 TCGA-06–5414–01 TCGA-15–0742–01 TCGA-27–2526–01 TCGA-76–4927–01 

 TCGA-06–0221–02 TCGA-06–5415–01 TCGA-15–1444–01 TCGA-27–2528–01 TCGA-76–4928–01 

 TCGA-06–0238–01 TCGA-06–5416–01 TCGA-16–0846–01 TCGA-28–1747–01 TCGA-76–4929–01 

 

Supplementary Table 2. 60 Ferroptosis-related genes. 

Ferroptosis-related genes  

 

ACSL4, AKR1C1, AKR1C2, AKR1C3, ALOX15 
ALOX5, ALOX12, ATP5MC3, CARS1, CBS 
CD44, CHAC1, CISD1, CS, DPP4, FANCD2 
GCLC, GCLM, GLS2, GPX4, GSS, HMGCR 
HSPB1, CRYAB, LPCAT3, MT1G, NCOA4 
PTGS2, RPL8, SAT1, SLC7A11, FDFT1, TFRC 
TP53, EMC2, AIFM2, PHKG2, HSBP1, ACO1 
FTH1, STEAP3, NFS1, ACSL3, ACACA, PEBP1 
ZEB1, SQLE, FADS2, NFE2L2, KEAP1, NQO1 
NOX1, ABCC1, SLC1A5, GOT1, G6PD, PGD 
IREB2, HMOX1, ACSF2 
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Supplementary Table 3. Characteristics of patients in low and high-risk scores in TCGA cohort. 

ID futime fustat Age Gender Grade Stage T M N Risk-group 

TCGA-14–1829 218 0 57 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-19–5960 455 1 56 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-12–1597 675 1 62 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-32–4213 604 0 47 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-14–0871 880 1 74 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-14–0790 419 1 64 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-02–2483 466 0 43 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–2565 506 1 59 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0221 603 1 31 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-28–5208 544 1 52 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-19–1787 385 1 48 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-26–5134 167 0 74 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0174 98 1 54 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-32–5222 585 1 66 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-41–5651 460 1 59 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0158 329 1 73 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-19–1390 772 1 63 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-12–0618 395 1 49 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-28–5209 442 0 66 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-32–1970 468 1 59 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-02–2485 470 0 53 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–5413 268 0 67 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0744 1426 1 66 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–5411 254 1 51 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0686 432 1 53 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0129 1024 1 30 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-27–1837 427 1 36 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-32–2638 766 1 67 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-27–1834 1233 1 56 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0219 22 1 67 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-28–5216 415 0 52 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0130 394 1 54 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-27–2523 489 1 63 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-32–2634 693 0 82 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-26–5133 452 0 59 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0743 803 1 69 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0745 239 1 59 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-19–2629 737 1 60 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-27–1835 648 1 53 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-16–0846 119 1 85 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–2557 33 1 76 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–5417 155 0 45 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–5416 204 0 23 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-14–1825 232 1 70 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-28–1753 37 0 53 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-27–2526 87 1 79 FEMALE unknow unknow unknow unknow unknow Low risk 
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TCGA-06–0178 2681 1 38 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–2569 13 0 24 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-14–1402 975 1 58 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0132 771 1 49 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0157 97 1 63 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–2559 150 1 83 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-12–3652 1062 1 60 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-12–3650 333 1 46 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-28–5218 157 1 63 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-28–5215 335 1 62 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-28–1747 77 1 44 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-12–0616 448 1 36 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–0238 405 1 46 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–2564 181 0 50 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-19–2619 294 0 55 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-32–1982 142 1 76 FEMALE unknow unknow unknow unknow unknow Low risk 

TCGA-26–1442 953 0 43 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-26–5132 286 0 74 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-41–2572 406 1 67 MALE unknow unknow unknow unknow unknow Low risk 

TCGA-06–5418 83 1 75 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-32–2616 224 1 48 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-28–2509 145 0 77 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-06–2558 380 1 75 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-27–1831 505 1 66 MALE unknow unknow unknow unknow unknow High risk 

TCGA-19–4065 214 0 36 MALE unknow unknow unknow unknow unknow High risk 

TCGA-76–4928 94 1 85 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-08–0386 548 1 74 MALE unknow unknow unknow unknow unknow High risk 

TCGA-19–2620 148 1 70 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–5412 138 1 78 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-19–1389 141 1 51 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–2561 537 1 53 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-27–2524 231 1 56 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06-0138 737 1 43 MALE unknow unknow unknow unknow unknow High risk 

TCGA-14–2554 532 1 52 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-28–5204 454 1 72 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0646 175 1 60 MALE unknow unknow unknow unknow unknow High risk 

TCGA-26–5136 577 1 78 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-12–5295 454 1 60 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0139 362 1 40 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–2567 133 1 65 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–5408 357 1 54 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-76–4927 535 1 58 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0878 218 0 74 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0644 384 1 71 MALE unknow unknow unknow unknow unknow High risk 

TCGA-14–0789 342 1 54 MALE unknow unknow unknow unknow unknow High risk 

TCGA-12–5299 98 1 56 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-76–4929 111 1 76 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0210 225 1 72 FEMALE unknow unknow unknow unknow unknow High risk 
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TCGA-76–4931 279 1 70 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-15–0742 419 1 65 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0211 360 1 47 MALE unknow unknow unknow unknow unknow High risk 

TCGA-16–1045 883 1 49 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-27–2519 550 1 48 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0750 28 1 43 MALE unknow unknow unknow unknow unknow High risk 

TCGA-28–2513 222 0 69 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-02–2486 618 1 64 MALE unknow unknow unknow unknow unknow High risk 

TCGA-28–5207 343 1 71 MALE unknow unknow unknow unknow unknow High risk 

TCGA-26–5139 48 0 65 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-41–3915 360 1 48 MALE unknow unknow unknow unknow unknow High risk 

TCGA-14–1034 485 1 60 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-32–1980 36 1 72 MALE unknow unknow unknow unknow unknow High risk 

TCGA-12–0821 323 1 62 MALE unknow unknow unknow unknow unknow High risk 

TCGA-26–5135 270 1 72 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0649 64 1 73 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-19–2625 124 1 76 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-14–1823 543 1 58 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-14–0817 164 1 69 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0125 1448 1 63 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-12–3653 442 1 34 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-06–5859 139 0 63 MALE unknow unknow unknow unknow unknow High risk 

TCGA-41–2571 26 1 89 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–5414 273 0 61 MALE unknow unknow unknow unknow unknow High risk 

TCGA-12–0619 1062 1 60 MALE unknow unknow unknow unknow unknow High risk 

TCGA-14–0736 460 1 49 MALE unknow unknow unknow unknow unknow High risk 

TCGA-28–5220 388 1 67 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–5858 187 0 45 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-14–0787 68 1 69 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0152 375 1 68 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0184 2126 1 63 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0882 632 1 30 MALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0171 399 1 65 MALE unknow unknow unknow unknow unknow High risk 

TCGA-41–4097 6 1 63 FEMALE unknow unknow unknow unknow unknow High risk 

TCGA-06–0187 828 1 69 MALE unknow unknow unknow unknow unknow High risk 

TCGA-27–1830 154 1 57 MALE unknow unknow unknow unknow unknow High risk 

 

 

 


