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INTRODUCTION 
 

Primary liver cancer is a malignant tumor with the sixth 

morbidity rate and the fourth mortality rate in the world. 

The most common subtype is hepatocellular carcinoma 

(HCC), which accounts for 75%–85% of cases [1, 2]. 

The benefits of a vaccine against the hepatitis virus, and 

the improvement of diagnostic measures contribute to a 

reduction in the morbidity of HCC. Otherwise, the 

mortality rate is still high due to the limitations of 

surgical resection, orthotopic liver transplantation, or 

local percutaneous tumor ablation, especially for 

patients with advanced HCC or Child-Pugh class C 

cirrhosis [3]. The high heterogeneity of HCC and the 

www.aging-us.com AGING 2021, Vol. 13, No. 13 

Research Paper 

Screening and identification of angiogenesis-related genes as 
potential novel prognostic biomarkers of hepatocellular carcinoma 
through bioinformatics analysis 
 

Zili Zhen1,2,3, Zhemin Shen2,3, Yanmei Hu4, Peilong Sun1,2 
 
1Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China 
2Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, China 
3Department of Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China 
4Department of Paediatrics, the Second Hospital of Jilin University, Changchun 130041, Jilin, China 
 
Correspondence to: Peilong Sun; email: sunpeilong@fudan.edu.cn  
Keywords: hepatocellular carcinoma, angiogenesis, gene signature, prognosis, bioinformatics analysis 
Received: December 3, 2020       Accepted: June 23, 2021 Published: July 12, 2021 

 
Copyright: © 2021 Zhen et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality, which makes the 
prognostic prediction challenging. Angiogenesis appears to be of critical importance in the progression and 
metastasis of HCC. Some of the angiogenesis-related genes promote this process, while other anti-angiogenesis 
genes suppress tumor growth and metastasis. Therefore, the comprehensive prognostic value of multiple 
angiogenesis-related genes in HCC needs to be further clarified. In this study, the mRNA expression profile of 
HCC patients and the corresponding clinical data were acquired from multiple public databases. Univariate Cox 
regression analysis was utilized to screen out differentially expressed angiogenesis-related genes with 
prognostic value. A multigene signature was established with the least absolute shrinkage and selection 
operator Cox regression in the Cancer Genome Atlas cohort, and validated through an independent cohort. The 
results suggested that a total of 16 differentially expressed genes (DEGs) were associated with overall survival 
(OS) and a 7-gene signature was constructed. The risk score of each patient was calculated using this signature, 
the median value of which was used to divide these patients into a high-risk group and a low-risk group. 
Compared with the low-risk group, the patients in the high-risk group had a poor prognosis. The risk score was 
an independent predictor for OS through multivariate Cox regression analysis. Then, unsupervised learning was 
used to verify the validity of this 7-gene signature. A nomogram by further integrating clinical information and 
the prognostic signature was utilized to predict prognostic risk and individual OS. Functional enrichment 
analyses demonstrated that these DEGs were enriched in the pathways of cell proliferation and mitosis, and the 
immune cell infiltration was significantly different between the two risk groups. In summary, a novel 
angiogenesis-related genes signature could be used to predict the prognosis of HCC and for targeted therapy. 
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complex impact of many factors in the advancing 

process make prognosis prediction challenging [4, 5]. 

To improve the prognosis of HCC patients, hence, 

identifying biomarkers for prognostic prediction and 

treatment of HCC is critical. 

 

Angiogenesis occurs in some physiological processes 

involving tissue repair, proliferation, and remodeling, 

mainly including wound healing, embryonic 

development, and various pathophysiological 

processes, such as cancer, inflammation, and athero-

sclerosis [6–9]. Coordinated by angiopoietin and 

angiostatin produced by angiogenesis-related genes, 

angiogenesis mainly involves the following steps: 

production of angiogenic growth factors, degradation 

of the basement membrane, proliferation, migration, 

luminal formation, differentiation, and maturation 

characterized by endothelial cells, and regulation of 

vascular supporting cells [10]. 

 

As a solid tumor rich in blood vessels, HCC has 

obvious vascular proliferation and abnormal blood 

vessels, whose growth, invasion, and metastasis are 

partly caused by tumor angiogenesis. Of the numerous 

angiogenesis pathways, the VEGF/VEGFR receptor 

signaling pathway has been verified as the target of 

HCC precision medicine, which is targeted to inhibit 

angiogenesis and achieve the treatment for advanced 

HCC by sorafenib [11–13]. Apart from this, some of the 

other genes have also been proposed as biomarkers or 

modulators of angiogenesis. Certain genes, such as 

HIF1A, TMPRSS4, and SDF-1, regulate angiogenesis 

positively, which plays a vital part in promoting HCC 

progression and metastasis [14–16]. Undeniably 

speaking, some angiogenesis-related genes, including 

ANGPTL1 and EYA4, inhibit the angiogenesis and 

subsequent deterioration of HCC [17, 18]. Nonetheless, 

it remains unknown about the relation between the 

angiogenesis-related genes and the prognosis of HCC 

patients. 

 

Different angiogenesis-related genes play a role in 

promoting or suppressing cancer respectively, with the 

results showing that a single gene, promoting or 

inhibiting angiogenesis, cannot be adequately predicted 

prognosis. Thus, a model integrating multiple 

angiogenesis-related genes may have a preliminary 

judgment on the prognosis of HCC patients to a certain 

extent. First off, we gained transcriptome data and 

clinical information in multiple datasets. After that, we 

screened out the angiogenesis-related differentially 

expressed genes (DEGs) with prognostic value in the 

Cancer Genome Atlas (TCGA) dataset through the 
univariate Cox regression analysis, thereby constructing 

a multigene prognostic signature, and verified it in the 

International Cancer Genome Consortium (ICGC) 

cohort. This model was significantly related to several 

clinical characteristics (grade, stage, T classification and 

tumor status) of HCC patients. A nomogram by further 

integrating clinical information and the prognostic gene 

signature was utilized to predict prognostic risk and 

individual survival rate. Finally, we explored the 

distinctions in the critical functions, signaling 

pathways and immune infiltration between high-risk 

and low-risk groups using Kyoto Encyclopedia of 

Genes and Genomes (KEGG), Gene Ontology (GO), 

and single sample Gene Set Enrichment Analysis 

(ssGSEA) to definite the underlying mechanisms. The 

immunophenoscore (IPS) gap between the two groups 

also indicated that the model had a deep relationship 

with immunotherapy. 

 

RESULTS 
 

Clinical characteristics of HCC patients 

 

Figure 1 is a flow chart of this research. After 

excluding patients with a follow-up time of 0 days or 

lack of clinical data, our study finally included 365 

HCC patients from the TCGA dataset as a training set, 

and 231 HCC patients from the ICGC dataset as a 

validation set. The demographic and specific clinical 

features of the HCC samples in both cohorts were listed 

in Table 1. 

 

Identification of prognostic angiogenesis-related 

DEGs in the TCGA dataset 

 

We screened out 52 genes from 79 angiogenesis-related 

genes with significant differential expression between 

adjacent normal tissues and tumor tissues 

(Supplementary Table 1). With the help of univariate 

Cox regression analysis, 25 genes were closely related 

to the prognosis of HCC (Figure 2A). By taking the 

intersection of both sets of genes, it was clear that 16 

DEGs were tightly bound to the overall survival (OS) of 

HCC patients (Figure 2B, 2C). MMP9, PGF, TGFB1, 

VEGFA, ANGPT2, CTNNB1, PDCD10, AGGF1, 

ANGPT1, ITGAV had a higher hazard ratio, and were 

highly expressed in HCC tissues, indicating that the 

expression of these genes could promote the secretion 

of angiogenic factors, and angiogenesis was also 

accelerated with abnormalities of tumor blood vessels, 

leading to rapid tumor development and poor prognosis. 

On the contrary, the hazard ratio of TEK, ENG, 

COL18A1, IL1RN, PLG, and PON1 was less than 1. 

Moreover, these 6 genes were highly expressed in 

normal tissues, and had the function of normalizing 

blood vessels. High expression of these genes is 

conducive to prognosis. VEGFA and TEK were clearly 

identified as the core genes according to the interaction 

network (Figure 2D). Meanwhile, the correlation 
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Table 1. The demographic and clinical characteristics of HCC patients in this study. 

 TCGA cohort ICGC cohort 

No. of patients 365 231 

Age (median, range) 60 (16–90) 67 (31–89) 

Gender (%)   

Female  119 (32.6%) 61 (26.4%) 

Male 246 (67.4%) 170 (73.6%) 

Grade (%)   

G1 55 (15.1%) – 

G2 175 (47.9%) – 

G3 118 (32.3%) – 

G4 12 (3.3%) – 

unknow 5 (1.4%) – 

Stage (%)   

Stage I 170 (46.6%) 36 (15.6%) 

Stage II 84 (23.0%) 105 (45, 5%) 

Stage III 83 (22.7%) 71 (30.7%) 

Stage IV 4 (1.1%) 19 (8.2%) 

unknow 24 (6.6) 0 (0.0%) 

Survival status   

OS days (median, range) 812 (1–3675) 812 (10–2160) 

Death (%) 130 (35.6%) 42 (18.2%) 

 

 
 

Figure 1. The flow chart of data collection and analyses. 
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diagram based on these angiogenesis-related genes was 

exhibited in Figure 2E. 

 

Establishment of a prognostic signature using the 

TCGA dataset 

 

We conducted the least absolute shrinkage and selection 

operator (LASSO) regression to filter suitable genes from 

the above expression of the 16 genes to establish a 

prognostic signature. A 7-gene signature was identified 

on the basis of the optimal value of  (Supplementary 

Figure 1A, 1B). We calculated the risk score as shown 

below: risk score = (0.123128 × expression of ANGPT1) 

+ (–0.190501 × expression of ENG) + (0.282949 × 

expression of PDCD10) + (0.122334 × expression of 

PGF) + (–0.033803 × expression of COL18A1) + 

(0.016683 × expression of ITGAV) + (–0.066838 × 

expression of PON1). In terms of the median risk score, 

365 HCC patients were dichotomized into a high-risk 

group (n = 182) and a low-risk group (n = 183) (Figure 

3A). A Kaplan-Meier curve was created to indicate that 

patients in the low-risk group had a better OS probability 

than those in the high-risk group (P < 0.001) (Figure 3B). 

The OS rates at 1-, 2-, 3-year for the high- risk group 

were 69.7%, 53.0%, and 42.2%, whereas the 

corresponding rates for another group were 95.4%, 

85.7%, and 80.9%, respectively. Other similar studies 

focused on the analysis of disease-specific survival 

(DSS), progression-free survival (PFS), and disease-free 

survival (DFS) of these HCC patients, whose outcomes 

of survival status and Kaplan-Meier curves were highly 

consistent with the results of OS (Supplementary Figure 

2A–2C). To estimate its predictive performance, we 

displayed the time-dependent receiver operating 

characteristic (ROC) curve, with the area under the curve 

(AUC) reaching 0.785, 0.722 and 0.715 in the 1 year, 

2 years, and 3 years, respectively, indicating that the 

prognostic signature exhibited an outstanding specificity 

and sensitivity (Figure 3C). To study this signature in-

depth, we divided the patients into subgroups based 

 

 
 

Figure 2. Identification of the differentially expressed angiogenesis-related genes with prognostic value in the TCGA 
cohort. (A) Forest plots showing the results of the univariate Cox regression analysis between gene expression and OS. (B) The heatmap 

showing the expression of 16 overlapping genes in tumor tissues. (C) The DEGs with prognostic value were obtained by the intersection of 
the two groups of genes in the venn diagram. (D) The PPI network downloaded from the STRING database indicated the interactions among 
the candidate genes. (E) The correlation network of the candidate genes. 
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on their clinical characteristics (age <=65 and >65, 

female and male, stage I and II and III and IV, grade G1 

& 2 and 3 & 4), and compared the divergences of OS 

between the two groups in each subgroup. The Kaplan-

Meier curves of OS in each subgroup had the same 

trends as the OS of all samples, suggesting that the 

signature could be applied to different clinically specific 

populations (Supplementary Figure 3A–3H). 

 

To further investigate the genes involved in the signature, 

we examined a human liver cell line (L02) and a 

hepatoma cell line (HepG2) for the expression of these 

genes through qRT-PCR. A series of specific primers of 

each gene were shown in Table 2. The relative expression 

of each gene between the L02 cell line and HepG2 

cell line confirmed by qRT-PCR was not completely 

consistent with the corresponding RNA-sequence from 

the TCGA cohort, in light of the high heterogeneity 

of HCC. The expression of ANGTP1, COL18A, 

ITGAV, PGF in HepG2 cells were higher than those 

of L02 (Figure 4A–4D), while ENG and PON1 were 

highly expressed in hepatocytes (Figure 4E–4F). 

There was no difference in PDCD10 expression in 

both cell lines (Figure 4G). We further observed the 

immunohistochemistry of these 7 proteins in normal and 

pathological sections through the Human Protein Atlas 

(HPA) database, which lacked PGF data (Supplementary 

Figure 4). The comparison results were highly consistent 

with paired transcriptome sequencing differences (Figure 

5A–5L). Survival analyses, on the basis of the optimal 

cut-off value of each gene expression, revealed that the 

differential expression of these genes was relevant to the 

prognosis of HCC patients. Particularly, the relatively 

high expression of ANGPT1, ITGAV, PDCD10, and 

PGF were in association with poor prognosis, whereas 

the higher expression of COL18A1, ENG, and PON1 had 

relation to a better prognosis, which was completely 

consistent with the sign of the corresponding gene 

coefficient in the signature (Supplementary Figure 5A–

5G). There was an extremely obvious difference in 

survival analysis between various risk groups divided by 

the optimal cut-off configuration as well (Supplementary 

Figure 5H). 

 

Meanwhile, Principal component analysis (PCA) and 

t-distributed stochastic neighbor embedding (t-SNE) 

analysis demonstrated that HCC patients in various risk 

groups were distributed in different directions (Figure 

3D, 3E). Patients belonging to the latter had lower 

mortality as well as better prognosis; with the risk score 

increasing, the probability of death elevated obviously 

and the OS was significantly shortened (Figure 3F). 

 

 
 

Figure 3. Establishment and prognostic analysis of a 7-gene signature in the TCGA cohort. (A) The distribution and median value 

of the risk scores in the TCGA cohort. (B) Kaplan-Meier curves for the difference in OS of HCC patients between the high-risk group and low-
risk group in the TCGA cohort. (C) The AUC of time-dependent ROC curves verified the prognostic performance of the 7-gene signature in 
the TCGA cohort. (D) The PCA plot of the TCGA cohort. (E) The t-SNE analysis of the TCGA cohort. (F) The distributions of OS status, OS and 
risk score in the TCGA cohort. 
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Table 2. Sequences of qRT-PCR primer. 

Gene symbol Forward primer sequence Reverse primer sequence  

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG 

ANGPT1 CCTGATCTTACACGGTGCTGATT GTCCCGCAGTATAGAACATTCCA 

PDCD10 GCCCCTCTATGCAGTCATGTA AGCCTTGATGAAAGCGGCTC 

ITGAV ATCTGTGAGGTCGAAACAGGA TGGAGCATACTCAACAGTCTTTG 

ENG GACCCTGGTACTAAAGAAAGAGC GAGAGGCTGTCCATGTTGAG 

PGF CATGTTCAGCCCATCCTGTGTCTC CACCTTTCCGGCTTCATCTTCTCC 

COL18A1 CGGGATGAACGGATTGAAAGGAGAG CCAACTGAAGAAAGTCAAACGGAAACTG 

PON1 GGTGAACCATCCAGATGCCAAGTC TAGTAGACAACATACGACCACGCTAAAC 

 

Validation of the 7-gene signature in the ICGC 

dataset 

 

The HCC patients in the ICGC dataset were organized 

into a high-risk group (n = 115) and a low-risk group 

(n = 116) in the light of the median value, calculated with 

the above-mentioned model formula, to estimate the 

robustness of the signature what has been established 

(Figure 6A). Kaplan-Meier analysis suggested that there 

was a remarkable difference in the survival probability 

of the two groups (P < 0.001) (Figure 6B). The AUC of 

the 7-gene signature for 1-, 2-, 3-year OS were 0.764, 

0.705, and 0.724 respectively (Figure 6C). Similarly, 

both t-SNE and PCA analysis illustrated that the 

distribution of these samples in the two risk groups 

presented discrete directions, which corroborated the 

results of the TCGA cohort (Figure 6D, 6E). Patients in 

the high-risk group were confronted with a shorter 

survival time and more deaths compared with their low-

risk counterparts (Figure 6F). Apart from ANGPT1, 

ITGAV, and PGF, other genes and risk scores were 

fully related to OS and consistent with the trend of the 

TCGA outcomes (Supplementary Figure 6A–6H). We 

divided these HCC patients into different subgroups 

according to their clinical characteristics and performed 

survival analysis. And the signature was also applicable 

to the population with different clinical characteristics 

in the ICGC dataset (Supplementary Figure 7A–7F). 

 

Independent prognostic value of the 7-gene signature 

 

After removing samples with incomplete clinical 

information, the further analysis involved several 

clinical characteristics of 240 HCC patients, containing 

age, gender, grade, and stage. We applied univariate and 

multivariate Cox regression analysis to assess the 

effectiveness of independent prognostic predictions of 

risk scores and other clinical characteristics. Univariate 

analysis indicated that risk score was considerably 

correlated with the OS probability in the TCGA dataset 

 

 
 

Figure 4. The relative expression of 7 angiogenesis-related genes between normal liver cell lines and hepatocarcinoma cell 
lines. ANGTP1 (A), COL18A (B), ITGAV (C), PGF (D) were relatively highly expressed in hepatocarcinoma cell lines, while ENG (E), PON1 
(F) had higher expression in normal liver cell lines. (G) There is no significant difference in the expression of PDCD10 in the two cell lines. 
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(HR = 6.160, 95% CI = 3.568–10.633, P < 0.001) and 

the ICGC dataset (HR = 5.953, 95% CI = 2.774–12.775, 

P < 0.001). The risk score was still proved to be an 

independent predictor for OS in the TCGA dataset (HR 

= 5.430, 95% CI = 2.998–9.833, P < 0.001) and the 

ICGC dataset (HR = 4.376, 95% CI = 1.987–9.637, P < 

0.001), after correction for other confounding factors 

through the multivariate Cox regression analysis. 

Besides, stage was also an independent prognostic 

factor for predicting OS (TCGA dataset: HR = 1.996, 

95% CI = 1.361–2.927, P < 0.001; ICGC dataset: HR = 

2.559, 95% CI = 1.330–4.925, P = 0.005). The detailed 

 

 
 

Figure 5. Human Protein Atlas immunohistochemistry of normal sample and tumor sample. The expression levels of ANGTP1 

(A, B), ENG (C, D), PDCD10 (E, F), COL18A (G, H), ITGAV (I, J) and PON1 (K, L) in tumor and normal tissues were validated in the TCGA cohort, 
using the paired expression of the same individual normal tissue and tumor tissue. 
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Table 3. Univariate and multivariate analyses of OS in the TCGA cohort. 

Factors 
Univariate Multivariate 

HR (95%CI) P-value HR (95% CI) P-value 

Age (year) (≤65, >65) 1.222 (0.839–1.780) 0.295 – – 

Gender (female, male) 0.776 (0.531–1.132) 0.188 – – 

Grade (G1 & G2, G3 & G4) 1.141 (0.784–1.661) 0.490 – – 

Stage (TNM I & II, III & IV) 2.500 (1.721–3.632) <0.001 1.996 (1.361–2.927) <0.001 

Risk Score 6.160 (3.568–10.633) <0.001 5.430 (2.998–9.833) <0.001 

 

Table 4. Univariate and multivariate analyses of OS in the ICGC cohort. 

Factors 
Univariate Multivariate 

HR (95% CI) P-value HR (95% CI) P-value 

Age (year) (≤65, >65) 1.304 (0.690–2.462) 0.413 – – 

Gender (female, male) 0.502 (0.268–0.940) 0.031 0.495 (0.253–0.969) 0.040 

Stage (TNM I & II, III & IV) 2.492 (1.351–4.599) 0.003 2.559 (1.330–4.925) 0.005  

Risk Score 5.953 (2.774–12.775) <0.001 4.376 (1.987–9.637) <0.001  

 

information of the independent prognostic analyses was 

presented in Table 3, 4. 

 

To illustrate the clinical application value of this 

signature, we compared the differences in risk scores 

for various clinical characteristics from the TCGA 

cohort. There were no remarkable differences in risk 

scores in patients of various ages and genders, 

indicating that the two have no additional contribution 

to the prognostic risk in this model (Figure 7A, 7B). It 

was worth noting that there are obvious differences in 

the risk scores of this model in different grades, except 

 

 
 

Figure 6. Validation of the 7-gene signature in the ICGC cohort. (A) The distribution and median value of the risk scores in the ICGC 

cohort. (B) Kaplan-Meier curves for the difference in OS of HCC patients between the high-risk group and low-risk group in the ICGC cohort. 
(C) The AUC of time-dependent ROC curves verified the prognostic performance of the 7-gene signature in the ICGC cohort. (D) The PCA 
plot of the TCGA cohort. (E) The t-SNE analysis of the ICGC cohort. (F) The distributions of OS status, OS and risk score in the ICGC cohort. 
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for G3 and G4, and as the grade increased step by step, 

the risk scores also increased (Figure 7C). This 

signature could effectively distinguish the different 

grades of HCC, so that could be a potential biomarker 

for HCC grades. The low-risk group was represented by 

G2, and the high-risk group corresponded to G3 (Figure 

7D). Accompanied by the increase of stage and T 

classifications, risk scores also had a corresponding 

increase trend; notably, compared with stage II, stage III 

and other T classifications, the risk scores of stage I and 

T1were pronouncedly lower (Figure 7E–7H). The 

angiogenesis status of various stages in the ICGC cohort 

also had similar outcomes (Figure 7K, 7L). For tumor 

status, the risk scores of patients with tumor were higher 

than that of patients with tumor-free, suggesting that the 

differences in high and low scores of patients in this 

signature revealed that the total resection could be 

performed, which is also closely related to the 

angiogenesis (Figure 7I, 7J). 

 

A personalized prognostic prediction model 

 

We applied the nomogram to quantitatively estimate the 

individual’s actual clinical survival risk by integrating 

multiple risk factors [19]. We constructed a nomogram 

by integrating the 7-gene signature, age, gender and 

 

 

 
Figure 7. The relationship between the signature and clinical characteristics of HCC patients. There was no difference in risk 

scores for patients of different ages (A) and genders (B). With the increase of grade (C, D), stage (E, F) and T classification (G, H), the risk 
had an upward trend. There was a significant difference in the with tumor and tumor free patients (I, J). The stage difference could be 
verified in the ICGC cohort (K, L). 
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TNM classification to forecast the prognosis at 1, 2, and 

3 years (Figure 8A). The length of each line represented 

its degree of influence on the prognosis, and different 

values corresponded to different results. Especially, the 

risk score corresponded to the longest line, indicating 

that it had the strongest predictive ability for OS. The 1-, 

2-, and 3-year survival probability of the patient could 

be judged based on the total points obtained by adding 

the point of the risk score related to the patient’s 

prognosis and the points corresponding to the clinical 

characteristics. The calibration curves implied that the 

predicted survival probability matched with the actual 

one well (Figure 8B–8D). 

 

Functional analysis of the angiogenesis-related 7-gene 

signature 

 

We performed GO and KEGG analyses to further 

clarify the biological pathways and functions relevant to 

the 7-gene signature through the functional enrichment  

analysis of DEGs. Conspicuously, DEGs were enriched 

in several functions concerning cell proliferation and 

mitosis, as well as nuclear division, which were closed 

in association to angiogenesis in both datasets (adjusted 

P < 0.05) (Figure 9A, 9B) [20–22]. For biological 

processes (BP), the major enriched GO terms were 

nuclear division and organelle fission, and other 

immune-related pathways, such as neutrophil activation 

involved in the immune response. The most enriched 

cellular component (CC) was the spindle and 

chromosomal region. And it revealed that primary 

functional categories in molecular function (MF) were 

microtubule binding and single-stranded DNA binding. 

Therefore, the application of anti-mitotic drugs such as 

colchicine may effectively inhibit tumor growth and 

metastasis. KEGG pathway primarily involved in PI3K-

Akt signaling pathway, cell cycle, microRNAs in 

cancer, ECM-receptor interaction, as well as other 

cancer-promoting pathways (adjusted P < 0.05) (Figure 

9C, 9D). 

 

 
 

Figure 8. The nomogram to predict the survival probabilities in the TCGA cohort. (A) The nomogram for predicting OS of HCC 

patients in the TCGA cohort. The calibration plots for predicting 1-year (B), 2-year survival (C) and 3-year survival (D) in the TCGA dataset. 
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Previous studies had shown that tumor anti-

angiogenesis therapy went hand in hand with 

immunotherapy [23–25]. With the normalization of 

tumor vasculature (or anti-angiogenesis), tissue 

perfusion was enhanced, and the infiltration of immune 

effector cells was improved, leading to immunotherapy 

potentiation; meanwhile, the stimulation of immune cell 

functions also contributed to normalizing tumor blood 

vessels. Thus, ssGSEA was utilized to perform 

enrichment analysis on different immunocyte subsets, 

related pathways and functions to investigate the 

relationship between risk scores and immune cells 

infiltration with and related components. The scores of 

adaptive immune cells, including CD8+ T cells, B cells, 

Neutrophils, and TIL, were different between the two 

groups in the TCGA cohort; notably, the expression 

values of these cells in the high-risk group were lower 

than those in the low-risk group (all P < 0.05) (Figure 

10A). Some molecules and signals related to the antigen 

presentation process, such as MHC class I, aDCs, DCs, 

pDCs, and APC co-inhibition, also had gaps between 

various groups in the TCGA dataset, but it was worth 

noting that their regulation directions were not 

consistent (all P < 0.05) (Figure 10A, 10B). What’s 

more, the high-risk group had lower scores of NK cells, 

cytolytic activity, type I and II IFN response, and mast 

cells, while the score of macrophages was just the 

opposite (all P < 0.05). Similarly, the differences of 

B cells, Neutrophils, macrophages, NK cells, cytolytic 

activity, type I and II IFN response between the two 

groups were verified in another dataset (all P < 0.05) 

(Figure 10C, 10D). 

 

To further investigate the relation between the model 

and immunotherapy, the immunophenoscore was 

utilized to evaluate the distinction in the effect of 

 

 
 

Figure 9. Functional enrichment analyzes of DEGs. The most significant or shared GO enrichment and KEGG pathways in the TCGA cohort 

(A, C) and the ICGC cohort (B, D). From top to bottom, the barplot represents the biological process, cellular component, and molecular 
function, respectively. 
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immunotherapy between the two groups under various 

immune checkpoint conditions. For HCC patients with 

both CTLA4 and PD-1 double-positive or double-

negative, or PD-1 positive but CTLA4 negative, the IPS 

of patients in the high-risk group was noticeably lower 

than that of the low-risk group, that is, under the above-

mentioned conditions, patients in the former had a 

worse effect on immunotherapy (Figure 11A–11C). Yet, 

a higher IPS was exposed to the patients (with CTLA4 

positive but PD-1 negative) in the high-risk group 

(Figure 11D), resulting from the higher expression of 

CTLA4 in this group (Figure 11E). Besides, we 

evaluated the risk scores of the HCC patients 

corresponding to different immune subtypes (C1: 

Wound Healing, C2: IFN-gamma Dominant, C3: 

Inflammatory, C4: Lymphocyte Depleted, C5: 

Immunologically Quiet, C6: TGF-beta Dominant) 

(Figure 11F). The immune subtype C1, which is 

characterized by wound healing, had a remarkably 

higher risk score than other subtypes. The immune 

subtype C3 had a relatively low risk score, resulting in a 

better prognosis, which was completely consistent with 

existing research conclusions [26]. 

 

In general, the immune cell infiltration and 

corresponding immune response of samples in the low-

risk group were dramatically more striking, indicating 

that relatively normal tumor blood vessels are more 

 

 
 

Figure 10. Comparison of the ssGSEA scores between different risk groups in the TCGA cohort and the ICGC cohort. The 

scores of 16 immune cells (A, C) and 13 immune-related functions (B, D) are displayed in boxplots. P values were showed as: ns: not 
significant; *P < 0.05; **P < 0.01; ***P < 0.001. 
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likely to be immune cell infiltrated and even beneficial 

for immunotherapy and combination therapy of anti-

angiogenesis therapy and immunotherapy. 

 

DISCUSSION 
 

As a malignant tumor, HCC often exhibits different 

degrees of deterioration, metastasis and recurrence 

under the joint regulation of pro-angiogenesis genes and 

anti-angiogenesis genes [27]. The high expression  

of pro-angiogenesis genes has obvious vascular 

proliferation and vascular abnormalities, including 

sinusoidal capillarization and arterialization, which 

promote the metastasis of HCC. On the contrary, the 

superior expression of anti-angiogenesis genes slows 

the progression or recurrence of HCC. Therefore, it is of 

significance to provide prognostic predictions for HCC 

patients by integrating angiogenesis-related genes as 

effective and reliable biomarkers. The transcription 

level of 79 angiogenesis-related genes in tumor tissues 

of HCC samples has been systematically analyzed, and 

the relationship between differentially expressed genes 

and OS probability has also been clarified. A novel 

potential prognostic signature of 7 angiogenesis-related 

genes was established and validated by an external 

dataset. Meanwhile, we performed functional 

enrichment analyses to identify the pathways relevant to 

this model and its related pathways of immune 

infiltration. 

 

Previous studies have shown that pro-angiogenesis 

genes, such as VEGF, could lead to the progression and 

metastasis of HCC [28–30]. Also, drugs targeting these 

pathways have been studied and applied clinically [31]. 

However, the complex mechanisms of most other 

angiogenesis-related genes and their combined effects 

resulted in the unclear relationship between these genes 

and OS. Of the 79 angiogenesis-related genes selected 

in this study, 53 genes (67.1%) had a gap in the 

expression between adjacent normal tissues and tumor 

tissues of HCC samples, and 25 genes (31.6%) were 

connected with OS probability through the univariate 

Cox regression analysis. It is worth noting that in 

addition to a few star genes, other angiogenesis-related 

genes had a potential role in the tumorigenesis and 

progression of HCC, which provided the possibility to 

establish a potential prognostic signature with multiple 

angiogenesis-related genes. 

 

This prognostic signature constructed consisted of 7 

angiogenesis-related genes, including ANGPT1, ENG, 

PDCD10, PGF, COL18A1, ITGAV, and PON1. 

 

 
 

Figure 11. Comparison of immunophenoscore (IPS) between high and low risk groups under different immune checkpoint 
states. In the case of both CTLA4 and PD-1 double-positive (A) or double-negative (B), or PD-1 positive but CTLA4 negative (C), the low-risk 

group had higher IPS. (D) The high-risk group with CTLA4 positive but PD-1 negative had higher IPS. (E) The expression level of CTLA4 in 
different risk groups. (F) The risk scores under different immune subtypes. 
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According to the survival analyses of a single gene and 

the coefficient of each gene in the signature, these genes 

could be roughly divided into two categories, one of 

which was related to the poor prognosis of HCC 

(ANGPT1, ITGAV, PDCD10, PGF), and the other was 

associated with the suppression of HCC (COL18A1, 

ENG, PON1). ANGPT1 encodes a secreted glycol-

protein, which plays important role in vascular 

development and angiogenesis, thereby promoting the 

tumor dedifferentiation and development of HCC [32]. 

The protein encoded by ENG is a major glycoprotein of 

the vascular endothelium. However, the relationship 

between the quantitative endoglin expression and the 

prognostic effect of HCC is not yet known. Some 

studies have shown that the expression of endoglin in 

tumor tissues and the serum level of soluble endoglin 

are positively related to more advanced clinical stages 

and poor prognosis [33, 34]. Other studies report that 

higher expression of ENG microvascular density, 

cyclooxygenase-2 in endothelial cells of non-tumor 

tissue, in comparison with tumors, only plays a role in 

tumorigenesis, but does not promote tumor progression 

[35, 36]. This view is consistent with the role of ENG in 

the prognostic signature constructed in this study. The 

loss of endothelial PDCD10, associated with cell 

apoptosis, stimulates proliferation and inhibits apoptosis 

to activate glioma cells and promote tumor growth [37]. 

There is no relevant research on the expression of 

PDCD10 in HCC. The expression level of PGF, 

homologous to VEGF, is relation to the poor prognosis 

of various cancers, including HCC, colorectal cancer, 

kidney cancer, and other cancers [38–41]. COL18A1 

encodes a potent antiangiogenic protein that can inhibit 

angiogenesis and HCC tumor growth [42]. The integrin 

encoded by ITGAV may regulate angiogenesis and 

promote HCC progression and metastasis. As a pioneer 

factor, LncRNA AY927503 promoted HCC metastasis 

by modifying ITGAV transcription [43]. Low 

expression of PON1 was connected with poor survival 

in HCC patients [44]. We verified the relative 

expression of these 7 genes in a normal liver cell line 

and a hepatocarcinoma cell line by qRT-PCR, and the 

results were highly consistent with existing researches. 

Significantly, the sign of the coefficient of each gene in 

the signature constructed in the current was consistent 

with the direction of up-regulation or down-regulation 

in HCC. Whether these genes have a certain impact on 

the prognosis of HCC patients by affecting the 

angiogenesis process is still elucidated, because there 

are few definitive reports on the mechanism of these 

ones, apart from ANGPT1, COL18A1, and ITGAV. 

 

This angiogenesis-related model is particularly relevant 
to the clinical characteristics of HCC patients, 

especially the malignant degree of the tumor itself and 

the degree of tumor progression. In this study, we found 

that as the grade and stage of HCC increase, the risk 

score will also increase accordingly. Regarding the 

grade of the tumor, except that the risk score of G4 is 

not different from that of G3, which is only slightly 

higher than the score of G3, the difference in risk scores 

between grades is still very obvious. In other words, one 

reason for the different degrees of malignancy caused 

by different pathological grades of HCC may be that 

angiogenesis plays a certain role in this process, that is, 

the differential expression of angiogenesis-related genes 

in different pathological grades leads to their invasion. 

The different ability of metastasis, which in turn leads 

to different degrees of malignancy. In addition, we can 

also use this signature as a biomarker for HCC grading 

to make a preliminary judgment and identification of 

the malignant degree. Angiogenesis also plays a role in 

the tumor stage. In the TCGA cohort, the risk scores of 

stage I differ from the scores of stage II and stage III 

significantly. There are marked differences between the 

T1 classification and other T1 classifications, as well. 

We consider that the difference in the stage is mainly 

due to the difference in T classification because the 

main gap between the T1 and other T classifications is 

whether the vascular invasion occurs. With the increase 

of the risk, the more abundant angiogenesis-related 

genes are expressed, which may further cause tumor 

vascular invasion. Therefore, this model can also be 

used as an important indicator of T classification. 

 

The tumor susceptibility to angiogenesis has been a hot 

spot of studies in recent years, while targeted drugs 

based on these have also been developed and clinically 

applied. Yet, the potential mechanisms of angiogenesis 

giving rise to tumor progression and metastasis and 

related drug resistance are still elusive. Using GO and 

KEGG analysis to clarify the related pathways of DEGs 

between the two groups, the results suggested that these 

genes were mostly focused on the functions and signal 

pathways of cell proliferation and mitosis. The 

angiogenesis that we have emphasized earlier  

that contributes to tumor metastasis may only be a 

generalized proliferation. As a possible deeper 

mechanism, these “angiogenesis-related genes” exert 

critical functions in the process of mitosis, through 

promoting the interaction and migration of micro-

tubules, which in turn, lead to cell proliferation, not 

only vascular endothelial cells, but also tumor cells 

[45]. Moreover, the extensive proliferation of vascular 

endothelial cells paves the way for subsequent tumor 

cell proliferation and migration. For these patients with 

angiogenesis, the application of anti-mitotic drugs such 

as colchicine may be more beneficial to combat tumor 

growth and metastasis. The IPS outcomes indicated that 
immunotherapy has a better effect on patients in the 

low-risk group. Thus, the signature may become a 

potential target for immunotherapy. Furthermore, 
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studies in mounting numbers demonstrated that immune 

cell infiltration in the tumor microenvironment (TME) 

and anti-angiogenesis or vascular normalization had 

mutually promoting effects [46–49]. VEGF induces the 

production of myeloid suppressive cells, regulatory T 

cells, and other immunosuppressive-related cells, which 

breaks the immune dynamic balance and develops its 

inhibitory direction. The anti-angiogenic drugs that 

antagonize VEGF or disrupt VEGF signal transduction 

have a positive regulatory effect on the immune effect 

by promoting tissue perfusion and immune cell 

infiltration into tumors, thereby enhancing the effect of 

immunotherapy. Therefore, anti-angiogenesis and 

normalization of blood vessels could promote the 

efficacy of immunotherapy by inducing the secretion of 

adhesion molecules in the cavity of tumor vascular 

endothelial cells, promoting the infiltration of immune 

cells into tumor tissues, improving the TME, and 

ultimately alleviating immunosuppression. Conversely, 

the increase and activation of effector T cells in the 

tumor promote the remodeling and normalization of 

blood vessels and TME. Immunotherapy combined with 

anti-angiogenesis therapy can transform the battlefield 

tailored by tumor cells into the other battlefield that is 

conducive to immune cells attacking tumors by 

improving the harsh TME, notably, anti-angiogenic 

drugs may be the magic weapon in this process. The 

higher fractions of adaptive immune cells in the low-

risk group suggested that the relative normalization of 

tumor blood vessels facilitates the infiltration of 

immune cells, thereby co-suppress HCC. Therefore, the 

combined effect of the interaction of immune cell 

infiltration and anti-angiogenic response in low-risk 

group patients may explain the corresponding better 

prognosis. 

 

This study has several shortcomings that need to be 

solved by follow-up work. Firstly, this 7-gene 

prognostic signature was established and verified with 

another public database. It is necessary to provide more 

prospective clinical data to verify. Then, this model 

almost represents an optimal prognostic model related 

to angiogenesis by integrating a large number of 

angiogenesis-related genes, but some vital genes, like 

VEGFA, were excluded. Simultaneously, the inherent 

weakness of supposing only one phenotype to establish 

a prognostic signature was inevitable, since many other 

fundamental prognostic genes in HCC may be excluded 

as well. Besides, the link between the angiogenesis-

related genes and immune infiltration, and the 

underlying mechanism need further experimental 

exploration. 

 
In short, this study screened 7 angiogenesis-related 

genes as prognostic biomarkers and established a novel 

prognostic signature. And it has been validated in 

association with OS probability in two datasets 

independently, providing a novel breakthrough in the 

prognosis of HCC patients. The potential mechanism of 

angiogenesis-related signatures of HCC in immune 

infiltration remains relatively little known and deserves 

further study. 

 

MATERIALS AND METHODS 
 

Transcriptome data and clinical data collection 

 

Transcriptome data, containing gene expression, 

together with clinical characteristics of American 

HCC samples (n = 371) and Japanese HCC samples 

(n = 231) were respectively collected from the 

TCGA portal (https://portal.gdc.cancer.gov/repository) 

(up to July 1, 2020) and the ICGC portal 

(https://dcc.icgc.org/projects/LIRI-JP) (up to August 1, 

2020). These Japanese samples were mainly derived 

from patients with HCC caused by HBV or HCV 

infection [50]. These extracted RNA-sequence data 

were normalized with formula log2 (x + 1) by the 

“limma” R package. After removing samples with a 

follow-up time of 0 days and missing clinical 

characteristics, 365 HCC samples in the TCGA portal, 

with intact survival status, OS time, age, gender, 

histological grade, and TNM stage were included. The 

samples in the ICGC database had complete clinical 

data. Then, 79 angiogenesis-related genes with a 

correlation score > 10, provided in Supplementary 

Table 2, were extracted from the GeneCards database 

(https://www.genecards.org/). 

 

Establishment and validation of a potential 

prognostic angiogenesis-related gene signature 

 

The “limma” R package was used to screen out the 

DEGs between the tumor tissues and the adjacent 

normal tissues in the HCC samples in the TCGA data 

with the false discovery rate (FDR) < 0.05. Then, we 

screened angiogenesis-related genes that could be 

utilized to judge the prognosis of HCC patients through 

univariate cox analysis. The intersection of these two 

groups of genes was utilized to identify the 

differentially expressed angiogenesis-related genes with 

prognostic value in HCC. The STRING database 

generated an interactive network that overlaps the 

prognostic DEGs [51]. The interactions with high 

confidence (0.70) were considered statistically 

significant. LASSO regression was performed with the 

“glmnet” R package to establish a prognosis signature 

to reduce the dimension and enhance its generalization 

ability [52, 53]. The response variables in the LASSO 

regression were OS probability and survival status, and 

the independent variables were the normalized 

expression matrix of the above candidate prognostic 

https://portal.gdc.cancer.gov/repository
https://dcc.icgc.org/projects/LIRI-JP
https://www.genecards.org/
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DEGs. Based on tenfold cross-validation following the 

minimum criteria, we identified the penalty parameter 

(λ) for the signature. The following computational 

formula was then established for further analyses: 

Risk score = ∑[𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑜𝑓 𝐺𝑒𝑛𝑒𝑖  × 𝛽𝑖]

𝑛

𝑖=1

 

 

Where n represents the number of finally enrolled 

genes,  indicates the coefficient of Genei obtained after 

the LASSO regression. 

 

The patients in both portals were divided into two risk 

groups for survival analysis in line with the median 

value of the risk score. And Kaplan–Meier survival 

analysis was utilized to compare the OS, DFI, PFI, DSS 

between these two groups. In addition to the above 

survival analysis, we also utilized the “survminer” R 

package to identify the optimal cut-off expression to 

perform survival analysis for each gene and risk score. 

PCA was carried out to explore whether the difference 

between the two groups was significantly identified on 

the basis of unsupervised learning through the “stats” R 

package. Such dimensionality reduction can extract the 

portions of the principal components of various groups, 

so as to clarify whether there were remarkable 

differences between the two groups. In order to 

determine the complex structural relationship between 

features, we performed t-SNE to investigate the 

distribution of the two groups with the “Rtsne” R 

package. The time-dependent ROC curves of 1-, 2-, 3-

year was implemented to assess the predictive power by 

the “survivalROC” R package. The paired expression 

value of angiogenesis-related genes in the signature, 

along with immunohistochemistry of the expressed 

proteins were obtained from the HPA database. 

 

Detection of the expression of each gene in the cell 

lines by qRT-PCR  

 

We extracted total RNA extracted from the human 

hepatocarcinoma cell line HepG2 and normal liver cell 

line L02 using the RNA-Quick Purification Kit 

(Shanghai Yishan Biotechnology Co., Ltd, China). The 

A260/A280 absorption (1.9–2.2) was used to evaluate 

the quality of the extracted total RNA. Then, the 

HiScript III All-in-one RT SuperMix Perfect for qPCR 

kit (Vazyme, China) was utilized to reverse transcribe 

the total RNA as following steps: 50°C for 15 min and 

85°C for 5s. The Taq Pro Universal SYBR qPCR 

Master Mix kit (Vazyme, China) was utilized to 

perform PCR according to the following reaction 

procedure: 95°C for 30s, 95°C for 10s with 40 cycles, 

and 60°C for 30s. The specific primer sequences of 

GAPDH and these genes were displayed in Table 2. We 

calculated the relative expression of target genes using 

the 2−ΔΔCT method. 

 

Functional enrichment analysis 

 

GO and KEGG analyses were conducted to clarify the 

enrichment of related functional pathways on the basis 

of the DEGs (FDR < 0.05, |log2FC| ≥ 1) using the 

“clusterProfiler” R package. The ssGSEA could be 

utilized to calculate the infiltrating score of 16 immune 

cells and the activity of 13 immune-related pathways 

[54]. Supplementary Table 3 displays the annotated 

gene set file. 

 

Development of nomogram 

 

The nomogram can predict the probability of a certain 

clinical outcome on the basis of the values of multiple 

variables [55]. To establish a nomogram for the TCGA 

dataset, we integrated age, gender, TNM classification 

and risk score with the “survival” and “rms” R package. 

Then, we plotted calibration curves to estimate the 

concordance between predicted and actual survival 

probability. Combining clinical characteristics and risk 

scores could predict 1-, 2-, 3-year survival rates of HCC 

patients. 

 

Statistical analysis 

 

All statistical analyses were performed with R software 

version 4.0.1 (https://www.R-project.org). Unless 

otherwise noted, p < 0.05 was considered to be 

statistically significant. We used Chi-square tests to 

evaluate the differences in proportions, and independent 

t-tests to assess the differences in gene expression levels 

between adjacent normal tissues and tumor tissues of 

HCC samples. Mann-Whitney test was utilized to 

evaluate the ssGSEA scores of pathways and immune 

cells between different groups for comparison. Kaplan-

Meier curves were usually utilized to analyze the 

survival probability between different groups. Wilcoxon 

test and Kruskal-Wallis test were performed to compare 

the differences in risk scores and IPS between different 

groups. We implemented Cox regression to distinguish 

independent predictors of OS probability. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Construction of a 7-gene signature model with the LASSO Cox regression analysis in the TCGA 
cohort. (A) Lasso coefficient profiles of the expression of 16 genes in the TCGA cohort. (B) A coefficient profile plot was generated against 

the log () sequence. Selection of the optimal parameter () in the Lasso model. 
 

 

 

 
 

Supplementary Figure 2. Prognostic analysis of the 7-gene signature in the TCGA cohort. Kaplan-Meier curves for the difference 

in disease-specific survival (A), disease-free survival (B) and progression-free survival (C) of HCC patients between the high-risk group and 
low-risk group in the TCGA cohort. 
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Supplementary Figure 3. Survival analysis of overall survival in each clinical subgroup in the TCGA cohort. The survival analysis 

of each subgroup has significant difference: age ≤65 (A) and age >65 (B), female (C) and male (D), stage I & II (E) and stage III & IV (F), grade 
G1 & 2 (G) and G3 & 4 (H). 
 

 

 
 

Supplementary Figure 4. The paired expression of PGF in the same individual normal tissue and tumor tissue. 
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Supplementary Figure 5. Survival analyses according to the optimal cut-off expression value of each gene and risk score in 
the TCGA cohort. The expression difference of each gene (A–G) and risk score (H) are closely related to the prognosis of HCC patients in 

the TCGA cohort. All P < 0.05. 
 

 

 

 
 

Supplementary Figure 6. Survival analyses grouped by the optimal cut-off expression value of each gene and risk score in 
the ICGC cohort. The expression difference of ENG (B), PDCD10 (C), COL18A1 (E), PON1 (G) and risk score (H) are closely related to the 
prognosis of HCC patients in the ICGC cohort. But ANGPT1 (A), PGF (D), and ITGAV (F) do not affect the prognosis. 
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Supplementary Figure 7. Survival analysis of overall survival in each clinical subgroup in the ICGC cohort. The survival analysis 

of each subgroup has significant difference: age ≤65 (A) and age >65 (B), female (C) and male (D), stage I & II (E) and stage III & IV (F). 
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Supplementary Tables 
 

Supplementary Table 1. 52 differentially expressed angiogenesis-related genes. 

Gene log2FC P-value FDR Gene log2FC P-value FDR 

VEGFA 0.838496 1.07E-07 2.18E-07 TIE1 0.672592 3.38E-05 5.75E-05 

TEK –0.76866 9.25E-11 2.91E-10 VEGFD 3.201947 1.79E-06 3.32E-06 

FLT1 1.027421 2.78E-10 7.97E-10 TGFB1 1.303598 0.00252 0.003692 

ANGPT1 1.547875 3.95E-08 8.29E-08 CTNNB1 0.742215 9.98E-12 3.70E-11 

ANGPT2 1.734857 2.11E-14 9.50E-14 VEGFB 1.318205 5.30E-05 8.78E-05 

THBS1 –1.01657 1.49E-09 3.77E-09 CCM2 0.260836 0.007736 0.01083 

VEGFC 0.817592 1.08E-05 1.89E-05 LRP5 0.336904 0.01017 0.013632 

PLG –1.15095 1.74E-19 2.74E-18 TYMP 1.023739 1.52E-06 2.90E-06 

FLT4 0.513711 0.007215 0.010331 PTGS2 –1.70841 5.31E-17 3.04E-16 

ENG –0.12314 0.018402 0.02366 ITGAV 1.428586 7.54E-09 1.76E-08 

MMP9 2.720729 2.14E-08 4.65E-08 IL1RN –1.51967 2.19E-11 7.27E-11 

KRIT1 0.744827 1.25E-09 3.29E-09 CCL2 –0.70763 5.47E-07 1.08E-06 

PDCD10 0.850463 4.09E-17 2.57E-16 PDGFB 1.568964 1.84E-18 2.32E-17 

NRP1 0.790259 0.000261 0.000391 EPHB4 0.975849 9.66E-09 2.17E-08 

PGF 1.843288 3.66E-13 1.44E-12 PIK3CA 0.305587 0.039747 0.048155 

AGGF1 0.794556 1.14E-17 1.19E-16 ITGB1 0.770908 6.33E-05 0.000102 

HGF –1.38493 3.52E-20 7.40E-19 KRAS 0.405084 0.023271 0.028747 

PECAM1 1.268413 1.39E-17 1.25E-16 HFE 0.799958 7.17E-09 1.74E-08 

DLL4 1.756678 9.02E-22 2.84E-20 TP53 0.73094 5.80E-06 1.04E-05 

ADGRB2 3.764124 2.96E-10 8.11E-10 CXCL12 –2.05117 1.08E-24 6.83E-23 

ADGRB3 –1.12228 1.90E-17 1.50E-16 AGTR1 –0.82052 2.13E-13 8.96E-13 

FZD4 0.436416 0.009991 0.013632 PDGFRB 1.823863 7.33E-17 3.85E-16 

ACE 1.63276 1.28E-15 6.21E-15 PON1 –0.83373 1.72E-11 6.01E-11 

COL18A1 –0.17402 0.010686 0.014026 NOTCH1 0.824596 0.000101 0.000156 

CDH5 0.423801 0.018958 0.023887 VWF 2.050686 2.34E-17 1.64E-16 

TGFB2 2.008395 9.02E-05 0.000142 IL1B –1.06356 2.07E-10 6.22E-10 

 

 

Supplementary Table 2. 79 angiogenesis-related genes retrieved from the GeneCards (Score >10). 

Symbol Description Score 

VEGFA Vascular Endothelial Growth Factor A 62.61 

TEK TEK Receptor Tyrosine Kinase 37.41 

KDR Kinase Insert Domain Receptor 36.9 

FLT1 Fms Related Receptor Tyrosine Kinase 1 32.35 

FGF2 Fibroblast Growth Factor 2 31.09 

HIF1A Hypoxia Inducible Factor 1 Subunit Alpha 29.97 

ANGPT1 Angiopoietin 1 27.43 

ANGPT2 Angiopoietin 2 23.44 

ADGRB1 Adhesion G Protein-Coupled Receptor B1 22.53 

THBS1 Thrombospondin 1 21.51 
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VEGFC Vascular Endothelial Growth Factor C 19.82 

AKT1 AKT Serine/Threonine Kinase 1 19.41 

PLG Plasminogen 19.25 

FLT4 Fms Related Receptor Tyrosine Kinase 4 19.19 

MMP2 Matrix Metallopeptidase 2 19.16 

EPO Erythropoietin 19.04 

ENG Endoglin 18.94 

MMP9 Matrix Metallopeptidase 9 18.79 

NOS3 Nitric Oxide Synthase 3 18.74 

KRIT1 KRIT1 Ankyrin Repeat Containing 18.52 

PDCD10 Programmed Cell Death 10 18.38 

NRP1 Neuropilin 1 18.03 

SERPINF1 Serpin Family F Member 1 17.75 

PGF Placental Growth Factor 17.72 

AGGF1 Angiogenic Factor With G-Patch And FHA Domains 1 17.44 

HGF Hepatocyte Growth Factor 17.07 

CXCL8 C-X-C Motif Chemokine Ligand 8 16.89 

PECAM1 Platelet And Endothelial Cell Adhesion Molecule 1 16.84 

DLL4 Delta Like Canonical Notch Ligand 4 16.84 

NDP Norrin Cystine Knot Growth Factor NDP 16.61 

ADGRB2 Adhesion G Protein-Coupled Receptor B2 16.61 

ADGRB3 Adhesion G Protein-Coupled Receptor B3 16.16 

FZD4 Frizzled Class Receptor 4 15.8 

ACE Angiotensin I Converting Enzyme 15.76 

COL18A1 Collagen Type XVIII Alpha 1 Chain 15.48 

CDH5 Cadherin 5 15.17 

TGFB2 Transforming Growth Factor Beta 2 15.11 

SOD2 Superoxide Dismutase 2 15.09 

MIR21 MicroRNA 21 14.97 

TIE1 Tyrosine Kinase With Immunoglobulin Like And EGF Like Domains 1 14.58 

VEGFD Vascular Endothelial Growth Factor D 14.32 

TGFB1 Transforming Growth Factor Beta 1 14.23 

CTNNB1 Catenin Beta 1 14.23 

VEGFB Vascular Endothelial Growth Factor B 13.66 

CCM2 CCM2 Scaffold Protein 13.57 

LRP5 LDL Receptor Related Protein 5 13.28 

TIMP2 TIMP Metallopeptidase Inhibitor 2 13.25 

TYMP Thymidine Phosphorylase 13.13 

PTGS2 Prostaglandin-Endoperoxide Synthase 2 13.02 

ITGAV Integrin Subunit Alpha V 12.73 

TIMP1 TIMP Metallopeptidase Inhibitor 1 12.41 

VTN Vitronectin 12.12 

IL1RN Interleukin 1 Receptor Antagonist 11.82 

CCL2 C-C Motif Chemokine Ligand 2 11.78 

PDGFB Platelet Derived Growth Factor Subunit B 11.71 

TIMP3 TIMP Metallopeptidase Inhibitor 3 11.52 

FGF1 Fibroblast Growth Factor 1 11.52 

HPSE Heparanase 11.44 
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EPHB4 EPH Receptor B4 11.27 

PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha 11.12 

ITGB1 Integrin Subunit Beta 1 11.03 

FGFR2 Fibroblast Growth Factor Receptor 2 11 

CCN2 Cellular Communication Network Factor 2 10.99 

KRAS KRAS Proto-Oncogene, GTPase 10.9 

BAIAP2 BAR/IMD Domain Containing Adaptor Protein 2 10.84 

HFE Homeostatic Iron Regulator 10.81 

TP53 Tumor Protein P53 10.73 

ETS1 ETS Proto-Oncogene 1, Transcription Factor 10.71 

CXCL12 C-X-C Motif Chemokine Ligand 12 10.69 

AGTR1 Angiotensin II Receptor Type 1 10.63 

PDGFRB Platelet Derived Growth Factor Receptor Beta 10.61 

NRP2 Neuropilin 2 10.55 

PON1 Paraoxonase 1 10.52 

NOTCH1 Notch Receptor 1 10.52 

ISM1 Isthmin 1 10.39 

VWF Von Willebrand Factor 10.27 

BMP6 Bone Morphogenetic Protein 6 10.27 

ITGB3 Integrin Subunit Beta 3 10.22 

IL1B Interleukin 1 Beta 10.09 

 

 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 3. The annotated gene set file used in ssGSEA. 

 


